Data Flow Analysis for Checking
Properties of Concurrent Java Programs

Gleb Naumovich, George S. Avrunin and Lori A. Clarke

CMPSCI Technical Report 98-22
April 1998

Laboratory for Advanced Software Engineering Research
Computer Science Department
University of Massachusetts

Effort partially supported by the Air Force Materiel Command, Rome Laboratory, and the Defense
Advanced Research Projects Agency under Contract number F30602-97-2-0032 and by the National Science
Foundation under Grants CCR9407182 and CCR-9708184.

The views and conclusioins contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency, Rome Laboratory, or the U.S. Government.

Data Flow Analysis for Checking Properties of Concurrent Java
Programs™

Gleb Naumovich, George S. Avrunin, and Lori A. Clarke
Laboratory for Advanced Software Engineering Research

Department of Computer Science

University of Massachusetts at Amherst
Amherst, MA 01003-6410
{naumovic, avrunin, clarke } @cs.umass.edu

Abstract

In this paper we show how the FLAVERS data flow analysis
technique, originally formulated for programs with the ren-
dezvous model of concurrency, can be applied to concurrent
Java programs. The general approach of FLAVERS is based
on modeling a concurrent program as a flow graph and using
a data flow analysis algorithm over this graph to check stat-
ically if a property holds on all executions of the program.
The accuracy of this analysis can be improved by supplying
additional information, represented as finite state automata,
to the data flow analysis algorithm.

In this paper we present a straightforward approach for
modeling Java programs that uses the accuracy improving
mechanism to represent the possible communications among
threads in Java programs, instead of representing them di-
rectly in the flow graph model. We also discuss a number of
error-prone thread communication patterns that can arise in
Java and describe how FLAVERS can be used to check for
the presence of these.

1 Introduction

With the advent of Web technology, distributed program-
ming, and the Java programming language in particular, are
growing in popularity. The additional complexity and in-
herent non-determinism of distributed systems makes un-
derstanding and reasoning about them extremely difficult.
Moreover, testing such systems is problematic since not only
are there many more alternatives to consider when task inter-

*This research was partially supported by the Air Force Research Lab-
oratory/IFTD and the Defense Advanced Research Projects Agency under
Contract F30602-97-2-0032 and by the National Science Foundation un-
der Grant CCR-9708184. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or implied, of
the National Science Foundation, the Defense Advanced Research Projects
Agency, the Air Force Research Laboratory/IFTD, or the U.S. Government.

leaving is considered, but executing the same program with
the same test data may not even produce the same results.
Static analysis techniques are being developed for distributed
systems to complement traditional testing approaches. These
techniques evaluate all potentially executable paths for spe-
cific kinds of faults. In this paper, we describe how the
FLAVERS static analysis approach can be modified to han-
dle the Java concurrency constructs. In addition we present
a number of patterns of use of Java’s concurrency constructs
that could lead to erroneous behavior and then describe how
the modified version of FLAVERS could be applied to detect
these problematic or suspicious patterns.

FLAVERS (FLow Analysis for VERification of Systems)
uses data flow analysis techniques to verify user-specified
properties of software systems [4]. The attractiveness of
this approach is in its low-order polynomial complexity
bounds and its ability to improve the precision of the analy-
sis by incrementally improving the accuracy of the program
model. A prototype tool for FLAVERS has been imple-
mented, called FLAVERS/Ada, that analyzes Ada programs
or program models that use rendezvous communications.

In FLAVERS/Ada, programs are modeled as trace flow
graphs that represent the potential flow of control through
the program, including intertask communications and inter-
leavings. Additional information, represented as finite state
automata and called feasibility constraints, is used to elabo-
rate the semantics of selected aspects of the program when
needed to increase the precision of the analysis results.

The emphasis of this paper is on modeling Java programs
in a way that can be used by FLAVERS. We describe one
promising approach in which the semantics of thread com-
munications are represented with feasibility constraints, in-
stead of being a part of the flow graph program model. In
addition, we discuss a number of application-independent
patterns of thread communications that indicate erroneous or
error-prone code and discuss the use of FLAVERS for check-
ing for the presence of such patterns.

The next section gives a brief description of related work.

Section 3 gives a short overview of the FLAVERS approach
for Ada. Section 4 first provides an introduction to the
Java concurrency constructs and then introduces the modi-
fied program model for Java. Section 5 describes some sus-
picious patterns of thread communications and gives an ex-
ample of using the modified approach to prove the absence
of such patterns. Finally, we present a summary and describe
directions of our future work.

2 Related Work

Most work in the area of static analysis of concurrent and
distributed systems has used either synchronous commu-
nication models with the rendezvous style of concurrency
or asynchronous message-passing communication models.
These models are different from the Java model, which sup-
ports monitors and a mixture of low-level thread synchro-
nization primitives.

There has been some recent work concerned with mod-
eling Java programs. Corbett [2] describes a technique for
constructing compact finite state models for Java. This ap-
proach relies on a data flow algorithm for constructing an
approximation of the run-time structure of the program heap
that is then used to reduce the size of the concurrency model.
This alias resolution approach could also be used to reduce
the size of our flow graph program model. In this paper, how-
ever, we have not focused on the derivation of the program
model.

Demartini and Sisto [3] describe two models of Java pro-
grams. The first method models Java programs with Petri
nets and the second models Java programs with Promela
code. Both these models are intended to be used for reach-
ability analysis. While several approaches have been pro-
posed to improve the performance of reachability analysis,
in general they are still prohibitively expensive to use with
large software systems.

As an alternative to reachability approaches, data flow
analyses for concurrent software have been formulated with
low-order polynomial execution time and storage bounds.
Most of these have been defined to check application-
independent properties (e.g. [1,8,12]). FLAVERS is one of
the few data flow techniques capable of directly supporting
checking application-specific properties of concurrent soft-
ware.

3 FLAVERS for Ada

In this section we give a brief general description of
FLAVERS/Ada and then, in the next section, describe how
this approach can be modified to deal with Java or other lan-
guages that use a similar concurrency model.

With FLAVERS/Ada, programs are modeled by trace flow
graphs (TFGs). The TFG for a concurrent program is based

on the control flow graphs (CFGs) for the components of
a system. For each CFG we identify the nodes that corre-
spond to observable activities in the program that an analyst
wants to reason about. These nodes are labeled with events,
user-selected names to be associated with such activities. To
reduce the size of the representation, the CFGs are refined
to remove all nodes that are not labeled with an event. Any
node that invokes a procedure or function is replaced by the
reduced CFG representation of that routine. In our experi-
ence, this inlining of routines does not cause a severe blow-
up in the size of the CFGs, since the nodes annotated with
events tend to be relatively sparse.

The TFG for an Ada program is obtained by connecting
the reduced, inlined CFGs for all tasks. Unique initial and
final nodes represent the start and the end states of the pro-
gram respectively. Each possible task synchronization is rep-
resented by a communication node, which is connected by
edges to the appropriate nodes in the CFGs of both commu-
nicating tasks. In addition, may immediately precede (MIP)
edges are added between nodes in separate CFGs to rep-
resent possible interleavings of the actions associated with
these nodes. The set of such edges can be computed effi-
ciently [9].

The set of all events associated with a model of the pro-
gram is the alphabet of the TFG. The language of the TFG is
the set of event sequences that occur on paths from the initial
node to the final node. The resulting TFG overapproximates
the set of possible sequences of events in the sense that each
real program execution must correspond to a path through
the graph but some paths in the TFG may not correspond to
any possible execution.

Properties can be described in a number of specification
languages but are represented internally as deterministic fi-
nite state automata (FSA) over the TFG alphabet. The lan-
guage of a property is the set of all event sequences accepted
by its FSA. Conceptually, a property holds for a program if
the language of the TFG is contained in the language of this
property. Data flow analysis is used to solve this containment
problem.

If the analysis finds that a property holds, then it is guar-
anteed to be valid on all possible program executions. When
the results of analysis indicates that the property does not
hold on some paths through the TFG, this may be because
the program is in error or it may be because all the paths
in the program model that violate this property do not cor-
respond to real program executions. FLAVERS provides a
means for selectively removing infeasible paths from consid-
eration by allowing the analyst to add feasibility constraints,
finite state automata that model semantic restrictions on the
program execution that are not reflected in the TFG. For
example, CFGs, and the TFGs constructed from them, do
not model the values assigned to variables during execution.
Thus, paths through the TFG may not represent feasible ex-
ecutions because the paths do not respect the values of some

variables. A feasibility constraint could be constructed to
track the possible finite values or ranges of values of a vari-
able and thereby enforce their semantics.

Each feasibility constraint has a distinct violation state,
which signifies that the sequence of events applied to the
constraint does not correspond to any legal behavior of the
program. The properties to be checked for a program and
the feasibility constraints are combined into a single product
automaton with the following characteristics:

e The product automaton accepts a sequence of events
only if this sequence is accepted by the property au-
tomaton;

o The product automaton goes to the violation state if and
only if at least one of the constraints goes to its violation
state.

In practice, we use an efficient approach where the full prod-
uct automaton is not actually created [10].

The containment problem on the property automaton is
replaced with the containment problem on the product au-
tomaton. We say that a property holds subject to the fea-
sibility constraints if all event sequences from the TFG lan-
guage that do not send the product automaton to the violation
state are accepted by this product automaton. The problem
of determining if this is the case is solved by data flow anal-
ysis, which propagates the states of the product automaton
through the TFG. This state propagation phase of the analy-
sis involves computing, for each node in the TFG, the set of
product automata states that characterize the state of the pro-
gram immediately after execution of the code represented by
this node. Once the solution of this data flow problem con-
verges to a join over all paths solution [7], we need to look
only at the final node of the TFG to determine whether the
property holds. We say that a property holds on all termi-
nating executions of the program if after all violation states
are discarded from the final node of the TFG, only accepting
states of the product automaton are present there'.

4 Analysis of Java Concurrent Pro-
grams

In this section we discuss the concurrency model employed
by Java, highlight the troublesome aspects of dealing with
this model in a static manner, and describe our approach
to building models of Java programs in a way amenable to
FLAVERS analysis. The approach that we take in this mod-
eling is to use the feasibility constraint mechanism to repre-
sent thread interactions in Java, as opposed to incorporating
these interactions in the TFG as done in FLAVERS/Ada.

! As described here, only terminating executions are considered.

class Threadl extends Thread
{ public Threadl...

class Example extends Thread
{ public static void

public void run() { main(String [] args) {
Object o = new Object();
} Threadl tl = new Threadl();
} Thread2 t2 =

new Thread2(tl, o);

class Thread2 extends Thread synchronized (o) {

{ public Thread2... t2.start();
public void run() { tl.start();
synchronized (o) { }

tl.join(); }
}
}
}
}

Figure 1: Java code example

4.1 Java Model of Concurrency

In Java, concurrency is modeled with threads. Threads
are objects of classes that specify thread types. Although
the term thread is used in the Java literature to refer to
both thread objects and thread types, in this paper we call
thread types thread classes and thread instances simply
threads. Figure 1 contains an example in which thread
classes Threadl and Thread2 are defined by extending the
standard Java Thread class. Threads t1 and t2 of these two
respective classes are created and used in the main method
of class Example.

Any Java application must contain a main() method,
which serves as the “main” thread of execution. This is the
only thread that is running when the program is started. Al-
though the object containing this method does not have to
extend the Thread class, it is a separate thread of control.

In Java, execution of all threads, except the main thread,
is started by calling their start() methods. The run()
method is never called explicitly. Since only the main thread
is running initially, in multi-threaded programs, the main
thread must instantiate and start some of the other threads.
These threads may then instantiate and start other threads.
For example, in Figure 1 the main thread creates (by calling
the appropriate constructors) thread t1 of class Threadl and
thread t2 of class Thread2 and then starts each by invoking
their start () methods.

Java uses shared memory as the basic model for commu-
nications among threads. In addition, threads can affect the
execution of other threads in a number of other ways, such as
dynamically starting a thread or joining with another thread,
which blocks the caller thread until the other thread finishes.

The most significant of the Java thread interaction mech-
anisms is based on monitors. A monitor is a portion of code
(usually, but not necessarily, within a single object) in which
only one thread is allowed to run at a time. Java imple-
ments this notion with synchronized statements and locks.
Each Java object has an implicit lock, which may be used
by synchronized statements. To execute a synchronized
statement, a thread must acquire the lock of the object indi-

cated by this statement and it releases this lock when it exits
this synchronized statement. Since only one thread may be
in possession of any given lock at any given time, this means
that at most one thread at a time may be executing in one
of the synchronized statements protected by that lock. In
Figure 1, an object o of Java predefined class Object is used
to create the monitor in which both threads main and t2 par-
ticipate. Note that the identity of object o has to be conveyed
to thread t. In this case this is done via the constructor new
MyThread(tl,o0).

Threads may interrupt their execution in monitors by call-
ing the wait() method of the lock object of this moni-
tor. During execution of the wait () method, the thread re-
leases the lock and becomes inactive, thereby giving other
threads an opportunity to acquire this lock. Such inactive
threads may be awakened only by some other thread exe-
cuting one of the notify() and notifyAll() methods of
the lock object. The difference between these two methods
is that notify () wakes up one arbitrary thread from all the
potentially many waiting threads and notifyAll() wakes
up all such threads. Similar to calls to wait(), calls to the
notify() and notifyAll() methods must take place in-
side monitors for the corresponding locks. Both notification
methods are non-blocking, which means that whether there
are waiting threads or not, the notification call will return and
the execution will continue.

Additional thread methods stop(), suspend(), and
resume () are defined in JDK 1.1 but have been deprecated
in JDK 1.2 since they encourage unsafe software engineer-
ing practices. Method stop() may be used to stop threads.
When this method is called, the target thread must stop what-
ever it is doing and terminate. A pair of thread methods
suspend() and resume() provide a means for suspending
and resuming the execution of the target thread. A thread
whose suspend () method is called halts its execution (with-
out termination) but can continue from the same point after
its resume () method is called. Note that a call to the stop ()
method of a thread releases all locks owned by this thread, if
any. The suspend() method does not release the locks that
the thread owns, which could lead to undesirable situations
where a thread is suspended while in a monitor, thereby pre-
venting other threads from entering this monitor. This is one
of the reasons why the suspend-resume mechanism has been
deprecated in JDK 1.2.

In the rest of the paper we refer to start(), join(),
wait(), notify(), notifyAll(), stop(), suspend(),
and resume () methods as thread communication methods.

4.2 Flow Graph Model for Java

Dynamic creation of threads is a well-known problem for
static analysis. The number of instances of each thread class
may be unbounded. For our analysis we make the usual as-
sumption that there exists a known upper bound on the num-

ber of instances of each thread class. Alias resolution, in-
cluding dealing with method (and thread object) polymor-
phism, is also an important issue. For the purposes of this pa-
per we assume that alias resolution has been conservatively
performed, using techniques such as [2,5,11].

The monitor-based model of communications between
threads is significantly different from the communication
mechanisms used by other popular concurrent languages,
such as the rendezvous model of Ada 83 and CSP or the
message sending model of Promela. The number of differ-
ent thread communication methods in Java makes the prob-
lem of constructing the program model more difficult than
the one for Ada. We solve this problem by representing
only the control flow within individual threads and the in-
terleavings of events in the TFG model of the program and
using the feasibility constraint mechanism for modeling the
semantics of thread interactions. Since some of the thread
communication mechanisms, such as notification, require
maintaining the state of many threads simultaneously, rep-
resenting these mechanisms in the flow graph is cumber-
some. Feasibility constraints are more readily suitable for
capturing this functionality. In addition, since different ways
in which threads affect each other’s behavior use different
thread methods, representing their functionality by separate
FSAs is conceptually simpler than combining them all in one
TFG?. One shortcoming of this approach is that, in practice,
increasing the number and size of feasibility constraints fre-
quently leads to increased time and space requirements of the
FLAVERS analyses. We view the approach described here
as a reasonable first step toward using FLAVERS for analy-
sis of Java. In the future, we plan to evaluate the impact of
modeling thread communications with feasibility constraints
on the running time and space requirements of the analysis
and to experiment with alternative approaches.

As with Ada, we first create a reduced, inlined control
flow graph for each method in the program. Each call to
a communication method is labeled with a tuple of the form
(m, c,0), where m is the method, c is the caller, and o is the
object owning method m. For example, for the code in Fig-
ure 1, the call t1.start in the main method will be repre-
sented with the label (start,main,t1). To make it easy to
reason about groups of communications, we allow the wild-
card symbol ’+’, which is used to indicate that one of the
parts of the communication label can take any value. For
example, (start, %, t) represents an event in which some
thread in the program calls the start method of thread t.
The first node of a thread t is labeled (begin, t, %) and the
last node of this thread is labeled (end,t,*). For consis-
tency, we use this event format for arbitrary user-specified
events as well. For example, the use of a variable var that
occurs in thread t could be labeled (use_var, t, *).

2Also, some of the constraints modeling thread interactions can be in-
corporated into the thread automata feasibility constraints (called task au-
tomata in [4]).

(wait, t,0)

(waiting, t,0)

(wait, t,0) S

(notified-entry, t, o)

Figure 2: CFG transformation for wait () method calls

For the purposes of our analysis, additional modeling is re-
quired for wait () method calls and synchronized blocks.
Because a thread entering or leaving a synchronized block
may influence executions of other threads, we represent the
entrance and exit points of synchronized blocks with ad-
ditional nodes labeled (entry, t, o) and (exit,t, o), where
t is the thread modeled by the CFG and o is the lock ob-
ject of the synchronized block. We assume that the thread
enters the synchronized block immediately after the entry
node is executed and exits this block immediately after the
exit node is executed. Thus, the entry node is outside the
synchronized block and the exit node is inside this block.

The execution of a wait() method by a thread involves
several activities. The thread releases the lock of the mon-
itor containing this wait() call and then becomes inac-
tive. After the thread receives a notification, it first has to
re-acquire the lock of the monitor, before it can continue
its execution. To be able to reason about all these activi-
ties of a thread, we perform a transformation that replaces
each node representing a wait () method call with three dif-
ferent nodes, as illustrated in Figure 2. The node labeled
(wait,t, o) represents the execution of the wait () method,
the node labeled (waiting,t,o) represents the thread be-
ing idle while waiting for a notification, and the node la-
beled (notified-entry,t,o) represents the thread after it
received a notification and is in the process of obtaining the
lock to re-enter the synchronized block. The shaded re-
gions in the figure represent the synchronized block.

The CFGs for individual threads are combined into a TFG
by using only the MIP edges, without communication nodes
used by FLAVERS/Ada. We have developed a conservative
algorithm for computing this information that is similar to
our algorithm for Ada [9]. Note that even without repre-
senting thread communications explicitly in our Java graph
model, this model conservatively overapproximates all pos-
sible executions of a program.

Figure 3 shows the TFG for the program in Figure 1. The
shaded regions include nodes in the monitor of the program,
solid edges represent control flow within individual threads
and dashed edges are MIP edges. To simplify the figure, MIP
edges between nodes from threads t1 and t2 are not shown.

main

(begin, main, %)

t1

(end, main, x) (end, t2, *),

Figure 3: TFG example

4.3 Modeling Thread Communications with
Feasibility Constraints

Although the TFG for a Java concurrent program represents
a conservative overapproximation of all program behaviors,
it does not model thread interactions. We model thread com-
munications using feasibility constraints.

For each thread interaction mechanism present in JDK 1.2
we describe the corresponding feasibility constraint(s) and
show the FSA(s). Transitions of these FSAs are defined in
terms of TFG nodes. We use the label (m, c, 0) to represent
the set of all nodes marked with that label. We use set op-
erations on labels to identify the set of nodes on which a
transition is taken. (x,*, *) stands for the set of all nodes in
the graph. For example, the self-transition on state O in Fig-
ure 4, marked (*,*,*) \ ((*,t,*) U (start,*,t)) is taken
upon traversal of any node that does not represent any ac-
tivity performed by thread t or a call to the start method
of thread t. We discuss the deprecated methods stop(),
suspend(), and resume () in Section 4 .4.

4.3.1 Start constraint

The start constraint enforces the requirement that a thread
cannot execute until it is started by some other thread. This
constraint can be constructed for each thread in the program,
other than the main thread. The start constraint for a thread
t is shown in Figure 4. State 0 models the situation before t
is started. From this state, the transition to the violation state
is taken if any node in thread t is traversed by the analysis.
After a node representing a call to the method start() of t
is traversed (this node has label (start, s, t), where thread s
makes the call), the constraint makes the transition to state 1,
after which no sequence of events can violate this constraint.

Using the start constraint makes it possible to model and
analyze programs in which some threads may not be started
at all. The CFG for each thread that may be created is
constructed and included in the TFG, but the nodes of this
thread’s CFG will be traversed without violating this thread’s

(%, %, %) \ ((*, £, *) U (start, *, £)) (ks %, %)

Figure 4: Constraint for start

(Join, *,t)

(%, %, %) \ ((end, t,*) U (join, *,t)) (x,%,%) \ (*,t, *)

Figure 5: Constraint for join

start constraint only on those executions where this thread is
actually started.

4.3.2 Stop-join constraint

The stop-join constraint enforces the requirement that after a
thread terminates, no nodes from this thread can execute. In
addition, it models the fact that a thread calling the join()
method of another thread may proceed only after this target
thread terminates. Figure 5 shows this constraint. State 0
represents the situation where thread t is not terminated.
The transition to the violation state is taken from state O if
a node representing a call to the join() method of thread
t is traversed. Such a traversal represents an infeasible path
because a call to join() cannot terminate until t is termi-
nated. State 1 represents the situation after t is terminated.
The transition from state O to state 1 is taken upon the traver-
sal of the final node in thread t. If any node from thread t is
traversed while this constraint is in state 1, the transition to
the violation state is taken.

4.3.3 Wait-notify constraint

A wait-notify constraint models the fact that a thread can
exit a state in which it is waiting for a notification only af-
ter such a notification comes from some other thread. This
constraint has to be constructed for a specific thread and a
specific monitor. Figure 6 shows this constraint for thread t
and a monitor for object o. State O contains no transitions
to the violation state and represents the state of the thread in

(e oy %) \ ((#, £, %) U
(notify, *,0)U
(notifyAll, %,0))

(notify, *,0) U (notifyAll, %,0)

(%, %, %) \ (wait, t,0)

Figure 6: Constraint for wait-notify constructs

which it is not waiting for a notification on object o. Once
the node that represents thread t making a call to the wait ()
method of o is traversed, the constraint enters state 1. While
the constraint is in this state, traversal of any node in thread
t leads to the violation state, which represents the fact that,
after a thread executes a wait () method and until it receives
the corresponding notification, it stays idle. After a node cor-
responding to a call to either a notify() or anotifyAll()
method of object o is traversed, the constraint goes back to
state 0, signifying that the thread may be active now.

Because of the difference in semantics of notify() and
notifyAll () methods,the state propagation has to be modi-
fied slightly to handle traversal of notify nodes. If there are
multiple threads waiting for a notification on the same ob-
ject, a notify() method call notifies only a single arbitrary
thread. This thread may proceed, while other waiting threads
must wait for another notification. Thus, if we have wait-
notify constraints for multiple threads but the same lock, and
a notify node for this lock is traversed with a state of the
product automaton that represents k of these constraints be-
ing in state 1, k successor states are produced. Each suc-
cessor state is characterized by exactly one wait-notify con-
straint changing to state 0. This change of the state propaga-
tion algorithm is quite straightforward and it does not intro-
duce additional worst-case complexity. Because all threads
waiting for a notification on a lock are notified by a call to the
notifyAll method for this lock, traversal of a node corre-
sponding to such a call results in a single product automaton
state for each input product automaton state. In this output
state, all wait-notify constraints for the corresponding lock
are in state 0.

4.3.4 Monitor constraint

A single feasibility constraint can be created for each mon-
itor in the program. If a program contains k threads, this
constraint has k£ + 2 states: one violation state, one state that
represents that no threads are executing in the monitor, and
one state per thread to represent that this thread is executing
in the monitor. We extend our label notation by introducing

(%, %, %) \ (ME, U (entry, #, 0)U
(notified-entry, ti,0))

entry, ty,o0)U
notified-entry, ty, o)

S

gentry, t1,0)U

notified-entry, ti,0) (MEo (t1)\

) o]

((exit,t1,0) U (wait, t1,0)))U
(%, %) \ (s £1, %) U MES)

T 1X]

(exit, ty,0)U
(wait, tg,0)

(e U Gt £,)
ex1it, Tk, 0 walt, g, O
EE *7*)\((*7tk7*)UMEO))

((*rtkv *) u MEO) \MEo(tk)

(%, %, %)

(exit, t1,0)U
(wait, t1,0)

((*7 t1, *)] MEO) \MEO(tl)

Figure 7: Monitor constraint

(+,

L

(entry, ti, o)

*,%) \ (ME, U (entry, , 0))

(entry, t1,0)

o]

EMEO (t1)\

exit, t1,0))U
(G, %, %) \ ((*,t1, %) UME,))

(exit, tx,0)

(MEo (t1)\
(exit, tg,0))U
(Ges %, 5) \ (x5 £1, %) U MEo))

((*,tr, %) U MEo) \ MEo(tx)

(%, %, %)

(exit, t1,0)

((*7 t1, *) U MEO) \ MEo(tl)

Figure 8: Monitor constraint for the example

sets ME, to represent all nodes inside the monitor for lock
o and ME,(t) to represent all nodes of thread t inside the
monitor for the lock o. If the threads are denoted ¢4, ta, ...,
ti, then ME, = U%_, ME,(t;).

Figure 7 shows the general form of the monitor constraint,
with only two states representing threads ¢; and ¢;, executing
inside the monitor shown. State O represents the situation
where no threads execute in this monitor. Thus, the transi-
tions on any nodes located in this monitor will lead to the
violation state. One of the threads, say ¢, may enter the
monitor only after it acquired the lock, which is modeled
by entry and notified-entry nodes. After one of such
nodes is executed, state k is entered. It corresponds to the
situation where none of the other threads may execute in-
side of this monitor and thread ¢;, may not execute outside
of this monitor. Traversals of these offending nodes will re-
sult in the constraint entering its violation state. State £ may
be exited only after traversing a node that represents thread
t1 leaving this monitor. This happens when thread ¢;, either
leaves the synchronized block in which it is currently exe-
cuting or it executes the wait () method of object o, labeled
(exit,tg,o0) and (wait, ti,0) respectively.

Note that this constraint may be simplified in the con-
text of a specific program. If a thread does not participate
in the monitor modeled by the constraint, the state for it
does not have to be created in the constraint. Similarly, if
a thread, say t;, enters the monitor but never executes the
wait () method for the lock of this region, the transitions
labeled (wait,t;,0) and (notified-entry,t;,0) do not
have to be included. Figure 8 gives an example of the mon-
itor constraint for the program in Figure 1. Note that since
thread t1 never acquires the lock of o, no state representing
this thread executing inside the monitor of this program is
present. Also, this constraint does not have transitions on
wait and notified-entry nodes because there are no calls
to these methods in this program.

44 Modeling the Deprecated Thread Meth-
ods

This section shows a feasibility constraint used for modeling
the way that calls to the suspend() and resume () methods
of a thread affect the behavior of this thread. In addition, we
indicate the changes that have to be made to two of the fea-

(resume, *, t)

(%, %, %) \ (*,t, %)

(%, %,) \ (suspend, x, t)

Figure 9: Constraint for suspend-resume constructs

sibility constraints introduced in the last section if the depre-
cated stop() method is used.

4.4.1 Suspend-resume constraint

A suspend-resume constraint models behavior of a thread
that may be suspended by calls to its suspend() method
from other threads. Figure 9 illustrates this constraint for
thread t. State O represents the “active” state of t. No transi-
tions to the violation state may occur from this state. When
a node representing a call to the suspend() method of t is
traversed, the constraint takes the transition to state 1. Since
this state represents the state of the system where t is sus-
pended, traversal of any node in t will lead to the violation
state. The transition back to state O is taken from state 1 only
after a node representing a call to the resume () method of t
is traversed.

44.2 Changes to stop-join and monitor constraints

The use of the stop() thread method requires changing two
of the feasibility constraints introduced in Section 4.3: stop-
join and monitor constraints. None of the other constraints
are affected by the use of the deprecated methods.

The change to the stop-join constraint models the fact that
a thread may become inactive after its stop() method is
called. Figure 10 shows the FSA for the modified constraint.
The transition from state O, which represents the active state
of thread t, to state 1, which represents the stopped state of
this thread, is taken upon the traversal of a node that repre-
sents some thread invoking the stop () method of t.

The change to the monitor constraint reflects the fact that
if the stop() method of a thread is called while it pos-
sesses one or more locks (i.e. this thread is executing in
one or more monitors), this thread has to release all these
locks before stopping. Figure 11 shows the FSA for the
resulting constraint. The only difference from the original
monitor constraint from Figure 7 is that the transition from
state 4, which represents thread ¢; executing in the monitor,
to state 0, which represents the situation where no threads
are executing in the monitor, is taken upon the traversal of a
node that models a call to the stop () method of ¢;.

(join, *, t)

(5, %) \ (%, £, %)

(%, %, %) \ ((end, t, *)U
(stop, *,t) U (join, *,t))

Figure 10: Constraint for join in the presence of calls to
stop()

5 General in

Java

Concurrency Faults

General concurrency faults refer to situations that are con-
sidered harmful in concurrent programs, without regard to
the specific application. Well-known examples are dead-
locks and livelocks, when all or some of the threads in the
program are stalled, and concurrent def-use faults [13]. Most
of other concurrency faults identified in the static analysis
literature are application-specific. This low number of gen-
eral concurrency faults is explained by the fact that most
static analysis approaches deal with high-level rendezvous or
message-sending concurrency models. Java provides a num-
ber of specialized, often low-level, thread communication
mechanisms. One implication of this is that some combi-
nations of these communications mechanisms may represent
either erroneous or suspicious sequences of activities. We
illustrate a number of such sequences and, where possible,
show their FSA representations.

A number of erroneous or suspicious activities involve
counting and thus cannot be represented with an FSA. Usu-
ally, in these cases it is possible to relax the specification to
enable a representation in the FSA form, as we illustrate.

5.1 Premature join () Calls

A call to the join() method of a thread is premature if this
thread has not been started at the time of the call. In Java
such calls are simply ignored. The presence of program ex-
ecutions exhibiting such behavior is alarming because this
may indicate a fault in the program logic. To detect such
questionable sequences, we specify the property that the
join() method of a thread may not be called before this
thread is started. Figure 12 illustrates this property.

We use this property to illustrate the way the concurrency
constraints remove infeasible paths from consideration by
the analysis. The property is checked for thread t1 in Fig-
ure 1. The property automaton shown in Figure 12 has to be
instantiated for thread t1, which involves replacing the t in

(x,
(notified-entry,
entry, ty,o0)U
notified-entry, ty, o)

§

*,%) \ (ME, U (entry, %, 0)U

tlro))
gentry, t1,0)U

notified-entry, ti,0) (MEo (t1)\

) o]

((exit,t1,0) U (wait, t1,0)))U
(%, %) \ (s £1, %) U MES)

T 1X]

(MEq (L) \
EEexit,tk,o) U (wait, tg,0)))U
,%, %) \ ((, tr, *) UME,))

((*rtkv *) u MEO) \MEo(tk)

(%, %, %)

(exit, ty,0)U (exit, t1,0)U
(wait, tg,0)U wait, t1,0)U
(stop, *,tx) stop, *1,%1)

((*7 t1, *)] MEO) \MEO(tl)

Figure 11: Monitor constraint in the presence of calls to stop

(start, *,t)
(join, *,t)

(start, *,t)
(join, *, t)

Figure 12: Property that no communication methods of a
thread may be called before it is started

every label with a t1. If no constraints are used in the anal-
ysis, the approach finds, for example, the path 1,2, 3,9, 10,
11 through the graph that starts in the begin node of the main
thread, continues through the main thread until the node rep-
resenting the call to the start method of thread t2, takes
the MIP edge to the begin node of thread t2, and continues
in this thread until the node representing the call to the join
method of thread t2. Thus, on this path thread t2 calls the
join() method of thread t1 before t1 is started by the main
thread. However, this path is infeasible. This can be detected
by using the monitor constraint in Figure 8. When the path
described above is traversed, this constraint enters state 1
upon the traversal of node 3, which is the point where the
main thread enters the monitor. When node 10 is traversed,
the constraints takes a transition to the violation state, which
signifies that the analysis must regard this path as infeasible.
The monitor constraint and the thread automaton constraint,
which models the control flow through the main thread, are
sufficient to prove that this property holds for the example.

@ (start, *,t) \@ (start, *,t) 2
(stop, *, t)
(stop, *, t) (start, *, t)
(stop, *, t)
(start, *, t)
(stop, *,t)

Figure 13: Property that a thread cannot be started more than
once without being stopped in between

5.2 Starting a thread more than once

A call to the start () method of a thread initiates execution
of this thread. What happens if a thread is started twice?
The answer depends on whether or not the thread is active
when the start () method is called. If the thread is active,
exception I1legalThreadState is thrown. If the thread has
already completed its execution, the second start () call is
simply ignored. Due to this distinction, we describe two
versions of this property. Figure 13 shows the first case,
with the second start() call happening while thread t is
still active. While we believe that in most cases the pos-
sibility of two or more calls to the start() method of a
thread represents a seriously erroneous situation, the excep-
tion handling mechanism of Java lets programmers catch the
IllegalThreadState exception, recovering from the error.

Figure 14 shows the second case, where the second
start() call happens after thread t stopped. While no ex-
ceptions are thrown and the program is not interrupted in this
case, it may indicate suspicious logic, where a thread is as-
sumed to be alive while in fact it is stopped.

(stop, *,t)

@ (start, *, t) \@ (stop, *, t) @

(start, *,t) (start, *, t)
(stop, *,t)
(start, *,t)
(start, *, t) (start, *,t)
(stop, *,t) (stop, *, t)

Figure 14: Property that a thread cannot be started after it
was stopped

5.3 Waiting Forever

One specific case of livelock that is a suspicious use of Java
concurrency mechanisms is when a thread becomes inactive
and never becomes active again. This happens when the
thread executes the wait () method for the lock object of
a monitor, but is never notified and thus never resumes its
execution. The property stating that this must not happen
cannot be specified as an FSA because counting is required.
Since the notify() method only notifies one arbitrary wait-
ing thread, to represent this kind of livelock the number of
threads having executed the wait () method of a lock object
must be matched with the number of calls to the notify()
method of the same lock object. Note that a specialized data
flow analysis algorithm can be defined for this case, since
the number of threads that can wait for a notification at the
same time is bounded by the total number of threads in the
program. Because of space limitations, we do not describe
this approach here.

The case where only notifyAll() methods are used can
be represented in the FSA form. The property that can be
checked for such programs is shown in Figure 15. It requires
that each call to the wait () method of a lock object is even-
tually followed with a call to the notifyAll() method of
this object. Note that the current approach is not capable
of handling this property. Since terminating executions are
defined as those where all threads terminate, the executions
that violate this property will be ignored since they involve at
least one thread waiting forever. At present we are working
on extending the approach to handle executions that may not
terminate.

5.4 No Unnecessary Notifications

Execution of notification methods, especially notifyAll(),
is expensive [6]. Thus, notifications issued when no threads
are waiting are wasteful. In addition, they also may indi-
cate suspicious logic (e.g. where the programmer assumes
erroneously that some threads may be waiting). FLAVERS

10

(wait, *,0)

(notifyAll, *,0)

(notifyAll, x, 0)

Figure 15: The property that no thread can wait forever

(wait, *,0)

(notifyall, %, 0)

notifyAll, *, o)
notify, ,0) (walt %, 0)
) %,

(wait, %, 0)
(notifyAall, x, 0)

Figure 16: Property that no two successive notifyAll calls
on the same object can be made successively

can be used to determine if certain calls to the notify()
and notifyAll() methods are not necessary on some ex-
ecutions. Similar to the property of threads waiting forever,
this property cannot be specified in general because handling
calls to the notify() method involves counting. A weaker
property can be checked that relies on notifyAll() meth-
ods to determine if there are any threads waiting. This prop-
erty, shown in Figure 16, requires that there are no calls to
the notify() or notifyAll () methods preceded by a call
to notifyAll () without a call to the wait () method in be-
tween.

5.5 Dead Interactions

We call a thread interaction, such as a call to a communi-
cation method of another thread, dead if by the time this
interaction takes place, the target thread has already termi-
nated. According to the Java semantics, such calls are sim-
ply ignored. While in many cases dead interactions are not
harmful, in other cases they could indicate a breach in the
program logic or unoptimal code.

Although the general description of this fault is program-
independent, it has to be checked for specific thread inter-
action methods. Figure 17 shows a property of dead joins,
where label S represents a specific t.join() method call.
This property has to be run for all t.join() method calls in
the program.

5.6 Suspending with Locks

Java includes two mechanisms that let threads avoid interfer-
ing with each other: monitors and suspend-resume interac-

S
(start,*,t)(end,t,*) S a

(end, t, *) (start, *, t) (start, #,t) (start, *,t)
(end, t, *) (end, t,)
S
Figure 17: Dead join property
(entry, t,0) @ (suspend, *, t) 2
(exit, t, 0)
(suspend, *, t) (entry, t,0) (en?ry,t,o)
(exit, t,0) (exit, t, 0)

Figure 18: Property that a thread cannot be suspended while
in possession of locks

tions. In general it is not a good idea to mix them, for the
following reason. If a thread ¢ that is executing in a moni-
tor is suspended, it becomes inactive but does not release the
lock for this monitor. Thus, for the whole period of inactiv-
ity of thread ¢ no threads may enter this monitor. While in
some cases this may be what is desired, in general having
the thread execute the wait () statement on the object whose
lock is used in this monitor is a much better choice, since in
this case the thread releases the lock before becoming inac-
tive. Figure 18 shows the property that specifies that on no
executions should it be possible that a thread is suspended
while in the monitor.

6 Conclusion

We have presented an adaptation of the FLAVERS approach
for analyzing application-specific properties of concurrent
Java programs. With this approach, the semantics of each
of the Java communication constructs are modeled with fea-
sibility constraints. We view this approach as an initial pro-
posal. In fact there is a spectrum of alternative approaches,
from modeling all intertask communications as feasibility
constraints, as we advocate here, to modeling all commu-
nications directly in the flow graph representation of the pro-
gram. The approach described here seems to us to be a
good starting point, but extensive empirical evaluation will
be needed to determine the most efficient representation. We
intend to undertake such studies in the future.

The proposed technique has the worst case complexity of
O(SN?), where N is the number of events of interest in the
program and .S is the size of the product of all finite state

(suspend, *, t)

11

automata used in the analysis. Our experience with Ada pro-
grams indicates that in practice the number and size of the
finite state automata used in FLAVERS analyses are not very
large. In addition, usually the combined state space of these
automata is only a fraction of their full cross product. It re-
mains to be seen if this is true for Java programs.

We have produced an initial implementation of the
FLAVERS/Java system and undertaken some small exper-
iments, in which the program models were constructed by
hand. We are in the process of automating the derivation of
our program models directly from the Java code. After such
tools are built, we plan on experimenting with alternatives
modeling approaches and then carrying out an experimental
evaluation of the tool’s applicability to real-world Java pro-
grams.

References

[1] Shing Chi Cheung and Jeff Kramer. Tractable dataflow
analysis for distributed systems. IEEE Transactions on
Software Engineering,20(8):579-593, August 1994.

[2] James C. Corbett. Constructing compact models of
concurrent Java programs. In ACM SIGSOFT Proceed-
ings of the 1998 International Symposium on Software

Testing and Analysis, pages 1-10, 1998.
(3]

Claudio Demartini and Riccardo Sisto. Static analysis
of Java multithreaded and distributed applications. To
appear in Proceedings of the International Symposium
on Software Engineering for Parallel and Distributed
Systems, April 1998.

[4] Matthew Dwyer and Lori Clarke. Data flow analysis
for verifying properties of concurrent programs. In
ACM SIGSOFT’94 Software Engineering Notes, Pro-
ceedings of the Second ACM SIGSOFT Symposium on
Foundations of Software Engineering, pages 62-75,
December 1994.

[5] William Landi and Barbara Ryder. Pointer-induced
aliasing: A problem taxonomy. In Conference Record
of the 18th Annual ACM Symposium on Principles of
Programming Languages (POPL ’91), pages 93-103,

Orlando, FL, USA, January 1991. ACM Press.

(6]

Doug Lea. Concurrent Programming in Java.
Addison-Wesley, Reading, MA, 1997.

[71 Thomas J. Marlowe and Barbara G. Ryder. Properties
of data flow frameworks. Acta Informatica,28(2):121—

163, 1990.

[8] Stephen P. Masticola and Barbara G. Ryder. Static in-

finite wait anomaly detection in polynomial time. In

[10]

[11]

[12]

[13]

David A. Padua, editor, Proceedings of the 1990 In-
ternational Conference on Parallel Processing. Volume
2: Software, pages 78-87, Urbana-Champaign,IL, Au-
gust 1990. Pennsylvania State University Press.

Gleb Naumovich and George S. Avrunin. A conserva-
tive data flow algorithm for detecting all pairs of state-
ments that may happen in parallel. Technical Report
98-23, University of Massachusetts, Amherst, April
1998.

Gleb Naumovich, Lori A. Clarke, and Leon J. Oster-
weil. Comparing implementation strategies for com-
posite data flow analysis problems. To appear in pro-
ceedings of SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineering,
June 1998.

John Plevyak and Andrew A. Chien. Precise concrete
type inference for object-oriented languages. In ACM
SIGPLAN Proceedings of the 1994 Conference on
Object-Oriented Programming, pages 324-340,1994.

John H. Reif and Scott A. Smolka. Data flow analysis
of distributed communicating processes. International
Journal of Parallel Programming, 19(1):1-30, Febru-
ary 1990.

Richard N. Taylor and L. J. Osterweil. Anomaly de-
tection in concurrent software by static data flow anal-

ysis. IEEE Transactions on Software Engineering,
6(3):265-278,May 1980.

12

