A Conservative Data Flow Algorithm for
Detecting All Pairs of Statements that
May Happen in Parallel

Gleb Naumovich and George S. Avrunin

CMPSCI Technical Report 98-23
April 1998

Laboratory for Advanced Software Engineering Research
Computer Science Department
University of Massachusetts

Effort partially supported by the Air Force Materiel Command, Rome Laboratory, and the Defense
Advanced Research Projects Agency under Contract number F30602-97-2-0032 and by the National Science
Foundation under Grants CCR9407182 and CCR-9708184.

The views and conclusioins contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency, Rome Laboratory, or the U.S. Government.

A Conservative Data Flow Algorithm for Detecting All Pairs
of Statements that May Happen in Parallel”

Gleb Naumovich and George S. Avrunin
Laboratory for Advanced Software Engineering Research

Department of Computer Science

University of Massachusetts at Amherst
Ambherst, MA 01003-6410
{naumovic, avrunin}@cs.umass.edu

ABSTRACT

Information about which pairs of statements in a con-
current program can execute in parallel is important
for optimizing and debugging programs, for detecting
anomalies, and for improving the accuracy of dataflow
analysis. In this paper, we describe a new data flow al-
gorithm that finds a conservative approximation of the
set of all such pairs. We have carried out an initial
comparison of the precision of our algorithm and that
of the most precise of the earlier approaches, Masti-
cola and Ryder’s non-concurrency analysis [8], using a
sample of 147 concurrent Ada programs that includes
the collection assembled by Masticola. For these ex-
amples, our algorithm was almost always more precise
than non-concurrency analysis, in the sense that the set
of pairs identified by our algorithm as possibly happen-
ing in parallel is a proper subset of the set identified by
non-concurrency analysis. In 123 cases, we were able to
use reachability analysis to determine exactly the set of
pairs of statements that may happen in parallel. For
these cases, there were a total of only six pairs identi-
fied by our algorithm that cannot actually happen in
parallel.

Keywords
1 INTRODUCTION

As the number and significance of parallel and concur-
rent programs continue to increase, so does the need for
methods to provide developers with information about
the possible behavior of those programs. In this paper,

*This research was partially supported by the Air Force Ma-
teriel Command, Rome Laboratory, and the Defense Advanced
Research Projects Agency under Contract F30602-94-C-0137 and
by the National Science Foundation under Grants CCR-9407182
and CCR-9708184.

we address the problem of determining which pairs of
statements in a concurrent program can possibly exe-
cute in parallel. Information about this aspect of the
behavior of a concurrent program has applications in
debugging, optimization (both manual and automatic),
detection of synchronization anomalies such as data
races, and improving the accuracy of data flow anal-
ysis [8].

The problem of precisely determining the pairs of
statements that can execute in parallel is known to be
NP-complete [12]. Most work in the area has therefore
focused on finding methods for computing a conserva-
tive approzimation to the set of pairs that can execute in
parallel, that is, computing a set of pairs of statements
that contains all the pairs that can actually execute in
parallel but may also contain additional pairs. The goal
is to find a useful tradeoff between precision and cost.

Several approaches have been proposed. Callahan
and Subhlok [1] proposed a data flow algorithm that
computes for each statement in a concurrent program
the set of statements that must be executed before this
statement can be executed (B4 analysis). Duesterwald
and Soffa [2] applied this approach to the Ada ren-
dezvous model. Masticola and Ryder proposed an iter-
ative approach they called non-concurrency analysis [8]
that computes a conservative estimate of the set of pairs
of communication statements that can never happen in
parallel in a concurrent Ada program. (The comple-
ment of this set is a conservative approximation of the
set of pairs that may occur in parallel.) In that work,
it is assumed initially that any statement from a given
process can happen in parallel with any statement in
any other process. This pessimistic estimate is then im-
proved by a series of refinements. Masticola and Ryder
show that their algorithm yields more precise informa-
tion than the approaches of Callahan and Subhlok and
of Duesterwald and Soffa.

In this paper, we propose a new data flow algorithm

for computing a conservative approximation of the set
of pairs of statements that can execute in parallel in a
concurrent Ada program. We have conducted a prelim-
inary empirical comparison of our algorithm and non-
concurrency analysis, using a set of 147 Ada programs
that includes the collection assembled by Masticola [9].
For the purposes of this comparison, we took the com-
plement of the set of pairs of statements identified by
our algorithm as possibly occurring in parallel to get a
conservative approximation of the set of pairs of state-
ments that cannot occur together, as computed by non-
concurrency analysis. On these programs, our algo-
rithm finds all of the pairs identified by non-concurrency
analysis in 139 cases; in 108 cases, our algorithm finds
pairs that are not found by non-concurrency analysis.
In 8 cases, non-concurrency analysis identifies pairs that
are not found by our algorithm but, in all of these cases,
our algorithm finds many more pairs that are not identi-
fied by non-concurrency analysis. For 123 cases, we were
able to run a reachability analysis to determine exactly
the pairs of statements that cannot occur in parallel.
(In the remaining cases, the reachability analysis ran
out of memory.) For these 123 programs, there were 4
cases in which our algorithm failed to find all the pairs
of statements that cannot happen together, missing a
total of 6 pairs.

The next section introduces the program model that
we use and describes our algorithm. Section 4 presents
the results of the comparison of our algorithm and non-
concurrency analysis, and Section 5 discusses some con-
clusions and describes future work.

2 THE MHP ALGORITHM

2.1 Program representation

The program representation used in this work is the
trace flow graph (TFG) introduced by Dwyer and
Clarke [3,4]. This representation is conservative in the
sense that it models a superset of all feasible program
executions. Informally, TFGs are forests of control flow
graphs (CFGs), one for each concurrent process, or task,
in the program, with nodes and edges added to repre-
sent intertask communications. (If the code region rep-
resented by node n in one task contains a synchroniza-
tion statement that can correspond to one represented
by node m in another task, a new node is added with
incoming edges from n and m and outgoing edges to all
successors of n and m. This is illustrated in the figures.)

The TFG model deliberately does not specify exactly
what kind of region in the task each CFG node repre-
sents, imposing only the weak restrictions that a region
cannot contain more than one synchronization state-

ment and that, if a region contains a synchronization
statement, it must be the last statement in this region.
This underspecification provides for greater flexibility
of the model. For example, a CFG node can represent a
single machine level instruction, a basic block, or even a
set, of paths from one synchronization point to another.
We also add a unique initial node that has no incom-
ing edges and has outgoing edges to the start nodes of
all CFGs and a unique final node that has no outgoing
edges and has incoming edges from the end nodes of all
CFGs.

Formally, a TFG is a labeled directed graph
(N, E, Winitial, "final, it), Where N is the set of nodes,
E C N x N is the set of edges, nnitial, Nfinat € N are
unique initial and final nodes, and p is a mapping from
nodes to regions of code within tasks. The set of all
nodes from the CFGs for all tasks forms the set of local
TFG nodes, LOCAL. The elements of the set of non-
local nodes, COM = N\(LOCALU{nipitiai, Nfinal}), are
communication nodes, which represent task rendezvous.
In building a TFG from a collection of CFGs, the com-
munication nodes are obtained by syntactic matching of
synchronization statements. As a result, some nodes in
COM may be unreachable, but our algorithm is capa-
ble of detecting some of these. For each node n, we let
Pred(n) and Succ(n) be the sets of (immediate) prede-
cessors and successors of n, respectively.

Figure 1(a) shows a program that consists of two
communicating Ada tasks, Figure 1(b) shows the corre-
sponding CFGs with nodes labeled with the correspond-
ing Ada program statements, and Figure 1(c) gives the
corresponding TFG. Nodes 1 and 2 are communication
nodes; node 1 represents the communication between
the tasks at entry call T2.E1, and node 2 represents the
communication at entry call T2.E2.

The TFG model offers a compact representation of
the program’s behavior. In the worst case, the number
of local nodes in the TFG is linear, while the number
of communication nodes is quadratic, in the number of
program statements.

Given a pair (m,n) of nodes in a TFG, we are inter-
ested in determining whether, on some computer sys-
tem, there is an execution of the program represented
by the TFG in which code corresponding to a state-
ment in the task region represented by m executes at
the same time as code corresponding to a statement in
the task region represented by n. If there is such an
execution, we say that m and n may happen in parallel,
and define MHP ,crs(m,n) to be true. This definition of
the MHP ¢ s relation identifies the “ideal” set of pairs
of statements that may execute in parallel. (For the
sake of brevity, in the rest of the paper we will use the
phrase “node n executes” to mean “an instruction from
the task region represented by node n executes”.) The

task body T1 is
begin
if B the
X:= 2;
T2.E1;
end if;
T2.E2;
end T2

task body T2 is
begin
accept E1l1;
accept E2;
end T2;

(a) Code

(b) CFGs

Figure 1: A TFG example

algorithms presented in this paper compute a conserva-
tive approximation MHP to MHP ;.

2.2 The MHP algorithm

In this section we give the detailed description of the
MHP algorithm and state the major results about
its termination, conservativeness, and worst-case time
bound. Rather than using the lattice/function space
view of data flow problems [5], we give data flow equa-
tions for TFG nodes. This is done for two reasons. First,
it makes explanations and especially proving properties
of this algorithm more intuitive. Second, one aspect of
the algorithm precludes its representation as a purely
forward- or backward-flow data flow problem or even as
a bidirectional [10] data flow problem. We conclude the
description of the algorithm by giving pseudo-code for
its worklist version.

Our algorithm associates three sets with each node
n of the TFG: GEN(n), IN(n), and M(n). The set
M (n) is the current approximation to the set of nodes
that may happen in parallel with n, while GEN (n) rep-
resents the nodes we can place in the approximation
based on information local to n and IN(n) represents
the nodes we can place in the approximation using infor-
mation propagated from the predecessors of n. Initially,
all three sets for all nodes are empty. These sets are re-
peatedly recomputed until the algorithm reaches a fixed
point and the sets do not change. At this point set
M (n) represents a conservative overestimate of nodes
with which node n may execute in parallel.

In addition to these three sets, we assign a Reach bit
to each communication node. This bit is initially set to

false. Its value is set to true if, on some iteration, each
of its two local predecessors belongs to the M set of the
other. Intuitively, a task rendezvous represented by a
communication node can take place only if both tasks
are ready to participate in it.

The sets GEN and IN are computed on each itera-
tion of the algorithm as follows. If n is a local node,
let P be the set consisting of nipitiar, if 7 is a suc-
cessor of Npitiar, and all communication nodes C' that
have n as a successor and have Reach(C) currently set

Then GEN(n) = (UpeP Succ(p)) \{m |

m is in the same task as n }. Informally, GEN (n) is the
set of local nodes m such that m and n are both succes-
sors of a reachable communication node, or of the initial
node. If n is a communication node, GEN (n) = (). The
idea is that, if a local node is a successor of a reachable
communication node, it may happen in parallel with
other successors of this communication node since both
tasks participating in the communication can execute
immediately after the communication. For example, in
Figure 2(a), after rendezvous C} is executed, nodes my
and n may happen in parallel.

For a local node n, we put IN(n) = U, e prean) M (p),
while if n is a communication node, we put

Npepreamn) M(p) if Reach(n)
0 otherwise.

to true.

IN(n):{

Here the idea is that, since tasks can execute at varying
rates, a local node that may execute in parallel with
another node may also execute in parallel with all local
successors of that node. A communication node, how-
ever, can execute only when both of its predecessors

Figure 2: Tllustrations for the MHP equations

have executed, and so may not execute in parallel with
a node that cannot execute in parallel with both of its
predecessors. Figure 2(b) provides an illustration. Sup-
pose that nodes n and p may happen in parallel (i.e.,
that node C is reachable), and nodes m and p may not
happen in parallel. Since node L can happen only after
both m and n happened, it may not happen in parallel
with node p. Note that by construction a communica-
tion node can never have nodes in its IN set from the
two tasks whose rendezvous it represents.

On each iteration, we set M(n) = IN(n) U GEN (n).
Up to this point the algorithm is a standard forward-
flow data flow algorithm [5]. However, after comput-
ing GEN, IN, and M sets for each node, we have
to take an additional step to ensure the symmetry
ny € M(ny) & ny € M(ny) by adding n; to M(ns)
if no € M(ny1). Figure 2(c) illustrates this necessity:
without this additional step the M sets of nodes n; and
my are {n2} (GEN(m1) = {n2} and IN(mz) = {n2}),
but the M set of ny is {n1} (GEN (n2) = {n1}). Thus,
ny € M (mq) holds but m; € M(ny) does not.

In Figure 3, we give a worklist version of the MHP al-
gorithm. Although steps (12)-(14) do not allow casting
the algorithm in the general data flow algorithm form
and using the standard complexity results [7] directly,
we can show that the algorithm has polynomial worst
case bound, as stated below in Theorem 4.

To conclude the discussion of the MHP algorithm, we
state some results about its termination, conservative-
ness, and polynomial-time boundedness.

Theorem 1 (Termination). Given a TFG for a con-
current program, the worklist version of the MHP algo-
rithm will eventually terminate.

Termination follows easily from the finiteness of the
information that can appear in the M sets of all nodes
in the TFG and from the fact that the M sets of all

nodes increase monotonically.

Theorem 2 (Correctness). After the MHP algo-
rithm terminates, M(n) = GEN(n) UU, cpreainy M (2)
for every reachable local node n, i.e., the algorithm finds
a fized point of the data flow equations.

The fact that the algorithm computes a fixed point
follows from the observation that, whenever an M (n) is
changed, all nodes directly affected by the change are
placed on the worklist.

Theorem 3 (Conservativeness). For all ny,ns €
N, MHPpeTf(nl,ng) = ny € MHP(ng)

The proof of this result is based on a case-by-case
examination of all configurations of nodes n; and ns in
the TFG.

Theorem 4 (Polynomial-Time Boundedness).
The worst-case time bound for computing MHP sets for
all nodes in the TFG is O(|N]?).

To prove this, we construct an optimized version of
the worklist algorithm which limits the amount of infor-
mation passed among the nodes in the TFG by sending
each node from the M set of a given node to each of
its predecessors only once. Then we prove that this effi-
cient algorithm computes exactly the same information
as the MHP algorithm in Figure 3 and show that the
complexity of the efficient algorithm is O(|N|?).

3 Comparing the MHP Algo-
rithm with Non-concurrency
Analysis

This section introduces the most precise of the previous

approaches for computing the MHP information, Mas-
ticola and Ryder’s non-concurrency analysis. Since the

Input: A TFG (N, E, Ninitiat, Mfinais 14)

Output: Vn € N : a set MHP(n) of TFG nodes
such that Vm ¢ MHP(n), m may not happen in
parallel with n.

Initialization: The M sets for all nodes are ini-
tially empty, and the worklist W initially contains
start nodes for all tasks in the program.

For each n € N, set M(n) = 0.

Set W = (ny,...,ni), where Uf:
(ninitial)n) € E}

Main Loop: We evaluate the following statements
repeatedly until W = ()

{n |

1 =

(1) n:= the first element from W
(2) Wi=w\{n}

(3) Mold = M(n)

(4) ifn € COM then

(5) {p1,p2} := Pred(n)

© Reach(n) = € M(p2)
(7) if Reach(n) the
®) M(n) 1= M(pr) 1 M ()
end if;
else
9) Compute GEN (n)
10) M) = Uyepreqm M(p) UGEN ()
end if;
(11) if Mgyq # M(n) then
(12) For each m € (M (n) \ Moua)
(13) M(m) = M(m)U {n}
(14) W := W U Succ(m)
(15) W := W U Suce(n)
end if;
For eachn € N
(16) MHP(n) := M(n)

Figure 3: MHP algorithm

program model used by this approach is different from
TFG, we describe the technique for creating TFGs au-
tomatically from the non-concurrency graphs. Finally,
since the the MHP algorithm computes pairs of nodes
that may happen in parallel and non-concurrency anal-
ysis computes pairs of nodes that cannot happen in par-
allel, we present a mapping between these two sorts of
data. This mapping allows us to compare the informa-
tion computed by the two approaches.

3.1 Non-concurrency Analysis

Non-concurrency analysis computes can’t happen to-
gether (CHT) information, which is the opposite of
what the basic MHP algorithm computes. The model
of the program used in this approach is the sync graph,
where each node represents a number of control paths
in a task that end in a single synchronization point.
Possible rendezvous are represented as hyperedges, con-
necting the synchronizing paths. Initially it is assumed
that a given node can happen together with any of the
nodes in the other tasks. Four CHT refinements are
then applied, in arbitrary order, until a fixed point is
reached. The four refinements are pinning analysis,
Bj analysis, RPC analysis, and critical section anal-
ysis. The complexity of each of the four refinements

O(|Ngyne|?), and the complexity of the overall ap-
proach is O(|Ngync|?), where Ny, is the set of sync
graph nodes [9].

3.2 Deriving TFGs from Sync Graphs

In order to compare information computed on sync
graphs and TFGs, we construct a special restricted
trace flow graph (RTFG) from a sync graph. Due to
space limitations, we do not present the complete al-
gorithm used for this translation. Informally, a single
local RTFG node is constructed for each sync graph
node, except for those nodes in the sync graph that
represent entry calls to accept statements with bodies,
in which case two local RTFG nodes are constructed.
One RTFG node represents the execution of the caller
task before the callee task accepts the call. The second
RTFG node represents the state of the calling task while
the accept body executes. Similarly, a single communi-
cation RTFG node is created for each hyperedge that
models an entry call to an accept statement without
a body and two communication nodes are created for
each hyperedge that models an entry call to an accept
statement with a body. Figure 4 gives an example. The
sync graph in Figure 4(b) models the communication
structure of the simple program in Figure 4(a). The hy-
peredge representing the call to entry E, made by task
T1, is shown as a dashed line. The RTFG derived from
this sync graph is shown in Figure 4(c). The matching
sync graph and RTFG nodes are labeled with the same
numbers. The node labeled 1’ in the RTFG represents
the second local node created for the sync graph node
1.

task body T1 is
begin

T2.E;
end T1;

task body T2 is
begin
accept E do
end E;
end T2;

(a) Code

(b) Sync graph (c) RTFG

Figure 4: Example of RTFG construction

3.3 Mappings between the information
computed by the two approaches

The algorithm of constructing RTFGs from sync graphs
provides us with a mapping u : N — 2V, where N is
the set of nodes in the sync graph. We define a function
pt 2N 5 2N as VS C N,u7H(S) = {Alu(R) N S #
#}. In addition, we abuse this notation by letting Vn €
N,u=t(n) = if n € p(f).

Using these mappings, we can “translate” the MHP
information from the RTFG to the corresponding sync
graph by mapping the MHP set computed for a node n
in RTFG to the node in the sync graph. In cases where a
sync graph node 72 has two corresponding RTFG nodes
ny and ne, MHP(71) is defined as the union of the two
translated sets MHP(ni) and MHP(nz). In general,
VYn € N, MHP(n) = Uneu(ﬁ) w Y (MHP(n)).

The result is that each node in the sync graph has a
CHT set and an MHP set associated with it. To com-
pare these sets, we must take the facts that 7 ¢ MHP (1)
and 7 ¢ CHT(n) into account. For any function
A: N — 2N let At (i) = A(i) U {n}. Then CHT(7)
computed by non-concurrency analysis corresponds to
MHP+ (7)) computed by the MHP algorithm, where the
bar indicates the complement. Thus, to compare the
precision of the two techniques we compare sets CHT (72)
and MHP*(n).

3.4 Theoretical comparison

We compared the theoretical precision of information
computed by the MHP algorithm and non-concurrency
analysis. Specifically, we compared the MHP algorithm
to each of the four refinements used by non-concurrency
analysis, attempting to prove or disprove that our al-

gorithm is more precise than this refinement. We say
that the MHP algorithm subsumes a refinement if, given
that the MHP information was at least as precise as
the CHT information before the refinement (i.e., that
CHT(n) C MHP+(7n) for all 1), that is still the case af-
ter the refinement. Due to space limitations, we briefly
state the results of this comparison without proof.

We were able to prove that the MHP algorithm
subsumes the pinning and B4 refinements of the non-
concurrency approach. On the other hand, we found
counterexamples indicating that the MHP algorithm
does not subsume critical section and RPC refinements.
The MHP algorithm can be improved to take advan-
tage of critical section regions'. However, the resulting
algorithm is more complicated than the one presented
in this paper and its worst-case complexity is O(|N|?).
The practical performance of the MHP algorithm, dis-
cussed in the next section, seems to indicate that the
gain in precision may not warrant this added complex-
ity. We plan to investigate these trade-offs in our future
work.

4 Experimental Results

We measure the precision of the information computed
by a technique in terms of the set of pairs of nodes in
the sync graph that this technique determined cannot
happen in parallel. We write Pyca for the set of CHT
pairs found by non-concurrency analysis, Py;gp for the
set of CHT pairs found by the MHP algorithm, and |A|

ISince in the TFG model the subgraph corresponding to the
RPC structure is just a special case of the critical section struc-
ture, this also takes advantage of the information about remote
procedure calls

cardinality of a set A.

Stephen Masticola graciously provided us with his im-
plementation of non-concurrency analysis, written in C.
We used this for our experiments, together with our
own implementation of the MHP algorithm, written in
Java. In addition, we wrote a reachability tool that all
reachable program states of the RTFG model, also im-
plemented in Java. Although the reachability tool runs
out of memory for some of our test programs, in the
cases where it ran successfully, it determined MHP ¢y,
from which we computed CHT pery. We ran the non-
concurrency tool on Sun Sparc 10 with XXX MB of
memory, and the MHP tool and the reachability tool
on AlphaStation 200 with YYY MB of memory. (The
non-concurrency tool would not compile on the AlphaS-
tation.)

We used a sample of 147 Ada programs. Of these,
127 are drawn from the suite of 138 programs Mas-
ticola and Ryder used in their experiments with non-
concurrency analysis. (Of the 138 programs they used,
we were unable to reconstruct 11 in a form suitable
for the non-concurrency analysis tool. We expect to
be able to add these to our sample after further con-
sultation with Masticola.) Most of the remaining 20
programs are examples drawn from the concurrency lit-
erature, such as dining philosophers and gas station. 25
of all programs did not have loops. The size of the pro-
grams ranges from only a few lines of code to several
thousands lines. This program sample contains several
groups of programs representing different sizes and vari-
ations of the same basic example and actually contains
approximately 90 significantly different examples. It is,
of course, unlikely that this sample of relatively small
programs is representative of concurrent Ada programs
in general, but our results provide some initial data in-
dicating that the MHP algorithm is very often more
precise than non-concurrency analysis.

In the following discussion of the results we separate
the program sample into three subsets, which we discuss
separately. First, we consider the 25 programs without
loops. For all of these programs, which come from the
Masticola-Ryder collection, the MHP algorithm found
all the CHT pairs found by non-concurrency analysis.
Second, we describe our results for the 8 programs in
which non-concurrency analysis detected some CHT
pairs not found by our MHP algorithm. Finally, we
describe the remaining 114 programs with loops for
which the MHP algorithm found all the CHT pairs
found by non-concurrency analysis. The focus of our
discussion is on the detection of CHT pairs by the two
approaches. We do comment briefly on the execution
times for non-concurrency analysis and our MHP ap-
proach, but these times do not have much significance.
Neither we nor Masticola and Ryder aimed to maximize

the speed of our implementations. In addition, non-
concurrency analysis was implemented in C, a compiled
language, and the MHP algorithm was implemented in
Java, an interpreted language. Finally, as mentioned
above, we performed the tools were run on different plat-
forms. Thus, we view the comparison of precision of the
two approaches as the primary goal of this experiment.

4.1 Programs without loops

We realize that the programs without loops are not
likely to be realistic examples, and so we consider them
separately from other programs. For the 25 programs
without loops, the reachability tool was completed suc-
cessfully for all but one, and in all such cases the
MHP algorithm found all pairs found by reachability
(so MHP= MHP s for all RTFG nodes). In 8 cases,
the MHP algorithm found a small number of pairs that
non-concurrency analysis did not, with the average ra-
tio |Puap|/|Pncal of 1.01. The average timing ratio
(NCA time)/(MHP time) was 1.82, with most running
times for both tools well under a second.

4.2 Programs where non-concurrency
analysis found pairs that the MHP
algorithm did not

Non-concurrency analysis found some CHT pairs not
found by the MHP algorithm in 8 of the 147 cases we
ran. The complete data for these cases are presented
in Table 1. The first column of this table shows the
program size in terms of the number of nodes in the
sync graph. Times are in seconds and include both user
and system time. The reachability tool was able to han-
dle only 4 of these cases. An interesting observation is
that for these cases, although by themselves neither the
MHP algorithm nor non-concurrency analysis found all
possible pairs, combined, these two approaches were as
precise as reachability.

Figure 5 compares precision of the two approaches
by comparing the total number of CHT pairs found by
each of them to the number of CHT pairs in the union
CHT yoaAUCHT ppp- As just noted, this union is equal
to CHT pers in the 4 cases which our reachability tool
could handle. Note that in all cases the MHP algorithm
outperformed non-concurrency analysis in terms of the
total number of CHT pairs found.

4.3 The other 114 programs

The remaining 114 programs are those that have loops
and where the MHP algorithm found all CHT pairs that
non-concurrency analysis did. Of these, the reachability
tool ran in 95 cases. For all of these 95 cases in which we

Prog. |Prrp |Pyca |CHT pers | |CHT pers NCA MHP | reach.

| size |PNOA‘ |PMHp| ‘CHTPE,‘[‘ \PNCA| \PMHP‘ \PNCA| \PMHP‘ time time time
699 72373 98103 25990 260 277.54 | 1860.41

55 334 361 362 28 1 28 1 2.81 0.32 3.14

88 1039 1155 1157 118 2 118 2 10.67 1.04 | 140.90
194 668 815 177 30 57.62 26.30
232 800 1025 261 36 90.15 48.04
97 953 1282 337 8 35.16 1.37

44 345 355 356 11 1 11 1 0.89 0.30 0.35

268 15395 17310 17312 1917 2 1917 2 26.58 45.14 19.54

Table 1: Data for the 8 cases where non-concurrency analysis found some pairs that the MHP algorithm did not

o MHP
40% A BNCA

Figure 5: Precision comparison for the 8 cases where
non-concurrency analysis found some pairs that the
MHP algorithm did not

were able to determine CHT e, the MHP algorithm
found all the possible CHT pairs. Non-concurrency
analysis found all the possible CHT pairs in only 19
cases.

Of these 114 programs, there were 93 cases in which
the MHP algorithm found some pairs that were not
found by non-concurrency analysis (in the remaining 21
cases, the MHP algorithm and non-concurrency analy-
sis found exactly the same pairs). Figure 6 plots the ra-
tio |Pyrp|/|Pnca| against the program size, measured
as the number of nodes in the sync graph. The average
precision ratio |Pypp|/|Pnca| was 1.41 and the average
timing ratio (NCA time)/(MHP time) was 2.98. The
running times of both tools were under 4 minutes for
all programs.

4.4 The number of RTFG nodes

In addition to comparing performance of the two
approaches, we examined the question of potential
quadratic blow-up in the number of RTFG nodes. We
plot the number of sync graph nodes against the number
of RTFG nodes in Figure 7. The figure also shows the

13
12 4
114
10 4

(MHP pairs)/(NCA pairs)

S O A

| a0 b & @ s, 5.0 . .

0 50 100 150 200 250 300 350 400

Nodes in Sync Graph

Figure 6: The precision ratio | Pyrp|/|Pncal for the 114
programs with loops where the MHP algorithm found
all CHT pairs found by non-concurrency analysis

least-squares regression line, which has a slope of 1.84.
The correlation coefficient is .983. For this sample of
programs thus offers strong support for the hypothesis
that the number of RTFG nodes depends linearly on
the number of sync graph nodes. Thus, since the size
of sync graphs is (sub)linear in the number of program
statements, the same appears to be true for RTFGs.

5 CONCLUSION

Information about which pairs of statements may exe-
cute in parallel has important applications in optimiza-
tion, detection of anomalies such as race conditions, and
improving the accuracy of data flow analysis. Efficient
and precise algorithms for computing this information
are therefore of considerable value. In this paper, we
have described a data flow method for computing a con-
servative approximation of the set of pairs of statements
in a concurrent program that may execute in parallel.
Under reasonable assumptions about the structure of
the concurrent program, which were confirmed by our
experiments, our method has better worst-case com-
plexity than non-concurrency analysis, the most pre-

1600

1400

1200

1000

800

RTFG Nodes

600

400

200

0 100 200 300 400 500 600 700 800 900

Sync Graph Nodes

Figure 7: Least-squares fit of the number of RTFG
nodes to the number of sync graph nodes

cise of the earlier methods. Theoretically, neither non-
concurrency analysis nor our MHP algorithm have a
clear advantage in precision. However, based on our
experimental data, the MHP algorithm often is able
to determine which pairs of statements may execute in
parallel more precisely than non-concurrency analysis.

As a part of our experiments, we compared the pre-
cision of the MHP algorithm with the precision of a
technique based on the exhaustive exploration of the
program state space. While this reachability technique,
being exponential in the program size, is not practical,
with its help we were able to compute “perfectly” pre-
cise information for small enough examples. For these
examples, the information computed by the MHP algo-
rithm was remarkably close to that of the reachability
technique.

At present, the MHP algorithm is being used imple-
mented as part of the FLAVERS tool [3,11] for data
flow analysis of concurrent programs.

In the future, we plan to extend the MHP algo-
rithm to programs containing conventional procedure
and function calls. Even in its current form, the MHP
algorithm can be easily used to support a limited form of
interprocedural MHP analysis, with the restriction that
procedures may not contain task entry calls. Under this
restriction, the MHP sets computed for procedure call

nodes are sufficient to determine the MHP sets for all
nodes in this procedure. Thus, if n is a call node for
procedure P, then any node in the body of P may hap-
pen in parallel with any node in MHP(n), computed by
one of the MHP algorithms in this paper. Special care
must be taken when there is a possibility that a pro-
cedure may be called by more than one task, in which
case executions of multiple instances of this procedure
may overlap in time. In this case, unlike task nodes,
the MHP sets of nodes from the procedure will contain
other nodes from the same procedure. To determine
whether this might happen, we have to check whether
any of the call nodes to P is in the MHP set of any of
the other call nodes to this procedure (this has to be
done recursively for nested procedure calls), in which
case the MHP sets of all nodes in P must contain all
nodes in P.

In the case of procedures containing entry calls, we
plan to use a context-sensitive approach, extending the
TFG model to include procedure call and return edges,
similar to the approach of [6], and modifying the MHP
algorithms accordingly.

In addition, we plan to implement an algorithm that
improves the precision of the MHP algorithm by taking
advantage of critical sections, regions in the program
that can be demonstrated to support the notion of mu-
tual exclusion. Then we plan to carry out a careful com-
parison of the performance of this improved algorithm
with that of the algorithm presented in this paper and
of the non-concurrency approach. The initial hypothe-
sis, which seems to be supported by this work, is that in
practice the improved algorithm will be only marginally
more precise than the current algorithm. We hope to
perform these experiments for a larger program sam-
ple with more realistic programs and to evaluate the
trade-offs of precision and cost added by the improved
algorithm.

6 Acknowledgments

We thank Stephen Masticola and Barbara Ryder for
graciously providing us with their non-concurrency
analysis tool and a set of sample Ada programs that
we used in our experiments. We are also grateful to
Lori Clarke for helpful suggestions on this work.

References

[1] D. Callahan and J. Subhlok. Static analysis of low-
level synchronization. In Proceedings of the SIG-
PLAN/SIGOPS Workshop on Parallel and Dis-
tributed Debugging, pages 100-111, 1988.

[2]

[6]

[7]

[8]

[10]

[11]

[12]

E. Duesterwald and M. L. Soffa. Concurrency anal-
ysis in the presence of procedures using a data flow
framework. In Proceedings of the ACM SIGSOFT
Fourth Workshop on Software Testing, Analysis,
and Verification, pages 36-48, Victoria, B.C., Oc-
tober 1991.

M. Dwyer. Data Flow Analysis for Verifying Cor-
rectness Properties of Concurrent Programs. PhD
thesis, University of Massachussetts, Ambherst,
1995.

M. Dwyer and L. Clarke. Data flow analysis for
verifying properties of concurrent programs. In
ACM SIGSOFT’94 Software Engineering Notes,
Proceedings of the Second ACM SIGSOFT Sym-
posium on Foundations of Software Engineering,
pages 62-75, December 1994.

M. Hecht. Flow Analysis of Computer Programs.
North-Holland, New York, 1977.

S. Horwitz, T. Reps, and M. Sagiv. Demand inter-
procedural dataflow analysis. In Proceedings of the
Third ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, pages 104-115, Oct.
1995.

T. J. Marlowe and B. G. Ryder. Properties of data
flow frameworks. Acta Informatica, 28(2):121-163,
1990.

S. Masticola and B. Ryder. Non-concurrency anal-
ysis. In Proceedings of the Twelfth of Symposium on
Principles and Practices of Parallel Programming,
San Diego, CA, May 1993.

S. P. Masticola. Static detection of deadlocks in
polynomial time. PhD thesis, Rutgers University,
1993.

S. P. Masticola, T. J. Marlowe, and B. G. Ryder.
Lattice frameworks for multisource and bidirec-
tional data flow problems. ACM Transactions on
Programming Languages and Systems, 17(5):777—
803, September 1995.

G. N. Naumovich, L. A. Clarke, L. J. Osterweil,
and M. B. Dwyer. Verification of concurrent soft-
ware with FLAVERS. In Proceedings of the 19th
International Conference on Software Engineering,
pages 594-595, May 1997.

R. N. Taylor. Complexity of analyzing the synchro-
nization structure of concurrent programs. Acta
Informatica, 19:57-84, 1983.

