INCREASING THE FUNCTIONALITY
AND AVAILABILITY OF
REED-SOLOMON FEC CODES:

A PERFORMANCE STUDY

D. Rubenstein
CMPSCI Technical Report 98-31
August 1998

Increasing the Functionality and Availability of Reed-Solomon FEC
Codes: a Performance Study*

Dan Rubenstein

Technical Report 98-31

Department of Computer Science
August, 1998

Abstract

This document describes the implementation details of modifications performed to an existing C-
language Vandermonde-Matrix based Forward Error Correcting (FEC) coding package [2] and to an
existing C-language Cauchy-Matrix based FEC coding package [3] to increase their interface flexibility,
and allow for their use in a wider variety of coding applications. We discuss why these extensions
add no time complexity to encoding and decoding rates. We also describe the architecture of a coding
package that we developed in Java, which is based on the C-language Vandermonde-Matrix based coding
package. We compare the coding rates of our modified C-language Vandermonde-Matrix coder to those
of our modified C-language Cauchy-based coder, and find that the Vandermonde based coder codes at
a faster rate for a significant majority of platforms and coding scenarios considered. We then compare
the coding speeds of the Vandermonde-based coder between the C and Java version, and find that the
Java version running on a virtual machine performs at least two orders of magnitude slower than its C
language counterpart running as compiled machine code. Finally, we examine performance improvements
when the Java coder utilizes just-in-time compilation (JIT).

See http://www-net.gaia.cs.umass.edu/ drubenst/software.html for the availability of the
software packages discussed in this report.

1 Introduction

Forward Error Correction (FEC) is a technique whereby additional information is sent with data to recover
from transmission errors in a manner which is often more concise than by straightforward retransmission.
Forward error correcting techniques can support a wide variety of loss scenarios. Initially, the techniques were
applied to repairing bit errors within data packets. More recently, the techniques were applied at the packet
level to recover from packet losses. This is commonly referred to as packet level FEC, and most often employs
Reed-Solomon codes. Understanding and implementing these codes requires a significant understanding of
coding theory, which can be found in [1]. However, it is easy to provide a simple interface to these coding
techniques such that the sophisticated mathematical operations are performed within a black-box, and need
not be understood by the protocol designer. We now give an example of a typical, simple, interface for
packet-level coding.

Information is coded at the sender, and is sent in separate packets to receivers. Receivers use these
special repair packets in conjunction with received data packets to decode the data in packets that were lost.
We assume that the receiving entity that must perform the decoding either receives a packet uncorrupted,
or fails to receive (loses) a packet, and is able to detect lost packets. Such a scenario is common in the
transport layer of the Internet, where lower layers guarantee that received packets are not corrupted. When
the network becomes overloaded, it reduces its load by dropping packets, making the packet the atomic unit

*This material was supported in part by the National Science Foundation under Grant No. NCR-9508274, and NCR-9527163,
and by DARPA under Grant No. N66001-97-C-8513. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

of loss within the network. Packets which are to be transported reliably are typically given sequence numbers
at the sender (origin of transmission), so that the receiver(s) can detect packet losses by noting gaps in the
sequence numbers of arriving packets.

When using a coding technique such as packet level FEC, the sender groups data packets into blocks of
size k (henceforth k is referred to as the block size), and feeds the k data packets into an encoder to produce
repair packets. The number of repair packets that can be produced per block is finite. However, this number
is sufficiently large that, for most purposes, it is safe to assume that the sender can produce an unlimited
supply. Repair packets generated from a block of k data packets are said to belong to the block from which
they were generated. Any entity, such as a receiver, with a decoder can use the decoder to retrieve the k
data packets for a block once it receives any combination of k data and repair packets belonging to that
block.

Several software packages have been made publically available which provide packet-level FEC encoding
and decoding functionality with interfaces as described above. In particular, two C language packages which
we examine in this report are a Reed-Solomon based coder that uses Vandermonde-based matrices [2], and a
separate Reed-Solomon coder that uses Cauchy-based matrices [3]. Recently, bandwidth-efficient protocols
have been proposed which require coding support at points within the network (i.e., not just the end-hosts).
In [4], we introduced novel protocols of this type that used coding techniques to maintain the low bandwidth
requirement while also reducing buffer and coding processing requirements at these non-end-host points.
However, these protocols required an interface that differs from what was provided by the coding packages
previously mentioned.

In this report, we give an overview of the alternative interface, and how the encoders were modified to
support this interface. To support implementation of our protocols in an active networking framework, we
ported the modified, Vandermonde-based coder from C to Java. Our decision to port the Vandermonde-
based coder was based on a comparison of coding and decoding times of our modified C versions of the two
coders, which we also present in this report. We find that almost always, the Vandermonde coder codes at a
faster rate than the Cauchy-based coder, regardless of the block size, packet length, or hardware platform.

We describe the Java architecture, and compare the speed of the Java coder to that of the C coder on
several platforms. We find that the Java encoder runs more than several hundreds of times slower than
its C counterpart. For encoding, this slowdown is exacerbated as the block size (number of data packets
used within an encoding) is decreased. We do not see any such correlation in block size for the speedup of
C decoding over Java decoding. Instead, we find that the speedup by using the C version of the package
mimics the speedup of the encoding package for larger block sizes. A Cauchy-based coder can be developed
in Java using an architecture similar to what we present here. We expect the performance of the coder’s
performance in Java to suffer in performance in a manner similar to what occurs for the Vandermonde-based
coder. We also find that the Java coder that performs just-in-time compilation runs between 3 and 4 times
faster than the Java coder that runs over the virtual machine.

The rest of this report proceeds as follows. Section 2 gives a basic mathematical understanding of how
Reed-Solomon coding is performed, and gives intuition as to why our modifications do not increase the time
complexity of the coders. Section 3 discusses the modifications we made to the C versions of the FEC coding
packages in order to increase their interface flexibility. A performance comparison between our modified
Vandermonde-based coder and the Cauchy-based coder is given in Section 4. We describe the Java object-
oriented architecture we used for our coding package in Section 5, and compare its performance with its C
counterpart in Section 6. We conclude in Section 7.

2 Encoding via the Generator Matrix: A simple explanation

We now present an explanation of the mathematics used to perform encoding and decoding operations.
A packet is simply a collection of bits. These bits can be thought of as a number represented in base 2.
Thus, if we are given k packets, we can construct variables zy,- - -, x, where the value of variable x; equals
the numerical value of packet i. It follows from elementary linear algebra that given any set of k linearly
independent equations involving the variables {z;}, the values of the variables are unique and can be obtained
by solving the equations. We now explain how Reed-Solomon coders utilizes this elementary linear algebra.

An identical n + k x k matrix is constructed at both the encoder and decoder. This matrix is referred to

as the generator matriz, G. Each row in G gives coefficients of an equation in terms of the k packet values.
The ith column of the jth row, G;;, in the matrix contains the coeflicient for the variable z; in the ith
equation. The top k rows of the matrix form a k X k identity matrix (i.e., the ith row for i < k represents
an equation that contains only the value of x;). The process used to construct G has the following useful
property that we do not prove here. The interested reader is instead referred to [1, 2, 3].

Lemma 1 Given that G is a generator matriz (Cauchy or Vandermonde), then any k x k matriz, M,
constructed from any k rows of G, has rank k, i.e., any k equations contained in M are linearly independent.

In other words, given the vector X representing the various packet values, where
T

T

then M X produces a vector Y, which gives the solution to a set of k£ linearly independent equations. It
follows that X = M ~'Y. Thus, a decoder can retrieve the original packets given Y, G, the rows that were
used to construct M, and the ability to invert a matrix.

The sender includes the row number used to generate the encoded portion of the packet in the non-
encoded header of the packet (note that the ith data packet within a block would include the row number
i). After receiving k packets, the decoder constructs M from the rows of G that were used to generate the
k received packets (obtained from the non-encoded header portion of each received packet). The matrix is
inverted, and multiplied by the vector of received packets (with the headers stripped off), yielding a vector
containing the original data packets.

We have omitted two details that are used in practice. First, the multiplication and addition operations
used for matrix multiplication and inversion are performed over finite fields. Details on the respective finite
fields used can be found in [2] for the Vandermonde-based operations, and in [3] for the Cauchy-based
operations. Also, each data packet d; is separated by the encoder into a fixed number of ¢ components (e.g.,
one byte or one word per component), dj,---,dS. For repair packet r;, the encoding is performed over the
k data packets one component at a time, producing a repair component 77*,1 < m < ¢. This ri* can be
used in conjunction with any data packets from or repairs coded from the set of {d*} to decode the mth
component of a data packet from the block. A repair packet r; is formed by concatenating the components
ri,---,r¢. Upon receiving a repair packet, the decoder splits the repair packet into individual components,
applies the matrix operations to each component to produce data packet components, and then concatenates
the resulting components together, reproducing the data packets.

2.1 Supporting multiple block sizes

In [3], it is stated that a nice property of the Cauchy-based coder is that a generator matrix constructed to
support a block size of k.. can also be used to support all block sizes k < k.- This also holds true for
the Vandermonde-based coder. The n + k x k generator matrix needed to support coding for a block size
of k, G', can be constructed from the original generator matrix, G, for block size kj,q, using the following
mapping:

G = {Gm 0§J<k,0§z<k} 0

GjJrkmaw,k’i k S_] <n-+ k,l < k

In other words G is converted to G’ by removing rows k + 1 through k42, and from the remaining rows,
removing the last k., — k columns. In practice, a separate matrix does not need to be constructed: the
coder must simply perform the appropriate mapping.

It remains to be shown that any set of k rows chosen to form a k x k matrix, M, produces a matrix with
rank k. By showing this, we know that the k rows are linearly independent, and thus any k repair packets
can be used to retrieve the k original data packets. This is accomplished in the following theorem:

Theorem 1 Let the generator matriz, G be a n + kmae X kmaz matriz, and let G' be a n + k X k matriz
constructed from G as described in equation 1. If any k rows are selected from G', then the k X k matrix
formed has rank k.

Proof: Assume the statement is false. Then there exists a non-0 column vector v’ = (ci,---,cx)T, such
that G'v' equals the k-column O-vector (we use 0 to represent the additive identity in whichever field, F,
is being used). Let i1,---,% be the indices of the rows that were selected in G to form G'. Construct the
kmaz X kmas matrix G, where the first k& rows are equivalent to rows i1,---,4; in GG, and the last ko0 — k
rows are equivalent to rows k + 1, -+, kmnaee in G. These last k rows are the last k.. — k rows of the
kmaz X kmae identity matrix. Recall that in a field, F,Va € F, the additive identity, 0, has the following
properties:

e a0 =0a=0
ea+0=0+a=a

Consider the kpqe-column vector y = (ci,---,cp,0,--+,0)T (i.e., entries yk+1 through yy,. .. equal 0),
and consider the product = = (z1,---,z,,,.)T = G"y. We have that z; = Z v G syj. Since y; = 0 for

j > k, we have that z; = E \ Gijyj. For i <k, z; is equal to the value produced from the product of
Glv', which is 0. For k < i < kmaz, x; also equals 0, because GY is the k + ith row in the knoz X Emas
identity matrix, such that G” =0for 1 <j < k. It follows that x is the k,4,-column 0 vector, resulting
from a product between G and a non-0 kmaz-column vector, y. Thus, G” cannot be a matrix with rank
kmaz, contradicting Lemma, 1. [|

Corollary 1 A Vandermonde-based coder can support all block sizes up to some kyqar using a single n +
kmaz X kmaz generator matriz. The matriz can be used to generate n repair packets. Furthermore, the
computational complezity of encoding and decoding is a function of the block size, k, and not of kmaz.

Proof: By Lemma 1, the encoder and decoder must each maintain only the n + k42 X Kknes generator
matrix, and use the mapping algorithm for encoding or decoding purposes. The mapping yields a n+ k x k
matrix, G'. Thus, n repairs can be generated, and the computational complexity of encoding and decoding
is given by the size of G’ (assuming a complexity of O(1) for the mapping operations). |

3 Modifications to C versions

Our protocols presented in [4] require an interface to the FEC encoder that is not provided in either package.
One requirement is that repair packets be generated on-the-fly. To perform on-the-fly encoding, the encoder
must provide space for a fixed number of repair packets. Each repair packet is initially cleared (set to all
0’s). Each data packet is fed into the encoder one at a time. The encoder applies the ith data packet, d; to
the jth repair being built by adding d;G;,; to the buffer. After this addition, packet d; can be discarded by
the encoder. Once all k packets have been applied, the repair packet can be used by a decoder.

Modifications for on-the-fly encoding were performed in both packages. Initially, both packages assumed
that all data packets were provided to the encoder at the same time, so that }, d;G}; could be performed
within a single function call. Instead, we modified the interface so that the ith call to the encode function
added d;G; to the buffer containing the sth packet.

The second modification was necessary only in the Cauchy-based encoder. It assumed that a fixed number
of repairs would be generated at the same time. We simply removed the loop that iterated over the various
repairs, and passed in the appropriate repair number as a parameter. The row of G that pertained to this
repair was located and used to encode the packet as described above.

The final modification took place only in the Vandermonde-based coding package and involved allowing
a single generator matrix to be constructed for a block size of k., that could be used to support multiple
block sizes up to kp,qz- This was done by incorporating a mapping function as described in Section 2.1.

We compared the encoding and decoding rates of our modified packages to the rates from the original
packages. We found no noticeable difference in the rate at which they could perform repeated encoding and
decoding operations.

3.1 Interface modifications

The modifications discussed above resulted in modifications to the user interfaces of the packages. To support
multiple block sizes in the Vandermonde-based encoder, the block size given to initialization function creates
the generator matrix, G, for the largest block size, k4., that can be supported. It was initially assumed
that this block size would be used to encode and decode. Instead, the user must now pass an additional
parameter to the encoder and decoder, indicating the current size of the block for which encoding / decoding
is being performed.

It is important to note that while the encoder and decoder can vary the block size, it is imperative that
they agree on the value of k.. This is because the k x k matrix obtained from a n + k42 X kmaer generator
matrix differs from one obtained from a n + k X k generator matrix when k # kaz.t

Functions to support on-the-fly encoding were provided via a separate interface, such that it could be
excluded at compile time by an application that did not require on-the-fly encoding. The on-the-fly encoding
interface consists of two functions: a repair initialization function, and an iterative repair modification
function. The initialization function (e.g., fec_encode_init() in the Vandermonde package) informs the
encoder that a repair is going to be constructed on-the-fly. A structure of type on_fly_info is created by the
function that keeps track of a small bit of information pertaining to the repair. This structure is returned
to the user.

The iterative repair modification function (e.g., build_on_£1y()) requires the on_fly_info structure as
well as a data packet. It performs the part of the matrix multiplication that requires the use of the particular
data packet. After the function is called, the encoder has no more need for the data packet, and it can be
discarded by the application as seen fit.

Some additional modifications were made to the Cauchy-based package interface that allowed run-time
variation of the block size and packet size (bytes in the packet). These modifications produced an interface
similar to that of the Vandermonde-based coder, and moved some pre-declared constants to variables that
were fed in as parameters to the coding interface.

4 Performance Comparison between C coders

We compared the run-time performance of the encoder on four platforms:
e a 300 MHz Linux box running version 2.0.31
e a 4/266 MHz DEC Alpha running OSF/1
e a 110 MHz Sun Sparcstation-5 running SunOS 5.5 (Solaris 2.5.0)
e a 12/250 MHz SGI IRIX64

Both versions of the code were compiled using gec with the same level of optimization (-09) on all
platforms. It is important to point out that for these comparisons, we did not attempt to further optimize
the code beyond what was included by the authors initially for any given platform. Predefined constants
(e.g., constant values that were used to determine field size and component size) were unaltered. The reader
should be aware that varying these appropriately could possibly change performance of the coder. However,
we believe that the typical user of these coder packages will make use of the packages as-is.

On each platform, we would fix a block size and a packet length and perform encodings for a deterministic
set of up to (2kk) distinct combinations of packets from a set of k data packets and k repairs (where k is
the block size used for that particular experiment). For larger block sizes, the number of codings were

sometimes limited to reduce the time of the experiment ((%f) can become quite large for large k). As a

1This holds only for the Vandermonde based encoder: the Cauchy based encoder does not require a parameter for kmqa
during initialization. This also means that there is no (theoretical) bound on the maximum block size.

result, most samples usually contained a higher concentration of data packets, which has a potential impact
on per-packet decoding time (but should have no impact on per-packet encoding time). However, this impact
can be considered more fair, since low loss rates result in a higher concentration of data packets than repair
packets being received.

We would obtain the time spent by the machine (i.e., the user time) on this encoding (decoding) job via
the system command time. Dividing the total number of packets that were encoded by the time gives the
average encoding (decoding) time per packet. The multiplicative inverse gives the number of packets that
can be encoded (decoded) per second. The same set of packets were encoded (decoded) with the C version
of the Vandermonde-based encoder (decoder) and the C version of the Cauchy-based encoder (decoder).

4.1 Encoder comparison

All encoding comparisons use the standard encoding interface (i.e., not the on-the-fly interface). We point
out that some preliminary comparisons showed that the on-the-fly interface had no noticeable effect on the
encoding speed.

3500 T T T 60000 T T .
i386-linux pkisize 240 -~ i386-linux pkisize 240 -~
3000 - i386-linux pktsize 480 —— | 0000 | i386-linux pkisize 480 —— |
8 i386-linux pktsize 1000 -=-- o S i386-linux pktsize 1000 -=--
£ 2500 ¢ &
I >~ 40000 [
2 %
5 2000 g
8 8 30000 |
u;‘ 1500 5
g . < 20000 |-
S 1000 ™ S
500 L 10000
O L L L L O L L L L
5 10 15 20 25 30 5 10 15 20 25 30
block size block size

(a) (b)

Figure 1: Encoding performance on Linux: (a) Pkts / sec in Cauchy, (b) Pkts / sec in Vandermonde. The
z-axis is block size, and the various curves are for various packet sizes (given in bytes / pkt).

4000 . . 6000 . !
3500 sun4 pktsize 240 - sun4 pktsize 240 -
r sun4 pktsize 480 —— 1 sun4 pkisize 480 ——
o sun4 pktsize 1000 - , 2000f sun4 pktsize 1000 - 1
& 3000 | 1 3
P = 4000 t
2 2500 %
5 £
3 2000 - § 3000 |
o 1500 i
% . T 2000 |
& 1000 [g
1000 |
500)
0 0 . . . ;
5 10 15 20 25 30 5 10 15 20 25 30
block size block size

(a) (b)
Figure 2: Encoding performance on Solaris.

Figures 1, 2, 3, and 4 give the number of packets that can be encoded per second using (a) the C version
of the Cauchy-based encoder, and (b) the C version of the Vandermonde-based encoder on the Linux, Solaris,
Alpha OSF/1, and IRIX platforms, respectively. The block size (k) is varied along the z-axis, and the y axis
gives the encoding rate. Each curve represents a fixed packet size (in bytes / pkt).

Our results verify the results from [2] and [3] that encoding times are roughly linear in the block size and
packet length. While this is not explicitly shown here, it can be seen that the encoding rate (which is the

7000 T T 14000 T .
alpha pktsize 240 - alpha pktsize 240 -
6000 alpha pktsize 480 —— 1 12000 F alpha pktsize 480 —— 1
8 alpha pktsize 1000 = o alpha pktsize 1000 =
£ 5000 t] & 10000 f
8 2
£ 4000 | £ 8000 |
3 8
& 3000 - & 6000 P
2 5
S 2000 | " S 4000
S >
1000 2000 F
O L L L L O
5 10 15 20 25 30
block size block size
(a) (b)
Figure 3: Encoding performance on the Alpha.
6000 T T 20000 T . T .
iris4d pktsize 240 - 18000 - iris4d pktsize 240 o |
000 | iris4d pkisize 480 —— | iris4d pkisize 480 ——
8 S iris4d pktsize 1000 -=-— o 16000 iris4d pktsize 1000 =
[z Q
- n L
2 4000 L < 14000
k= © 12000 -
S £
g 3000 - 8 10000
u & 8000
% 2000 2 6000
o s
1000 | 4000 N
2000 |
O L L L L O L L L L
5 10 15 20 25 30 5 10 15 20 25 30
block size block size

(a) (b)

Figure 4: Encoding performance on the IRIX.

multiplicative inverse of the encoding time per packet) decays in a hyperbolic fashion.

The coding rates do not vary dramatically for the Cauchy-based encoder over the various platforms. The
fastest encoding takes place on the Alpha, followed by the IRIX, the Solaris, and is slowest on the Linux
box. The Alpha encoder is little more than double the speed of Linux encoder.

For the Vandermonde-based encoder, coding speed varies drastically from machine to machine, and the
relative speeds of the machines differ than what is observed for the Cauchy-based encoder. The encoding
speed on the Alpha is at most double that of the speed on the Linux box. For the Vandermonde-based
encoder, the Linux box encodes three times faster than the IRIX box, which is 4/3 faster than the Alpha.
The Alpha encodes more than twice as fast as the Solaris.

Figure 5 plots the relative performances between the C language Cauchy and Vandermonde-matrix ver-
sions on (a) Linux, (b) Solaris, (c) Alpha, and (d) Irix machines. We see that the Vandermonde-matrix
encoder codes at a higher rate for almost all of our experiments. It is interesting to note that the rela-
tive difference in coding speed lessens as the packet size is increased. Also, for machines where there is a
considerable difference in coding rates, this difference diminishes as the block size is increased.

4.2 Decoder comparison

Next, we turn our attention to decoding performance. For small block sizes, the Cauchy decoder is slowest
on Solaris, and is slower in general on all machines than the encoder on that same machine. For large block
sizes, the Linux box is slightly slower than Solaris, and on some occasions the decoder is faster than the
encoder. Vandermonde-based decoding tends to be slower than Vandermonde-based encoding on a given
machine.

We find again that the Vandermonde based coder can code more quickly than its Cauchy based counter-

Cauchy. rate / Vand. rate (in pkts / sec)

Cauchy. rate / Vand. rate (in pkts / sec)

Figure 5: Encoding speedup by using Vandermonde encoding over Cauchy encoding on (a) Linux, (b) Solaris,
(c) Alpha, and (d) IRIX.

part on all platforms on which we tested. Again, the hyperbolic shape of the curves assures us that decoding
rate is linear in the block size. We see that for the most part, the difference in coding rates between the two
decoders decreases as the packet size increases. We see no trend in their relative speed as a function of block

size.

Cauchy Decodings / sec

Figure 6: Decoding performance on Linux

3500

3000

2500

2000

1500

1000 P~

500

i386-linux pkisize 240 -
4386-linux pktsize 480 —— |
i386-linux pktsize 1000 = |

15 20 25 30
block size

(a)

< alphapktsize 240
alpha pktsize 480 —— |
alpha pktsize-1000 -=--

15 20 25 30
block size

()

i386-linux pkisize 240 -
i386-linux pktsize 480 —— |
i386-linux pktsize 1000 -=--

15 20 25 30
block size

(a)

Cauchy. rate / Vand. rate (in pkts / sec)

Cauchy. rate / Vand. rate (in pkts / sec)

Vand. Decodings / sec

1.35
1.3
1.25
1.2

1.15

3.4

3.2

40000
35000
30000
25000
20000
15000

10000 |

5000

sun4 pktsize 240 -
sun4 pktsize 480 —— 1
*--.sun4 pktsize 1000 -=-—-

15 20 25 30
block size

(b)

iris4d pktsize 240 -
iris4d pktsize 480 ——— 1
iris4d pktsize 1000 -=--

15 20 25 30
block size

i386-linux pkisize 240 -
i386-linux pkisize 480 —— 1
i386-linux pktsize 1000 -=--

z-axis is block size, and the various curves are for various packet sizes.

15 20 25 30
block size

: (a) Pkts / sec in Cauchy, (b) Pkts / sec in Vandermonde. The

Cauchy Decodings / sec

Cauchy Decodings / sec

Cauchy Decodings / sec

2500

2000

1500

1000

500

6000

5000

4000

3000

2000

1000

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

sun4 pktsize 240 -
sun4 pktsize 480 ——

sun4 pktsize 1000 -=-- |

15 20 25
block size

(a)

Vand. Decodings / sec

4500
4000
3500
3000
2500
2000
1500
1000

500

sun4 pktsize 240 -
sun4 pktsize 480 ——— |
sun4 pktsize 1000 -=-- |

Figure 7: Decoding performance on

alpha pktsize 240 <
alpha pktsize 480 ——
alpha pktsize 1000 —=—

15 26 25
block size
(a)

Figure 8: Decoding performance on the Alpha.

iris4d pktsize 240 -
iris4d pktsize 480 ——
iris4d pktsize 1000 -=-—-

15 20 25
block size

(a)

Vand. Decodings / sec

Vand. Decodings / sec

12000

10000

8000

6000

4000

2000

16000
14000
12000
10000
8000
6000

Solaris.

15 20 25 30
block size

(b)

alpha pktsize 240 <
alpha pktsize 480 ——
alpha pktsize 1000 —=—

15 20 25 30
block size

(b)

4000 £~

2000

iris4d pktsize 240 -
iris4d pktsize 480 —— 1
iris4d pktsize 1000 -=-—

Figure 9: Decoding performance on the IRIX.

15 20 25 30
block size

(b)

5 16 T T T T 5 1.8 T T T T
3 155 | i386-linux pktsize 240 o | 3 ° sun4 pktsize 240 -
~ ’ 2 i386-linux pkisize 480 —— ~ 171 sun4 pkisize 480 — |
£ 15 i386-linux pktsize 1000 == fg : sun4 pktsize 1000 -
o
£ 14.5 1 £ 16 | 1
[} [} ’ *
8 14 © .
k<] 13.5 k<] 15 q
§ §
> 13 >
2 125 1 o
© ©
= 12 + e 1 =
< g <
3 M5 —] 3
O 11 . . . i O 1.2 . . . ,
5 10 15 20 25 30 5 10 15 20 25 30
block size block size
(a)
5 2 ‘ ‘ ‘ ‘ & 36 ‘ ‘ ‘ ‘
3 19+ ° »... alpha pkisize 240 - | 3 iris4d pkisize 240 -
~ alpharpktsize 480 —— > 3.4 - o o irisddbpktsize 480 —— |
£ 1.8 alpha pktsize 1000 -=- | % iris4d pktsize 1000 ==
Q.
£ £ 321 1
Y P
e g 37 1
2 2
: g~
jo} jo}
© s 287 PR ..
> > . .
] £ 24]
3 3
o 1 (6] 22
5 10 15 20 25 30 5 10 15 20 25 30
block size block size

(c) (d)

Figure 10: Decoding speedup by using Vandermonde over Cauchy on (a) Linux, (b) Solaris, (c) Alpha, and
(d) IRIX.

10

5 Java Coder Architecture

We developed a Java version of the Vandermonde-based FEC coder. Our motivation is that several research
projects have been developed on platforms that do not interface with C code. An example is the ANTS
active networking toolkit from MIT [6]. Our Java version was derived from the C-language version of the
Vandermonde-based coder. Here, we briefly discuss at a high level the object oriented architecture of the
Java coder.

5.1 Basic architecture

Encoder

GeneratorMatrix

| GFMatrix | GFMatrix | GFMatrix

GeneratorMatrix X
GFMatrix

Decoder
(a) (b) (c)
Figure 11: Arch

Figure 11 gives the basic architecture of the coding package. A GaloisField object provides operations
for a field. Currently, all aspects of this field are fixed (e.g., the number of elements within the field). The
object’s methods are called whenever an addition or multiplication needs to be performed between elements
of the field, or when an element’s inverse (multiplicative or additive) needs to be obtained.

A GFMatrix object holds a matrix. Each instance of a GFMatrix points to a static instance of a
GaloisField, as shown in Figure 11(a). Entries in the matrix are integers, but matrix addition and multipli-
cation operations performed on these entries are done as specified by the methods of the static GaloisField
object. Thus, only one GaloisField object exists per executing package. The GFMatrix object contains
methods to support some of the standard operations over this matrix in the specified Galois Field, including
matrix multiplication, multiplication by a single row vector, and matrix inversion.

The GeneratorMatrix object (Figure 11(b)) is inherited from the GFMatrix object, and initializes itself
as the generator matrix. The Encoder and Decoder objects (Figure 11(c)) are each inherited from the
GeneratorMatrix object, and thus contain generator matrices. The Decoder object also constructs an
additional matrix each time a decode is requested. It holds the inverted matrix that gets multiplied by the
vector of repairs to return the original data packets.

5.2 Advanced components

OnFlyEncoder PoolEncoder

(a) (b)

Figure 12: Arch

OnFlyEncoder (Figure 12(a)) is an encoder that can perform both regular encoding as well as on the
fly encoding, and is derived from the Encoder object. Similar to the C version, when performing on-the-fly
encoding, the coder requires the user to maintain an OnFlyRepair object that holds state pertaining to the

11

repair while it is in the process of being built. After calling the EncodeInit () method to initialize a repair,
the user iteratively calls the ApplySourcePkt () method with a data packet as a parameter until all data
packets within a block have been applied to the repair.?

PoolEncoder (Figure 12(b)) is another version of an encoder that uses a buffer pool during encoding.
The goal was to reduce memory allocations by reusing previously allocated space in the hope that this
would increase the rate at which the encoder could encode. It also contains a Pool object which maintains
previously used arrays that can be reused. A PoolDecoder object was constructed under the same premise.
It should be noted that multi-threaded applications should contain utilize a different Pool object per thread.
Trials comparing the speed of the non-pool coders to the pool coders revealed no noticeable difference in
speedup. Our comparisons make use of the non-pool coders.

6 Performance Comparison

Our comparison between the Java-language Vandermonde coder and the C-language Vandermonde coder
uses the same set of experiments that we used to compare the C-language Vandermonde coder with the
C-language Cauchy coder.® As before, the C-language coder was compiled with a high level of optimization
(-09) on all platforms. The Java coder was also compiled with optimizations turned on (-0).

6.1 Encoder comparison

160 T T T 45 T T .
i386-linux Java pktsize 256 - sun4 Java pkisize 256 -
140 i386-linux Java pktsize 512 —— - 40 | sun4 Java pktsize 512 —— |
i386-linux Java pktsize 1024 = sun4 Java pkisize 1024 =
120 |] 351]
3 3 30 -
12} 12}
P P
jo2} jo2}
= =
=] =]
Q Q
o o
f= f=
w w
O L L L L O L L L L
5 10 15 20 25 30 5 10 15 20 25 30
block size block size
(a)
40 T T T T 30 T T T T
alpha Java pktsize 256 iris4d Java pktsize 256 -
35 | alpha Java pktsize 512 —— 1 iris4d Java pktsize 512 ——
alpha Java pktsize 1024 -=-- 25 ¢ iris4d Java pktsize 1024 =]
30 - 1
[[
8 250 8 20
P P
j=2} j=2}
£ £
e} e}
Q Q
o o
= =
w w
0 0
5 10 15 20 25 30 5 10 15 20 25 30
block size block size

() (d)

Figure 13: Encoding performance on (a) Linux, (b) Solaris, (c¢) Alpha, and (d) IRIX of the Java encoder
package.

2We have discovered that the block size used in generating an on-the-fly repair can be determined dynamically. This is
clearly possible due to Corollary 1.

3 A small difference is the packet size. Due to internal configurations of the Cauchy-based coder set by the original authors,
the packet size had to be some multiple of 40 bytes. Here, we set packet sizes to be fractional sizes of a kilobyte.

12

Figure 13 gives number of packets that can be encoded per second using the Java version of the encoder
on the (a) Linux, (b) Solaris, (¢) Alpha OSF/1, and (d) IRIX platforms, respectively. The block size (k) is
varied along the z-axis, and the y axis gives the encoding rate. Each curve represents a fixed packet size (in
bytes per packet).

The Linux box executes Java encoding roughly four times faster than the Solaris and Alpha machines,
and is about five times faster than the IRIX machine.

380 ; ; T 115 . .
L i386-linux pktsize 256 - sun4 pktsize 256 -
360 R i386-linux pktsize 512 — | 110 sun4 pktsize 512 —
i386-linux pktsize 1024 -=--- 105 sun4 pktsize 1024 -=—-]

340
100 |

95
ol
85
80

320 |

300 |

280 -

C rate / Java rate (in pkts / sec)

260 | e

C rate / Java rate (in pkts / sec)

,,,,,,,,, 75 L

240 70

5 10 15 20 25 30 5 10 15 20 25 30
block size block size
(a) (b)

305 T T T T 650 T .
. 300 | alpha pktsize 256 o | . iris4d pktsize 256 -
9 alpha pktsize 512 —— 9 600 L iris4d pkisize 512 —— |
@ 295 | alpha pktsize 1024 -=-— @ iris4d pktsize 1024 =
e & 550 f
£ £
Q Q
]] 500
© ©
g g
3 3 450
2 2
g S 400t
(&) (&)

255 L L L L 350 L L L L

5 10 15 20 25 30 5 10 15 20 25 30
block size block size

() (d)
Figure 14: Encoding speedup by using C over Java on (a) Linux, (b) Solaris, (c) Alpha, and (d) IRIX.

Figure 14 plots the relative performances between C and Java Versions on (a) Linux, (b) Solaris, (c)
Alpha, and (d) Irix machines. We see that encoding in Java is two orders of magnitude slower than encoding
in C. This is most dramatic on the IRIX machine, and least dramatic on Solaris. Also, the speed difference
tends to decrease with an increasing block size.

6.2 Decoder comparison

Next, we turn our attention to decoding performance. We find that the decoding performance of the Java
implementation takes roughly the same time as that of the encoding performance. A comparison of decoding
speeds between C and Java packages reveals no trend based on block size or packet length. The variance
between rates on each machine is less than what was observed for the encoding rates as block size is varied
(except for the ratio on the IRIX machine for a block size of 10, packet size of 1024). The difference between
Java and C speeds for a decoder on a given machine is roughly identical to the difference between Java and
C speeds for the encoder on that same machine for a large block size.

13

160 T

140

120
100

Decodings / sec

i386-linux Java pktsize 256 -
i386-linux Java pktsize 512 —— 1
i386-linux Java pktsize 1024 =

15 20 25 30
block size

(a)

45 T

35 r
30 -

Decodings / sec

alpha Java pktsize 256 <
alpha Java pktsize 512 ——
alpha Java pktsize 1024 -=— |

15 20 25 30
block size

()

Decodings / sec

Decodings / sec

50
45
40
35

30

25

20

sun4 Java pkisize 256 -
sun4 Java pktsize 512 ——
sun4 Java pkisize 1024 =

15 20 25
block size

(b)

iris4d Java pktsize 256 <
iris4d Java pktsize 512 ——

iris4d Java pktsize 1024 -—=—]

15 20 25
block size

(d)

Figure 15: Decoding performance on (a) Linux, (b) Solaris, (c) Alpha, and (d) IRIX in Pkts /
Java decoder. The z-axis is block size, and the various curves are for various packet sizes.

14

sec for the

S
& 285
2 280
s
e s
o 270
s 265
©
Z 260
5
s 25
8 250
o

255

C rate / Java rate (in pkts / sec)

i386-linux pktsize 256 < |
i386-linux pktsize 512 ——
i386:linux pktsize 1024 -=—-

10 15 20 25 30
block size

(a)

alpha pktsize 256. -~
alpharpktsize 512 ~+—
alpha pkisize 1024 -

10 15 20 25 30
block size

()

C rate / Java rate (in pkts / sec)

C rate / Java rate (in pkts / sec)

85
84
83

1000

900

800

700

600

500

400

sun4 pktsize 256
sun4 pktsize 512 —
> sun4 pktsize 1024 = |

75

10

15 20 25 30
block size

(b)

iris4d pktsize 256 -
iris4d pktsize 512 ——
iris4d pktsize 1024 =

15 20 25 30
block size

Figure 16: Decoding speedup by using C over Java on (a) Linux, (b) Solaris, (c) Alpha, and (d) IRIX.

15

6.3 Benefit of a Just-in-time compiler (JIT)

A Java machine that compiles to native code before execution via just-in-time compilation can speed up
execution of long-running code that contains large amounts of computation. Code must run for a considerable
amount of time to offset the time penalty incurred while the virtual machine byte-codes are compiled to
native code.

We upgraded our Solaris machine to Solaris 2.5.1, and installed Java Development Kit 1.1.6 (jdk.1.1.6),
which performs just-in-time compilation. This is the only platform on which we have access to a JIT.

160

34

sun4 pktsize 256
82y sun4 pktsize 512 —— 1
sun4 pktsize 1024 =

sun4 JIT pkisize 256 -«

140 sun4 JIT pktsize 512 —— 1
sun4 JIT pkisize 1024 =

120 1

Encodings / sec
C rate / Java rate (in pkts / sec)

5 10 15 20 25 30 5 10 15 20 25 30
block size block size

(a) (b)

Figure 17: Encoding performance (a) on Solaris with JIT and (b) compared to C performance.

Figure 17 shows (a) the encoding rate in packets per second using the JIT and (b) the rate relative to
the rate of the C encoder. We see that JIT compilation speeds up performance on Solaris roughly three or
four times, making its Java performance comparable to what is observed on the faster Alpha processor.

180 ; ; ; 26 . .

sun4 JIT pktsize 256 - sun4 pktsize 256 -
160 1. sun4 JIT pktsize 512 — 25 sun4 pktsize 512 —
140 - sun4 JIT pktsize 1024 =] o4 | sun4 pktsize 1024 -=--]

Decodings / sec
C rate / Java rate (in pkts / sec)

5 10 15 20 25 30 5 10 15 20 25 30
block size block size

(a) (b)

Figure 18: Decoding performance (a) on Solaris with JIT and (b) compared to C performance.

Figure 18 shows (a) the decoding rate in packets per second using the JIT and (b) the rate relative to
the rate of the C decoder. Results are similar to those observed for the JIT encoder.

7 Conclusion

We have examined several aspects of increasing portability of packet level FEC encoding. First, we made
modifications to two existing C-language Reed-Solomon Coding packages, and observed that these modi-
fications had no impact on the speed at which encoding and decoding could be performed. Second, we
constructed a Java coder that is based on the C-language Vandermonde-matrix based coder. We find that
our Java version is hundreds slower than the original C version, but that using just-in-time (JIT) compilation
can reduce this difference to only 25 to 30 times slower.

16

References

[1] Richard E. Blahut, Theory and Practice of Error Control Codes. Addison-Wesley, Reading, MA, 1983.

[2] Luigi Rizzo, Effective Erasure Codes for Reliable Computer Communication Protocols, Computer Com-
munication Review, April 1997.

[3] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zuckerman, An XOR-Based Erasure-
Resilient Coding Scheme, International Computer Sciences Institute Technical Report ICSI TR-95-048,
August 1995.

[4] Dan Rubenstein, Sneha Kasera, Don Towsley, and Jim Kurose, Improving Reliable Multicast Using
Active Parity Encoding Services (APES), UMass CMPSCI Technical Report 98-79, July 1998.

[5] Flanagan, D., Java in a Nutshell, O’'Reilly & Associates, Inc., May, 1996.

[6] D. Wetherall, J. Guttag, and D.L. Tennenhouse, ANTS: A Toolkit for Building and Dynamically De-
ploying Network Protocols, IEEE OPENARCH’98, San Fransisco, CA, April 1998.

17

