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Abstract

We derive efficient guidelines for scheduling data-parallel computations within a draconian
mode of cycle-stealing in networks of workstations. In this computing regimen, (the owner of)
workstation A contracts with (the owner of) workstation B to take control of B’s processor for
a guaranteed total of U time units, possibly punctuated by up to some prespecified number
p of interrupts which kill any work A has in progress on B. (Without a mechanism such
as the bound p to curtail a “malicious adversary”, it would be impossible to guarantee any
work production.) On the one hand, the high overhead—of ¢ time units—for setting up the
communications that supply workstation B with work and receive its results recommends that
A supply B with large amounts of work at a time. On the other hand, the risk of losing
work in progress when workstation B is interrupted recommends that A supply B with a long
sequence of small bundles of work. In this paper, we derive two sets of scheduling guidelines
that balance these conflicting pressures in a way that optimizes, up to low-order additive terms,
the amount of work that A is guaranteed to accomplish during the cycle-stealing opportunity,
no matter when the opportunity is interrupted—up to p times. Our first set of guidelines
schedule a cycle-stealing opportunity non-adaptively—cleaving to a single fixed strategy until
all p interrupts have occurred; the produced schedules achieve at least U — \/2pcU + pc units of
work. Our second set of guidelines schedule a cycle-stealing opportunity adaptively—changing
strategy after each interrupt; the produced schedules achieve at least U — 2v/2¢U +(low-order
terms) units of work. By deriving the theoretical underpinnings of both sets of guidelines, we
show that our non-adaptive schedules are optimal in guaranteed work production and that our
adaptive schedules are within low-order additive terms of being optimal.



1 Cluster-Based Computing and Cycle-Stealing

Numerous sources eloquently argue the technological and economical inevitability of an increas-
ingly common modality of parallel computation, the use of a network of workstations (NOW)
as a parallel computer; see, e.g., [8, 10]. Sources too numerous to list describe systems that fa-
cilitate the mechanics of cluster-based computation, especially through its common realization
via cycle stealing—the use by one workstation of idle computing cycles of another. However,
rather few sources study the problem of scheduling individual computations on NOWSs, and even
fewer develop abstract models that facilitate such scheduling for broad classes of computations.
In the current paper, we refine the abstract model developed in [3] and derive guidelines for
crafting cycle-stealing schedules for data-parallel computations, that approximately maximize
the amount of work that one is guaranteed to accomplish during a cycle-stealing opportunity.

1.1 Background for Our Study

In [3], we developed and studied a mathematical model for the problem of scheduling data-
parallel computations under the following rather draconian version of cycle-stealing. The owner
of workstation A contracts with the owner of workstation B to take control of B’s processor
for a guaranteed lifespan of U time units, subject to possible interruptions that kill any active
job(s)—thereby destroying all work since the last checkpoint.

Such a draconian cycle-stealing “contract” is inevitable, for instance, when work-
station B is a laptop that can be unplugged from the network. Such “contracts”
are reported to be quite popular at many institutions, because of the degradation
in service that B’s owner receives when A’s jobs remain active, even with lowered
priority.

This “contract” creates a challenging tension between the following inherently conflicting as-
pects of the problem of stealing cycles. On the one hand, the threat of losing any work in
progress when workstation B is interrupted recommends that the owner of workstation A break
each cycle-stealing opportunity into many short “periods”, supplying small amounts of work to
B each time. On the other hand, the typically expensive setup time for the inter-workstation
communications that bracket each period—to supply work to B and to reclaim the results of
that work—recommends that the owner of A break each opportunity into a small number of
long periods, supplying large amounts of work to B each time. The challenge in scheduling
a cycle-stealing opportunity effectively is to balance these conflicting factors in a way that
maximizes (some notion of) the work achieved during the opportunity.

The model developed in [3] is two-faceted, comprising one submodel that focuses on the
expected work-output of a cycle-stealing opportunity and one—the one we study here—that
focuses on the guaranteed work-output of the opportunity. Recognizing that cycle-stealing can
accomplish productive work only if the metaphorical “malicious adversary” is restrained from



just interrupting every period when A sends work to B, just before B returns its results—
thereby nullifying the entire cycle-stealing opportunity—both submodels in [3] assume certain
idealized knowledge that restrains the “adversary”. The guaranteed-output submodel, which is
our particular interest here, assumes that the owner of A knows both the total amount of time
that workstation B will be available (the opportunity’s usable lifespan) and an upper bound on
the number of possible interruptions.

We derived in [3] exactly optimal cycle-stealing schedules for a small number of specific
scenarios under each of the two submodels; however, the techniques used were specific to each
scenario. In the current paper and its companion [11], we have sought broadly applicable
guidelines that allow one to craft schedules for large classes of cycle-stealing scenarios that
(nearly) optimize various measures of work production. In [11], we focused on the expected-
output submodel; here, we focus on the guaranteed-output submodel. This paper is thus a
second step in our program of rendering prescriptive the descriptive study of cycle-stealing in

[3].

1.2 Owur Main Results

The primary goal of the current study is to craft guidelines for developing schedules for data-
parallel cycle-stealing whose guaranteed work production is close to optimal. In Section 2, we
prepare for this goal by refining the guaranteed-output submodel of [3] in a way that makes
the goal formal and precise. In Section 3, we present two computationally efficient sets of
scheduling guidelines. The first set of guidelines (in Section 3.1) produce schedules that are
non-adaptive, in the sense that they do not change their scheduling strategy until all possible
interrupts have occurred. The second set of guidelines (in Section 3.2), which are the main
focus of our study, produce schedules that are adaptive, in the sense that they change their
scheduling strategy in response to each interrupt. The guidelines we derive produce schedules
that achieve the following work production during a cycle-stealing opportunity with usable
lifespan U and up to p (“maliciously” placed) potential interrupts. Our non-adaptive guidelines
produce a schedule that is guaranteed to achieve at least' U — /2pcU + pc units of work; this
work production is easily shown to be optimal among non-adaptive schedules. Our adaptive
guidelines produce a schedule that is guaranteed to achieve at least? U — 2v/2¢cU +(low-order
terms) units of work. This work production is optimal to within low-order additive terms, but
demonstrating this near-optimality requires further insights into structure of optimal schedules.
We develop these insights in Section 4, where we derive the theoretical results that motivate our
adaptive guidelines. We then use these results in Section 5 to evaluate our adaptive schedules’
guaranteed work production and to establish their near-optimality.

We shall see in Section 5.3 that the results in Section 4 actually allow one to craft
adaptive schedules whose guaranteed work production is superior to our schedules’—

!Recall that ¢ denotes the setup overhead of each inter-workstation communication.
2The dependence of our adaptive schedules’ work production on the parameter p is not discernible here, since
it resides solely in the “low-order terms”.



but this superiority can be only in low-order additive terms, and at the expense of
a significant penalty in computational overhead.

1.3 Related Work

We briefly review chronologically the few other algorithmic studies of cycle-stealing that appear
in the literature, emphasizing the way in which the activity is approached. We do not discuss
the many empirical studies of cycle-stealing whose main foci are either systems that enable the
activity or specific applications, rather than analyzed scheduling algorithms.

One finds in [12, 13] two opposing philosophies for scheduling cycle-stealing opportunities—
“pushing”, wherein a loaded workstation tries to find a idle colleague to adopt a set of tasks,
and “pulling”, wherein an idle workstation seeks work—but neither formal models nor rigorous
analyses. In [1], a cycle-stealing schedule within a NOW is crafted by “auctioning off” large
identical chunks of a compute-intensive task, to determine the sub-NOW that promises the
best parallel speedup (computed using the authors’ model); one then distributes appropriate-
size chunks of the task within the “winning” sub-NOW. The companion papers [5, 6] present
and analyze a system that schedules directed acyclic graphs on a NOW in a way that optimizes
system time and space requirements. In [2], cycle-stealing is viewed as one application, among
many, of a theory of how to make random decisions better than by random choices; with high
probability, the proposed randomized scheduling algorithm accomplishes an amount of work
that is within a logarithmic factor of optimal. Finally, in [3] (and its progeny, [11] and the
current paper), cycle-stealing is viewed as a game against a malicious adversary who seeks
to interrupt the borrowed workstation in order to minimize the work production of a cycle-
opportunity. In the expected-output submodel of [3, 11], one assumes that the cycle-stealer
knows the instantaneous probability of still controlling the borrowed workstation at time ¢ (the
opportunity’s “life function”); we have already discussed the knowledge assumed under the
guaranteed-output submodel of [3] and the current paper.

2 A Formal Model of Data-Parallel Cycle-Stealing

The cycle-stealing model that we study here derives from the guaranteed-output submodel of
[3] but differs from that submodel in important details.

2.1 The General Framework

We schedule data-parallel cycle-stealing opportunities in an “architecture-independent” fashion,
in the sense of [9]: the cost of inter-workstation communications is characterized by a single
(overhead) parameter ¢, which is the (combined) cost of initiating (setting up) the paired
communications in which workstation A sends work to workstation B and B returns the results



of the work. We assume that: tasks are indivisible; task times may vary but are known perfectly;
the time allotted to a task includes the marginal cost of transmitting its input and output data.

The described framework: (a) allows us to keep ¢ independent of the sizes of data
transmissions; (b) does not mandate who initiates a transfer of work from A to B,
hence is consistent with both the “pull”’-oriented scheduling philosophy of [12] and
the “push”-oriented philosophy of [13].

For the purposes of our study, a cycle-stealing opportunity is characterized by two quantities
that are prespecified, hence, known to the owner of workstation A:

1. the wusable lifespan U > 0 of the opportunity, which is the number of time units during
which workstation B will be available to workstation A;

2. an upper bound p on the potential number of interrupts that will occur because of the
return of B’s owner during the usable lifespan.

Moderating the idealization inherent in giving the owner of A foreknowledge of p, we give
him/her no knowledge of either the actual number 0 < a < p of interrupts that will occur or of
their placements.

Our model allows us to view a cycle-stealing opportunity as a sequence of a + 1 episodes
during which workstation A has access to workstation B, punctuated by the a actual interrupts
caused by the return of B’s owner; each episode, save the last, is terminated by an interrupt.
We emphasize that A’s owner knows nothing about the durations Ly, Lo, ..., Lqy1 of the a + 1
episodes, except that they sum to U.

2.2 Cycle-Stealing Schedules and Their Work Production

Episode-schedules. In order to decrease vulnerability to interrupts that kill work in progress
on B, the owner of A partitions each episode into periods, each of which begins with A sending
work to B and terminates with B returning the results of that work. Since A’s discretionary
power thus resides solely in deciding how much work to send in each period, and since task-
lengths are known perfectly, we view an episode-schedule simply as a sequence of period-lengths:
an m-period schedule for an episode of length < L (the current residual lifespan) thus has the
form® S = t1,to,...,tm, where: m > 1, each t; > 0, and

ti+to+- - +t, =L (2.1)

3We simplify subsequent notation by using 1-origin indexing for the periods of episode-schedules, in contrast
to the 0-origin indexing of [3, 11].



The upper bound on the length of the initial episode is U; if the current upper bound is L,
then an interrupt at time ¢ of the current episode leaves a residual upper bound of L —¢. The
intended interpretation is that at time

def

def Ty = 0 ifk=1
Tk = def .
Tp 1 = t1+to+-+itpy ifk>1

the kth period of (the episode scheduled by) S begins: workstation A supplies workstation B
with a job containing? ¢, © ¢ units of work. This quantity is chosen so that ¢ time units are
sufficient for A to send the work to B, and for B to both perform the work and return the
results of the work to A.

Say that the residual lifespan at the beginning of a given episode is L time units. If work-
station B is not interrupted during the kth period of the episode, i.e., by time T}, = 73 + 11, then
the amount of work done so far during this episode is augmented by t; © c; if B is interrupted
during the kth period, say at time® ¢ € [ry, T}), then the episode terminates with the total
amount of work

WES) € (hhee)+(ta0c)+-+ (th—1 0¢) (2.2)

and with the new residual lifespan L —¢. This reckoning reflects both the episode’s termination
and the loss of work from the interrupted period.

It is thus clear that creating an episode-schedule § = 1,19, ..., t,, entails choosing both S§’s
number of periods (m) and its period-lengths (the ;). In our framework, all of these quantities
are determined completely by the current residual lifespan L and the adversary’s remaining
allocation of interrupts

p = (the initial allocation of interrupts) — (the number of preceding episodes).

Consistent with this framework, we adopt the following notation.’

e The number m of periods in S is denoted m®)[L].

(

e Each period-length ¢; is denoted ¢,” ) [L]. By inheritance, the same is true of each cumula-

tive period-length, T; = Tz-(p) [L].

To enhance legibility, we often use “abbreviated” notation, wherein one or both of the param-
eters p, L is omitted when it is either irrelevant or clear from context.

Opportunity-schedules. Since the lengths of episodes—which are dictated by the adversary’s
placement of interrupts—are not known a priori, the owner of workstation A has the choice of
scheduling a given cycle-stealing opportunity either adaptively or non-adaptively.

“The operator “©” denotes positive subtraction and is defined by: = Sy def max(0,z — y).
®As usual, the assertion “a € [b, ¢)” means “b < a < ¢”.
5Throughout, square brackets are used only to enclose parameters that represent residual lifespans.



When proceeding non-adaptively, the owner of A crafts a single episode-schedule § =
ti,t2,...,tm. If a given period, say the ith, is interrupted, then upon regaining control of
workstation B, the owner of A employs the “tail” ¢;11,%;+2,...,tn of schedule S for the re-
mainder of the opportunity. The only exception to this “oblivious” behavior is that after the
pth interrupt, the owner of A schedules the remainder of the opportunity as one long period.
The work W(S) achieved by the non-adaptive opportunity schedule S is calculated as follows.
Say that the periods that the adversary interrupts comprise the set I = {iy,42,...,%,} and that
each period i; is interrupted at its last instant (so that the entire period is “lost”). Then

W) =Y (koo + ((U-T;,) 60). (2.3)
keI

The last term in (2.3) represents the last, “long”, period which is invoked after p interrupts
have occurred.

When proceeding adaptively, the owner of A specifies a schedule for episode ¢ + 1 only
after episode ¢ has been interrupted—Dby which time A knows how much of the usable lifespan
remains. In this case, an adaptive opportunity-schedule ¥ is a sequence of sequentially chosen
multi-parameterized episode-schedules:

2 = SO, sPVU - L], SP AU - L, — Ly, ..., SP~ lU -y Li] : (2.4)
i=1

where Ly, Lo, ..., L, are the respective lengths of the a interrupted episodes.

The work achieved under the opportunity-schedule ¥ of (2.4) during the lifespan U is the
sum of the work achieved by >’s constituent episode-schedules:

W(E) = Z W (s(f’—“
1=0

U_zi:[,j]) . (2.5)
j=1

In constructing and evaluating our adaptive opportunity-schedules, it is useful to have a
notation for the maximum amount of work achievable by any adaptive cycle-stealing schedule
in an opportunity with (residual) lifespan L and number p of potential interrupts. We denote
this quantity by W®)[L].

3 Guidelines for Crafting (Near-Optimal) Schedules

This section is devoted to crafting guidelines for producing optimal non-adaptive schedules
(Section 3.1) and nearly optimal adaptive ones (Section 3.2).



3.1 Guidelines for Optimal Non-Adaptive Schedules

When the lifespan U is “small” relative to the number p of potential interrupts, one would not
do badly to schedule the lifespan as a single episode consisting of p + 1 equal-length periods
(to within rounding). Clearly this approach guarantees us at least |[U/(p + 1)| units of work.
When U is even modestly large, though, one can do better by partitioning the lifespan U evenly
into roughly VU periods (to within rounding). One shows easily that this approach achieves
at least U — (p + ¢)VU + pe units of work. A bit further analysis improves this last schedule to
the following, optimal non-adaptive schedule.

Schedule specification. The p-interrupt non-adaptive schedule
SOW] = W], {[0)..... @)

is specified as follows.

Number of periods: mP[U] = [/pU/c|.

Period-lengths: Each tz(p ) [U] = /cU/p, to within rounding, with up-rounded period-lengths

having lower indices.

Analysis. Clearly the best strategy for the adversary is to kill the last p periods of schedule

S%&[U] (at their last instant), for this maximizes the effect of the communication overhead in
diminishing work production. Under this strategy,

U
w(sQ) = m® —yp) (W_c> — U —/2pU + pe+ O(1).

Elementary calculus shows that this strategy cannot be improved.

3.2 Guidelines for Nearly Optimal Adaptive Schedules

In this section, we present and begin to analyze the adaptive opportunity-schedule that is a
major contribution of our study. The development in Sections 4 and 5 is needed to complete the
analysis and to establish the near-optimality of this schedule in guaranteed work production.
The opportunity-schedule ZX’) [U] is obtained by adaptive invocation of the following sequence

of episode-schedules:
sPWw] = sPw), s¢Vw-., YL

Schedule specification. The p-interrupt episode-schedule
sP) = &), 0], {9

is specified as follows. For p = 0, schedule SSS) [U] has one period, of length U. For p > 0:



Number of periods: m®)[U] = [2°=Y/2,/U/c| + p2%~".
Period-lengths: Let £, = [2p/3].

e For each k € {m® —¢, +1,... mP}.
W] = e

e For k =m) — Ly:
U] = (p—@-22")Vw+1/2)c.

e For each k € {1,2,...,m® — 4, — 1}
tPU] = ) [U] + 41 Pe,

We begin our analysis of schedule SE{)) [U] by verifying that the indicated specification is
sound, in the sense that the specified period-lengths are consistent with the specified number
of periods. We do this by invoking equation (2.1) and our specified period-lengths to note that

(N (p) (p) m®) — AW
U > Soou” 4+ (m) - o)ty g + ) 4P
i:m(l’)flerl

> pe + (n —2/3) (- 22 7B+ 1/2) ¢ + (m(”’jp/?’)wc

Letting n = m®) — 2p/3, we therefore have
2771 /e > n? — 2% (p—2y/2p 4+ 1/2)n.

It follows that
m® < 2P=12, U /¢ + p2?P~ 1,

as was claimed.

(p)

The remainder of our analysis of the opportunity-schedule ¥’ [U] via its constituent episode-

schedules {sz) [U] | p=1,2,...} must be deferred until we better understand the structure of
optimal schedules. We turn now to the study of such structure.

4 The Theoretical Underpinnings of Our Adaptive Guidelines

Our formal model leads us to view the cycle-stealing process as the following game against
a “malicious adversary” who seeks to use the p available interrupts to minimize the work
production of the given cycle-stealing opportunity, even as we seek to maximize this production.
The first move is ours. Based on the current (residual) usable lifespan L and bound p on the
number of possible interrupts, we invoke episode-schedule S (p) [L]. Aslong as the adversary has

10



not yet used all of his/her allocated interrupts (i.e., as long as p > 0), s/he will decide either
to let the current episode play out without an interrupt or to interrupt one of this schedule’s
periods, thereby nullifying some of our usable lifespan. If the adversary does interrupt us, say
at time ¢ of the current episode, then when we regain control of workstation B, we invoke
episode-schedule S(p_l)[L — t]. The game continues until p = 0, at which point the episode
plays out to the end of the residual lifespan without further participation by the adversary.

Our approach to this “game” is to bootstrap our way to optimal cycle-stealing schedules. We
always assume, when constructing a schedule for an opportunity having p potential interrupts,
that, for each (residual) lifespan L, we inductively have access to a (p — 1)-interrupt schedule
which accomplishes work W(”*l)[L]. We shall see in Proposition 4.4 that we readily do have
access to W) [L], hence are prepared to bootstrap from the “end game”, wherein p = 0.

This section is devoted to deriving guidelines for constructing episode-schedules that min-
imize the effects of maliciously placed interrupts. In Section 4.1, we establish some basic
properties of our model, which will be useful in crafting “good” episode-schedules. In Section
4.2, we derive the abstract scheduling guidelines that underlie schedule 255) [U].

4.1 Observations that Underlie Our Guidelines
This section is devoted to uncovering properties of our model that determine both the adver-

sary’s strategy for interrupting the episodes mandated by our schedules and our responses to
that strategy.

4.1.1 Some Naive Observations about Good Schedules

We begin with four simple, yet useful, results about the optimal work-functions we) [U]. The
first two results establish the monotonicity of the functions in both parameters p and U: work
production can only increase with a longer residual lifespan and can only decrease if the adver-
sary gets more potential interrupts.

Proposition 4.1 For all p, the function W) [U] is nondecreasing with increasing U.

Proof Sketch. Any schedule for lifespan U can be converted to an (at least) equally productive
one for lifespan U’ > U by merely appending a new period of length U’ — U at the end. [ |

Proposition 4.2 For all U, the function w) [U] is nonincreasing with increasing p.

Proof Sketch. If WP)[U] < WPH[U] for some p > 0 and > 0, then an adversary who had
access to p + r potential interrupts would use only p of them—maliciously placed, in order to

11



minimize our work production. [ |

We next remark on two simple “boundary cases” of our scheduling problem, which are
useful as the bases for our bootstrapping strategy for crafting schedules. We note first that the
adversary can effectively nullify any sufficiently short lifespan.

Proposition 4.3 If the lifespan U < (p + 1)c, then WP)[U] = 0.

Proof. No matter how one partitions such a short lifespan into periods, no more than p
periods can have length > ¢. The adversary can nullify each of these productive periods via a
maliciously placed interrupt. This nullifies the entire opportunity, because the communication
overhead ¢ prevents us from accomplishing any work from the shorter periods. [ |

Finally, we note, without proof, the triviality of scheduling the “end-game”, i.e., the case
p = 0, wherein the adversary has exhausted his/her allocation of interrupts.

Proposition 4.4 The unique optimal schedule for the case p = 0 is the 1-period schedule
S(Ool)gT[U] = U which achieves
WO = U-c (4.1)

units of work.

4.1.2 Some Sophisticated Observations about Good Schedules

Our analysis of the cycle-stealing game requires us to consider what the adversary’s various
options are regarding an episode—whether to interrupt it, and where—and to how address
each of them. At first blush, it appears that, when the adversary has access to p > 0 interrupts,
these options are m(®)[U]+ 1 in number: not to interrupt the episode (thereby letting the game
“play out”), or to interrupt period k € {1,2,...,m®[U]} of the episode. As we develop our
understanding of the game in this section, we shall see that the adversary actually has fewer
viable options. We detail the adversary’s strategy in a sequence of “Observations”.

Our first step in analyzing the cycle-stealing game is to establish a result that has three
significant consequences. First, it materially narrows our search for optimal schedules. Second,
it allows us to use ordinary subtraction, rather than positive subtraction, when discussing the
potential work production from each of an episode’s periods, save the last. Finally, it leads
directly to two significant observations about the adversary’s strategy during the game. The
result is an analog of one proved in [3] for the expected-output single-episode submodel; it shows
that we lose no generality by restricting attention to cycle-stealing schedules that are productive,
in the sense of having all period-lengths, save perhaps the last in each episode-schedule, exceed
c.

12



Theorem 4.1 zilny opportunity-schedule X3 can be replaced by a productive opportunity-schedule
Y such that W(X) > W(X).

Proof. Say that the opportunity-schedule 3 contains one or more nonproductive episode-
schedules S(k)[L], where £ > 1. (When k& = 0, the optimal schedule has only one period,
so productivity is not an issue.) Say, in particular that the kth constituent episode-schedule
S [L] of ¥ contains a nonterminal period, say the ith, of length ¢; < ¢. Consider the schedule
3 which is identical to 3], except that periods 4 and 7 + 1 of its kth constituent episode-schedule

S(k)

[L] are combined:”

SWIL = ti,boye e tiotybis ity tivay ooy b
L] = ty, by, bt +tign, tiga, o b,

We claim that W(Z) > W(Z). The verification is a case analysis based on when, if at all,
episode k is interrupted. First, we compare W(g'(k)[L]) with W(S®)[L]).

1. If episode k is not interrupted, or if it is interrupted at time ¢ > Tj11, then, since (¢; +
tiv1)©c > (ti©c)+ (tiy1 © ¢), we easily have

wEM L) > ws®|L)).

2. If episode k is interrupted at time ¢ € [Tj_1, T}) for some j < i, then

~(k)[

WSVIL]) = WESWIL) = (hec)+(toc)+-+ (tji_10¢).

3. Finally, if episode k is interrupted at time ¢ € [T}, Tj41), then
WEML) = WEHIL) = (o) + (ko) + -+ (ti100),

because t; < c.

Next, we note that S (k)[L] and S®)[L] always leave the same residual lifespan: 0 when episode
k is not interrupted and L — ¢ otherwise. We thus have W(X) > W(X).

Now, episode-schedule S (k)[L] has one fewer violation of period-productivity than S (k)[L].

We can, therefore, continue eliminating such violations until we obtain a productive episode-
schedule S [L] which has W(g(k) [L]) > W(S™|[L]) and which leaves the same residual lifespan
as does § (k)[L]. At that point, we shall have eliminated one violation of episode-productivity
from schedule Y. By continuing in this way, we eventually produce the desired schedule S m

Theorem 4.1 assures us that we lose no generality by focusing henceforth only on episode-
schedules S = tgp ), tgp ), . ,t%)) for which each t,(cp ) > ¢, save perhaps t%). Having thus narrowed

"We use abbreviated notation throughout the proof, to enhance legibility.

13



our focus, our detailed analysis splits logically into two parallel threads, one focusing on episode-
schedules that are fully productive, in the sense of having all period-lengths > ¢, the other
focusing on episode-schedules whose terminal period-length is < ¢. These two threads yield to
identical reasoning but distinct calculations. In order to conserve space, we focus henceforth on
fully productive episode-schedules, leaving the complementary case to the interested reader.

Interrupted Period ‘ Interruption Time ‘ Episode Work-Output ‘ Residual Lifespan
No interrupt N/A U-—mc = TV —me 0
1 teo, ") 0 U—t
k te [T, ) TP~ (k= 1)c U—t
m te [T\, U) TP — (m—1)c 0

Table 1: The immediate consequences of the adversary’s options

In the light of Theorem 4.1 and our focus on fully productive episode-schedules, expression
(2.2) gives us access to the immediate consequences of each of the adversary’s m®) +1 apparent
options; these are enumerated in Table 1 (using abbreviated notation). The table combines
with Proposition 4.1 to yield our first observation about the adversary’s preferred strategy
during the “game”: the adversary has no incentive to interrupt a period anywhere but at its
end. Interrupting a period anywhere else involves the same expenditure—one of the p available
interrupts—but achieves less (from the adversary’s perspective), since it leaves a larger residual
lifespan.

Observation 4.1 The adversary will always strive for mazimum “mileage” from each interrupt
by interrupting a period at its last instant, thereby nullifying a full t,(cp) [U] time units from our

usable lifespan.

In the light of our bootstrapping strategy, Observation 4.1 allows us to extrapolate from
the local information in Table 1, to obtain the global information in Table 2.

The information in Table 2 combines with Theorem 4.1 to yield our second observation about
the adversary’s strategy. To wit, the adversary can strictly decrease the work production of a
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Interrupted Period ‘ Opportunity Work Production
No interrupt U—mec = Téf) —mec
1 WD — %))
k TP — (k= 1)c+ WD — TP
m Tr(le —(m—1)c

Table 2: The long-term consequences of the adversary’s options

fully productive episode-schedule by interrupting the schedule’s last period. If this interruption
occurs within ¢ time units of the end of the episode, it actually decreases the work production
of the entire opportunity, since it leaves no usable residual lifespan.® We infer the following.

Observation 4.2 The adversary will always interrupt every possible episode of a cycle-stealing
opportunity as long as p > 0 and the residual lifespan U > c.

The proviso “p > 0” in Observation 4.2 means that the adversary still has available inter-
rupts; the proviso “U > ¢” means that the episode can achieve actual work, hence is worth
interrupting.

Observation 4.2 tells us that not all of the m(P)[U] 4+ 1 options we ascribed to the adversary
are actually viable; specifically, the no-interrupt option would not achieve the adversary’s goal
of minimizing our work production. By similar reasoning, one can show that the adversary will
never interrupt a long episode too near its end, in the following sense.

Observation 4.3 When the adversary has p > 1 potential interrupts left, s/he will always
interrupt an episode of lifespan U > (p+1)c during a period that begins at some time t < U —pc.

8This fact is not a consequence of our insisting on fully productive episode-schedules: by Theorem 4.1, the
next-to-last period of any productive episode-schedule has length > c¢. If the last period is short, then the
adversary can decrease the work production of the opportunity by interrupting this next-to-last period (again,
near its end).
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Observation 4.3 follows from Proposition 4.3’s assurance that the adversary’s remaining
p — 1 interrupts will suffice to nullify the last pc time units of the residual lifespan.

We now establish the computational significance of our Observations, via the following
notion. An episode-schedule S®) U] = tgp), tgp), ... ,t%) is r-immune, wherer € {0,1,...,m—1},
if the adversary will never interrupt a period whose index ezceeds m — r (although s/he may
interrupt period m — r). In particular, an episode-schedule is 0-immune if any period can be
interrupted. We now show that the lengths of the r 4+ 1 highest-index periods of an optimal
r-immune episode-schedule can be constrained within a narrow range.

Theorem 4.2 For any r-immune episode-schedule s®) [U], there exists an r-immune episode-
schedule S’(p) each of whose period-lengths, fg,’;),r[U],fﬁ,’;er[U],...,fﬁ,’;)[U], lies in the range
(¢, 2¢], such that W(S’(p) [U]) > w(SsP ).

Proof. Since we consider only fully productive episode-schedules, we need focus only the
upper bound on the period-lengths. To this end, say that the r-immune episode-schedule

SPIU] = t%”’,té”), . ,t%) has tép) > 2¢ for some £ > m —r. Define the episode-schedule 5

be identical to S (p), except for its (m — r)th period, which is split into two equal-length periods;
using abbreviated notation:

SPU] = ty,to,. .. te—1,testosts- - - bms

to

(p)
S [U] = tl,tz,...,tgfl,%tg,%tg,tprl,...,tm.

We claim that W(S ) [U]) > W(S®P[U]). The verification is a case analysis based on when
(i.e., during which period) the given episode is interrupted. (The fact that the episode will be

interrupted follows by Observation 4.2, in the light of the fact that schedule S (®) [U] is fully
productive whenever schedule S®)[U] is.)

1. If the episode is interrupted at time ¢ € [Tj_;, T}) for some j < £ —1, then
wEP ) = wEP) = 1o - (- Ve

2. If the episode is interrupted at time ¢ € [Ty_1, Ty—1 + %te), then
W@V = WSP) = Tea - (=D,

3. If the episode is interrupted at time ¢t € [Ty_1 + %tg, Ty), then
WEPIU) = Tooy + Lt —te > WESPU)) = Ty — (£—1)e.

Additionally, S (®) [U] and S (p) [U] always leave the same residual lifespan, U — ¢, hence allow the
same amount of residual work production. By definition of immunity, the three enumerated
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cases exhaust the possibilities, whence the theorem. [ |

A concrete example of the interplay between Observation 4.3 and Theorem 4.2 is that, when
the adversary has p > 2 potential interrupts left, s/he will never interrupt the last period of an
episode, since it can be nullified later using his/her last interrupt.

Note that the reasoning underlying Theorem 4.2 does not apply to any interruptable period
of an episode but the last. Partitioning a long “interior” period (as in the proof) could decrease
the worst-case productivity of schedule S’(p)[
episode after the partitioned long period.

U] (by c) if the adversary were to interrupt the

4.2 Characteristics of the Optimal Adaptive Episode-Schedules

Once we understand the operative options of the adversary, we formulate a plan to counter-
act the fact that s/he will choose the option that minimizes our overall work production, as
given in Table 2. Our counterstrategy is to craft episode-schedule S [U] to equalize the im-
pacts of all potential interruptions, thereby maximizing our minimum work production (under
the adversary’s potential actions). We thus arrive at the following result, whose constituent
equalities—in (4.2)—are justified by the preceding discussion and explained by their accompa-
nying annotations.

Lemma 4.1 Under the optimal episode-schedule S(Opl);T[U] = tﬁ”), tgp), ... ,t%) for a cycle-stealing
opportunity with < p interrupts and with usable lifespan U > (p + 1)c, the optimal work pro-
duction of the opportunity satisfies the following equalities.

Ifp=0, then WP[U] =U —c.

If p >0, then, letting £, be the smallest period-index k for which U — T,gli)l > pc?

wu] = we-bu - Tl(p)] -period 1 interrupted
= T1(p) —c+ W(pfl)[U — TQ(p)] -period 2 interrupted
5 (4.2)
= Te(p)_g —c+ WP DU - Tz(:)—l] -period £, — 1 interrupted
= Tef)_1 — (4 —1)c -period £y interrupted

For the sake of concreteness, note that ¢, = mP)[U] when p = 1 (by our assumption of full
productivity) and £, = m®)[U] —1 when p = 2 (by Theorem 4.2). One cannot predict the value
of 4, a priori for larger p.

Our work-equalizing strategy for counteracting the adversary translates into the partial
specification of the period-lengths of the optimal episode-schedule in the following theorem.

°To connect system (4.2) to the preceding discussion, recall that U — T,Ep) = t,(szl +o D)
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Theorem 4.3 The period-lengths of the optimal episode-schedule Sg’%T[U] for a cycle-stealing

opportunity with usable lifespan U and < p interrupts satisfy the following system of equalities.
If p=0, then mP) U] =1, and tgp)[U] =U.

If p >0, then, letting £, be the smallest period-index k for which U — T,gli)l > pc:

c+WODT — TP — WO DT — TP for 1< k<, —2
1 = { WD - 7] fork=1¢,—1 (4.3)
c+a € (¢ 2c for £, <k <m.

Proof Sketch. The bounds on period-lengths tZ) [y, ... ,t%) [U] in (4.3) follow from Theorem
4.2; the specification of all other period-lengths result from equating consecutive pairs of work-
expressions in (4.2). ]

One can often gain computational advantage from the “telescoping” property of the period-
length expressions in (4.3); e.g., for all 4 < k < £

P 4t t?) = (k=i e+ WD - TP - WD - 7).

(Recall that the last term vanishes when k = ¢, —1.)

5 From Underpinnings to Guidelines

This section is devoted to evaluating the adaptive opportunity-schedule ng) [U] and its con-

stituent episode-schedules SX’) [U], in two senses. First, in Section 5.1, we evaluate ZX’) U]

in an absolute sense, by estimating its guaranteed work production. Next, in Section 5.2,
we evaluate the schedule in a relative sense, using the abstract guidelines implicit in Section
4—most notably in Theorems 4.2 and 4.3—as our baseline. We construct the actual optimal

episode-schedule § S%T[U] for the case p = 1 and compare the optimal work production w U]

with W(ES)[U]) and, more generally, with W(ES{]) [U]). We thereby discover that our approxi-

mate schedules 255) [U] have work production that deviates from optimality by only a low-order
additive term. We close our study in Section 5.3 by illustrating how the (computationally
cumbersome) structure of optimal episode-schedules—as exposed in Section 4—suggests the

detailed structure of the schedules SX’) [U].

5.1 The Guaranteed Work Production of Schedule EX’)[U]

In this section we use the analyses of Section 4 as tools for estimating W(Eg’) ).
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Theorem 5.1 For allp >0,

WEP[U) > U - (2-2"7)V2cU — O(U"* + pe). (5.1)

Proof. We proceed by induction on p.

The case p = 0. Since W(SES) [U]) = U — ¢ by fiat, that schedule’s work production
automatically complies with (5.1).

The case p = 1. In this case, we can use the same reasoning that leads to Lemma 4.1 to
prove that

wElo) > v -+ — m® - 1)e. (5.2)
Using inequality (5.2) and the development in Section 3.2, we find that
wEPw —47) > U - Vo - gc. (5.3)

We thus have compliance with (5.1).

The case p > 1. Let us now assume, for the sake of induction, that (5.1) holds for all
p < g, and let us consider the case p = ¢ + 1. In order to deal with general p it is easier now
to use a different insight from Lemma 4.1. Specifically, using the same reasoning that leads to
that lemma, we can prove that, for general p,

~1
wEP) = w0 - i), (54)
By inequality (5.4) and our inductive hypothesis, we thus have

wEr) > wePu - £t

> U -7 —(2- 2792 — £V,

By the specification of episode-schedule SX]H),

gt <q +3/2—(2-2179)/2(¢ + 1)) c+ <2q+1/2\/U/c +(g+ 1227+ — ;(q + 1)) 47

= 29V2cU + O(qc).
Finally, we combine (5.5) and (5.5) to obtain
W(ES{HI)[U]) > U~ (2- 292 + OUY* + ge).

This extends our induction and completes the proof. [ |
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5.2 Comparing Schedule %7 (U] against Optimality

In this section, we apply the abstract guidelines of Section 4 to derive the actual optimal episode-

schedule S 81)3T[U] for the case p = 1.1 (We have been unable to derive actual optimal schedules
for any p > 1, because our abstract guidelines become computationally cumbersome even for
this case—more about this later) Importantly, though, even the case p = 1 suffices to show
that our approximate schedules Z [U] have work production that deviates from optimality by
only a low-order additive term.

Throughout this subsection, let m = mM[U].

Determining the period-lengths of SS%,T[U]. We begin by symbolically determining
the relationships among the m period-lengths of the optimal episode-schedule Sgl)aT[U] =

tgl)[U],tgl)[U],...,t%) [U]. Since the case p = 1 is 0-immune, Theorems 4.2 and 4.3 assert
that these period-lengths satisfy the following system of equations, for some « € (0, 1]:

1+ a)c for k =m
Vo = { o = (L+a)c for k=m — 1 (5.5)
t,gl_i)_l[U]—l—c = (m—k+a)e fork<m-—2

Determining « as a function of m. Revisiting equation (2.1) in the light of the system
(5.5), we find that

U = (am+1)c+ (Zl)c (5.6)
so that 1 1
a = %(U—C)—§(m—l). (5.7)

Determining the optimal m. Examining equation (5.6) in the light of the bounds 0 < o < 1
(from Theorem 4.2), we find that

2U 1 2U 7 1
/____ Lo (20 7y 1
‘ —5 < m) < (C 4>+2

Since there is only one integer in the indicated range, the preceding inequalities determine the
exact optimal value of m uniquely:

m[U] = { (% — Z) — ﬂ . (5.8)

'9A similar derivation appears in [3], using a model which does not insist that schedules be fully productive
and using rather different techniques of analysis.
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Explicit (approximately) optimal parameters. Equation (5.8) permits us to determine an

optimal value for « and, thereby, for the period-lengths tg)[U] and the work-output W(l)[U].
We must settle for approximate values because of the complicated expression for m(l)[U] in
(5.8), coupled with the broad range of values of U for which we will have to use this expression.
In this latter regard, although it is not difficult to obtain simple good approximations for
our parameters when U is very large relative to ¢, it is much more difficult to obtain simple
approximations that are good both when U is large and when it is commensurate with ¢. (The
latter occurs toward the end of a yet-to-be-interrupted episode, when U is a small multiple of (14
a)c.) These difficulties notwithstanding, it is instructive to observe the approximate behavior
of the relevant parameters (with some indication of the errors induced by the approximations).
To this end, we begin by approximating the optimal value of « by instantiating the value

m[U] = /(2U/c — 7/4) in (5.7). We find thereby that the optimal « is roughly

1 ¢ \3? 1

“r 27 (@) T2
Notably, the final approximation incurs an error of less than 1/20, even when U (which must
exceed c if we are to accomplish any work) is only ¢+ €. When we instantiate the value a = 1/2

in system (5.5), we find that the optimal period-lengths of S(Oll)DT[U] are given approximately

by

gc for k € {m —1,m}
1
tIU] ~ — 1
( (20U—L)—kz+—)c for k <m —2.
4 2
Finally, we invoke Lemma 4.1 for the case p = 1, to find that
1) (1) ey _ 1

In Table 3, we summarize our closed-form algebraic approximations of the optimal values
of the single-interrupt (p = 1) parameters, comparing them with the analogous parameters of

schedule SV [U].

As we have already stressed repeatedly, the most important message of this section is the
following.

Theorem 5.2 The guaranteed work production of the opportunity-schedule EX’)[U] deviates
from optimality by only low-order additive terms.

Proof Sketch. The result follows by comparing W) [U] with W(EE{)) [U]). The former quantity
is revealed in (5.9), the latter in inequality (5.1), in the light of Proposition 4.2. [
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Parameter ‘ Approximate Value for S gl)jT ‘ Value for SS) [U]

m[U] V2U e —T]4 1\/2U/c + 2|

« 1/2 N/A

VU] V2cU — ke V2eU — (k —17/2)c

tVo) = ¢V [0 3¢/2 3¢/2
w[U] U—2cU — ¢/2 U —2cU — O(UY + ¢)

Table 3: Parameter values for the case p =1

5.3 Our Guidelines’ Basis in the Cases p > 1

In this section, we extrapolate from the form of the optimal episode-schedule SS%,T[U] and
from the abstract guidelines of Section 4 to motivate the structure of the episode-schedules
SSf) [U]. Before we do so, however, we wish to indicate briefly the sources of the computational
difficulties inherent in our abstract guidelines, which have prevented us from deriving the exact

forms of the optimal episode-schedules § g)l)aT[U] for p > 1.

The development in Section 4 forces one to bootstrap from a specification of the optimal
p-interrupt schedule to a specification of the optimal (p+1)-interrupt schedule. Such bootstrap-
ping is complicated technically by five factors. (1) The nondefinitive period-specifications of
Theorem 4.3 force us to calculate period-lengths via bounds rather than equations. (2) Since the
residual lifespans after successive interrupts are not known until interrupts actually occur, we
must perform our bootstrapping calculations symbolically, rather than numerically. (3) Most of
our symbolic computations cannot be performed exactly, because of both nested radicals (when
p > 1) and nonalgebraic operations such as floors and ceilings. We are forced, therefore, to
replace complicated actual expressions by simple approximations—thereby introducing errors
that accumulate as we bootstrap. (4) These errors are compounded by our need to ignore—or
retrofit—the ineluctable integrality of certain parameters. Most obviously, the number of peri-

ods, m®), must be integra; in certain settings, one might insist also that the period-lengths, t;p ),
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be integral. (One finds both integral and nonintegral task-lengths studied in the literature.)
(5) The approximation errors are very difficult to estimate, since the estimates one would want
to use often depend on the relative sizes of the externally specified parameters U, p, and c.

We turn now to the main topic of this subsection—those aspects of the structure of truly
optimal schedules that led us to specify schedule S Ef) [U] as we have. Throughout this subsection,

let m = m®)[U].

Determining optimal period-lengths. We attempt to determine the relationships among
the m period-lengths of the optimal episode-schedule Sg’%T[U] = tgp) [U],tgp) ol,... ,t%)) [U].
Now, Theorems 4.2 and 4.3 tell us that once we determine the constant of immunity for the
particular value of p, we know that the highest index period-lengths tZ ) y,... ,tS,’;) [U] all have
the form

1 10] = (L4 ap)e

for some oy, € (0, 1]. One gets no further help in determining explicit values for the «y, since it
is only the sum of the a4, rather than their individual values, that enter into the determination
of all lower-index period-lengths. For the sake of determinacy, we have crafted schedule SE{)) U]
by equating all of the ay, setting all to the value 1/2 that is approximately optimal for the case
p = 1. This has the secondary benefit of explicitly specifying all of the constants of immunity
Zy.

In order to invoke Theorem 4.3 to determine all other period-lengths, we must have access
to a (computationally tractable) expression for the work production of all schedules for smaller

values of p. Again inspired by the case p = 1, we have used the working assumption that each
W®)[U] can be approximated by the expression

WU = U —6,V2cU + (low-order terms), (5.10)

where d, is a constant that satisfies o = 0 and §; = 1. The form we ultimately selected for d,,
namely, §, = 2 — 2177 was one that could be perpetuated inductively without compromising
good work production (as we saw in Section 5.1).

Thus armed with values for the high-index period-lengths and a tractable approximate
expression for the work production of schedules for smaller values of p, we invoked the m — £,
instance of system (4.3) to determine a value for tEg)JP [U]:

0, = e+ WD -1, ]~ (p+ e —dpo1v/2pe

m—{p m
Finally, we proceeded to period-lengths with indices k¥ < m — £, by simplifying the rather

cumbersome expression for these period-lengths in (4.3), in the light of expression (5.10). In
the following derivation, each unspecified residual lifespan is understood to be U. For each such
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period-index k:

6 = et WD 1) - Wb - 1)

C+tk+1 p 1\/_ <\/U T, — /U — Tk+1)

Q

= e+t — 8 1v2e |1 I_Uk—HTk U—Tp (5.11)
(») Hl

~ p

~ tk+1+ ].—(51771 m C.

In the last step of this chain, we approximate /1 — 2 (where z = t,g’fi)_l/(U —T})) by 1 — 1z.

The final approximation in (5.11) indicates that when p > 1, each t,(cp ) is obtained from t,(ﬂl

by adding some multiple of ¢ that is less than unity. Even though a careful analysis shows that
this multiple decreases with k, we have opted in Section 3.2 for computational simplicity and
fixed this multiple at , = 4! 7.

Having made the indicated decisions, we have completely specified the computationally

efficient episode-schedules S [U] hence also the opportunity-schedule E(

achieves nearly optimal guaranteed work production.

[U], in a way that
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