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Abstract

Data replication is one of the main techniques by which database systems can hope to meet the
stringent temporal constraints of current time-critical applications, especially Web-based directory
and electronic commerce services. A pre-requisite for realizing the benefits of replication, however,
is the development of high-performance concurrency control mechanisms. We present in this pa-
per MIRROR (Managing Isolation in Replicated Real-time Object Repositories), a concurrency
control protocol specifically designed for firm-deadline applications operating on replicated real-
time databases. MIRROR augments the optimistic two-phase locking (O2PL) algorithm developed
for non real-time databases with a novel and simple to implement state-based conflict resolution
mechanism to fine-tune real-time performance.

Using a detailed simulation model, we compare MIRROR's performance against the real-time
versions of a representative set of classical protocols for a range of transaction workloads and system
configurations. Our performance studies show that (a) the relative performance characteristics of
replica concurrency control algorithms in the real-time environment could be significantly different
from their performance in a traditional (non-real-time) database system, (b) MIRROR provides the
best performance in both fully and partially replicated environments for real-time applications with
low to moderate update frequencies, and (c) MIRROR's conflict resolution mechanism works almost

as well as more sophisticated (and difficult to implement) strategies.

1 Introduction

Many time-critical database applications are inherently distributed in nature. These include the intel-
ligent network services database described in [17], the mobile telecommunication system discussed in

[29], the 1-800 telephone service in the United States. More recent applications include the multitude
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of directory, data-feed and electronic commerce services that have become available on the World Wide
Web - for example, organizations the world over are starting to deploy Lightweight Directory Access
Protocol (LDAP)-accessible directories as part of their information infrastructure [12, 13].

The performance, reliability, and availability of such applications can be significantly enhanced
through the replication of data on multiple sites of the distributed network. This has been the main
motivation, for example, for the now commonplace establishment of “mirror sites” on the Web for
heavily accessed services. In fact, a large percentage of the data that directories are expected to

provide reside in replicated relational databases.

A pre-requisite for realizing the benefits of replication, however, is the development of efficient
replica management mechanisms. In particular, for many of these applications, especially those related
to on-line information provision and electronic commerce, stringent consistency requirements need to
be supported while achieving high performance. Therefore, a major issue is the development of efficient
replica concurrency control protocols. While a few isolated efforts in this direction have been made
earlier, they have resulted in schemes wherein either the standard notions of database correctness are not
fully supported [22, 23], or the maintenance of multiple historical versions of the data is required [21],
or the real-time transaction semantics and performance metrics pose practical problems [25]. Further,
none of these studies have considered the optimistic two-phase locking (O2PL) protocol (3] although it
is the best-performing algorithm in conventional (non-real-time) replicated database systems (3].

In contrast to the above studies, we focus in this paper on the design of one-copy serializable
concurrency control protocols for replicated real-time databases. Our study is targeted towards real-
time applications with “firm deadlines”.! For such applications, completing a transaction after its
deadline has expired is of no utility and may even be harmful. Therefore, transactions that miss their
deadlines are “killed”, that is, immediately aborted and discarded from the system without being
executed to completion. Accordingly, the performance metric is the percentage of transactions that

miss their deadlines.
Our choice of firm-deadline applications is based on the observation that many of the current
distributed real-time applications belong to this category. For example, in the 1-800 service, a customer

may hang up the phone if the answer to his query is not provided in a timely manner. Similarly, most

Web-based services employ “stateless” communication protocols with timeout features.

'In the rest of this paper, when we refer to real-time databases, we mean firm real-time databases unless specified

otherwise.



The MIRROR Protocol

For the above application and system framework, we present in this paper a replica concurrency control
protocol called MIRROR (Managing Isolation in Replicated Real-time Object Repositories). MIR-
ROR augments the optimistic two-phase locking (O2PL) algorithm with a novel, simple to implement,
state-based conflict resolution mechanism called state-conscious priority blocking. In this scheme, the
choice of conflict resolution method is a dynamic function of the states of the distributed transactions
involved in the conflict. A feature of the design is that acquiring the state knowledge does not require
inter-site communication or synchronization, nor does it require modifications to the two-phase commit
protocol [7] (the standard mechanism for ensuring distributed transaction atomicity).

Using a detailed simulation model of a replicated RTDBS, we compare MIRROR'’s performance
against the real-time versions of a representative set of classical replica concurrency control protocols
for a range of transaction workloads and system configurations. These protocols include two phase
locking (2PL), optimistic concurrency control (OCC) and optimistic two phase locking (O2PL). Our

performance studies show the following;

1. The relative performance characteristics of replica concurrency control algorithms in the real-time
environment could be significantly different from their performance in a traditional (non-real-
time) database system. For example, the O2PL algorithm, which is reputed to provide the best

overall performance in traditional databases, performs poorly in real-time databases.

2. The MIRROR protocol provides the best performance in both fully and partially replicated en-
vironments for real-time applications with low or moderate update frequencies. For high update
frequencies, however, OCC is better. But, given that most of the distributed real-time applica-
tions that we are aware of fall into the former category, MIRROR appears to be an attractive

choice for designers of replicated RTDBS.

3. As mentioned above, MIRROR implements a state-conscious priority blocking-based conflict
resolution mechanism. We also evaluated alternative implementations of MIRROR with more
sophisticated, and difficult to implement, conflict resolution mechanisms such as state-conscious
priority inheritance. Our experiments demonstrate, however, that little value is added with these
enhancements - that is, the basic simple implementation of MIRROR itself is sufficient to deliver

good performance.



Organization

The remainder of this paper is organized as follows: In Section 2, we present the distributed concurrency
control algorithms evaluated in our study. We also develop a practical implementation of the OCC
algorithm for replicated data. Section 3 presents existing real-time conflict resolution mechanisms.
Section 4 presents MIRROR, the state-conscious conflict resolution mechanism. In Section 5, we
describe our distributed real-time database simulation model. Experimental results are presented and
discussed in detail in Section 6. Section 7 discusses the related work. Finally, we summarize our

conclusions and suggest future research directions in Section 8.

2 Distributed Concurrency Control Protocols

In this section, we review the three classical families of distributed CC protocols, 2PL [5], OCC and
O2PL [3]. All three protocol classes belong to the ROWA (“read one copy, write all copies”) category
with respect to their treatment of replicated data. While the 2PL and O2PL implementations are taken
from the literature, our OCC implementation is new. The discussion of the integration of real-time
features into these protocols is deferred to the next section. In the following description, we assume

that the reader is familiar with the standard concepts of distributed transaction execution 3,7, 8].
2.1 Distributed Two-Phase Locking (2PL)

In the distributed two-phase locking algorithm described in (5], a transaction that intends to read a
data item has to only set a read lock on any copy of the item; to update an item, however, write locks
are required on all copies. Write locks are obtained as the transaction executes, with the transaction
blocking on a write request until all of the copies of the item to be updated have been successfully
locked by a local cohort and its remote updaters. Only the data locked by a cohort is updated in
the data processing phase of a transaction. Remote copies locked by updaters are updated after those
updaters have received copies of the relevant updates with the PREPARE message during the first
phase of the commit protocol. Read locks are held until the transaction has entered the prepared state

while write locks are held until they are committed or aborted.
2.2 Distributed Optimistic Concurrency Control (OCC)

We now introduce OCC, a distributed optimistic concurrency control algorithm for real-time databases.
Our algorithm extends the implementation strategy for centralized OCC algorithms proposed in [10)
and the distributed OCC algorithm design of [24] to handle data distribution and replication.

In OCC, transactions execute in three phases: read, validation, and write. In the read phase,

cohorts only access data items in their local sites and all updating of replicas is deferred to the end of



transaction, that is, to the commit processing phase. More specifically, the two-phase commit (2PC)
protocol is “overloaded” to perform validation in its first phase, and then installation of the private
updates of successfully validated transactions in its second phase.

The validation process works as follows: After receiving a PREPARE message from its master,
a cohort initiates local validation. If a cohort fails during validation, it sends an ABORT message to
its master. Otherwise, it sends PREPARE messages as well as copies of the relevant updates to all
the sites that store copies of its updated data items. Each site which receives a PREPARE message
from the cohort initiates an updater to update the data in its local work area used by OCC. When the
updates are done, the updater performs local validation and sends a PREPARED message to its cohort.
After the cohort collects PREPARED messages from all its updaters, it sends a PREPARED message
to the master. If the master receives PREPARED messages from all its cohorts, the transaction is
successfully globally validated and the master then issues COMMIT messages to all the cohorts.

A cohort that receives a COMMIT message enters the write phase (the third phase) of the OCC
algorithm. After it finishes the write phase, it sends a COMMIT message to all its updaters which
then complete their write phase in the same manner as the cohort.

For the implementation of the validation test itself, we employ an efficient strategy called Lock-
based Distributed Validation, which is described in the Appendix.

An important point to note here is that in contrast to centralized databases where transactions
that validate successfully always commit, a distributed transaction that gets locally validated might be
aborted later because it fails during global validation. This can lead to wasteful aborts of transactions —
other transactions could be aborted when a transaction gets locally validated, but the locally validated

transaction itself is aborted later. This is a potential performance drawback for OCC in distributed

systems.
2.3 Distributed Optimistic Two-Phase Locking (O2PL)

The O2PL algorithm (3] can be thought of as a hybrid occupying the middle ground between 2PL
and OCC. Specifically, O2PL handles read requests in the same way that 2PL does; in fact, 2PL and
O2PL are identical in the absence of replication. However, O2PL handles replicated data optimistically.
When a cohort updates a replicated data item, it requests a write lock immediately on the local copy
of the item. But it defers requesting write locks on any of the remote copies until the beginning of the
commit phase is reached.

As in the OCC algorithm, replica updaters are initiated by cohorts in the commit phase. Thus,

communication with the remote copy site is accomplished by simply passing update information in the



PREPARE message of the commit protocol. In particular, the PREPARE message sent by a cohort to
its remote updaters includes a list of items to be updated, and each remote updater must obtain write
locks on these copies before it can act on the PREPARE request.?

Since O2PL waits until the end of a transaction to obtain write locks on copies, both blocking
and abort are possible rather late in the execution of a transaction. In particular, if two transactions at
different sites have updated different copies of a common data item, one of the transactions has to be
aborted eventually after the conflict is detected. In this case, the lower priority transaction is usually

chosen for abort in RTDBS.3

2.4 Time of Updates to Replicas

It is important to note that the time at which the remote update processes are invoked is a function of
the choice of CC protocol: In 2PL, a cohort invokes its remote replica update processes to obtain locks
before the cohort updates a local data item in the transaction execution phase. Replicas are updated
during the commitment of the transaction. However, in the O2PL and OCC protocols, a cohort invokes

the remote replica update processes only in the first phase of the two-phase commit protocol.

3 Data Conflict Resolution Mechanisms

In this section, we discuss the integration of real-time cognizant data conflict resolution mechanism
into the replica concurrency control protocols described in the previous section. We first do so with
regard to the locking-based protocols and then for the optimistic protocol.

We discuss three different ways to introduce real-time associated priorities into locking proto-

cols:

Priority Blocking (PB): This mechanism is similar to the conventional locking protocol in that a
transaction is always blocked when it encounters a lock conflict and can only get the lock after

the lock is released. The lock request queue, however, is ordered by transaction priority.

Priority Abort (PA): This scheme attempts to resolve all data conflicts in favor of high-priority

transactions. Specifically, at the time of a data lock conflict, if the lock holding cohort (updater)

2To speed up conflict detection, special “copy locks” rather than normal write locks are used for updaters. Copy locks
are identical to write locks in terms of their compatibility matrix, but they enable the lock manager to know when a lock

is being requested by a replica updater.
3The exception occurs when the lower priority transaction is prepared in which case the other transaction has to be

aborted.



has higher priority than the priority of the cohort (updater) that is requesting the lock, the
requester is blocked. Otherwise, the lock holding cohort (updater) is aborted and the lock is
granted to the requester. Upon the abort of a cohort (updater), a message is sent to the master
(cohort) of the cohort (updater) to abort and then restart the whole transaction (if its deadline

has not expired by this time).

The only exception to the above policy is when the low priority cohort (updater) has already
reached the PREPARED state at the time of the data conflict. In this case, it cannot be aborted
unilaterally since its destiny can only be decided by its master and therefore the high priority

transaction is forced to wait for the commit processing to be completed.

Assuming that no two transactions have the same priority (which is usually the case in RTDBS),
the PA mechanism is deadlock free since (a) a high priority transaction is never blocked by a
lower priority executing transaction, and (b) if the low priority transaction is in the PREPARED

state, it has already acquired all of its locks.

Priority Inheritance (PI): In this scheme, whenever data conflict occurs the requester is inserted
into the lock request queue which is ordered by priority. If the requester’s priority is higher
than that of any of the current lock holders, then these low priority cohort(s) holding the lock
subsequently execute at the priority of the requester, that is, they “inherit” this priority. This
means that lock holders always execute either at their own priority or at the priority of the highest
priority cohort waiting for the lock, whichever is greater. The motivation behind the priority
inheritance approach is that by virtue of the priority increase, the lock-holding transaction may
finish sooner than it would without the increase in priority. As a result, the blocking time for the

high priority transaction may be reduced.

An important point to note here is that the implementation of priority inheritance in distributed
databases is not trivial. For example, whenever a cohort inherits a priority, it has to notify its
master about the inherited priority. The master propagates this information to all the sibling co-
horts of the transaction. This means that the dissemination of inheritance information to cohorts

takes time and effort and significantly adds to the complexity of the system implementation.

For the optimistic protocol, OCC, we use the OPT-WAIT conflict resolution mechanism 9], ¢ described

below:

*We have used OPT-WAIT although its variant called WAIT-50 was found to provide better performance in centralized
RTDBSI9], because as explained in [28], several problems arise in extending the WAIT-50 scheme to the distributed

environment.



OPT-WALIT: In this mechanism, a transaction that reaches validation and finds higher priority trans-
actions in its conflict set is “put on the shelf”, that is, it is made to wait and not allowed to commit
immediately. This gives the higher priority transactions a chance to make their deadlines first.
After all conflicting higher priority transactions leave the conflict set, either due to committing
or due to aborting, the on-the-shelf waiter is allowed to commit. Note that a waiting transaction

might be restarted due to the commit of one of the conflicting higher priority transactions.

4 The MIRROR Protocol

We now present our new replica concurrency control protocol called MIRROR (Managing Isolation
in Replicated Real-Time Object Repositories). MIRROR augments the O2PL protocol described in
Section 2 with a novel, simple to implement, state-based conflict resolution mechanism called state-
conscious priority blocking. In this scheme, the choice of conflict resolution method is a dynamic
function of the states of the distributed transactions involved in the conflict. A feature of the design is
that acquiring the state knowledge does not require inter-site communication or synchronization, nor
does it require modifications of the two-phase commit protocol.

The key idea of the MIRROR protocol is to resolve data conflicts based on distributed transac-
tion states. As observed in earlier work in centralized RTDBS, it is very expensive to abort a transac-
tion when it is near completion because all the resources consumed by the transactions are wasted[11].
Therefore, in the MIRROR. protocol, the state of a cohort/updater is used to determine which data
conflict resolution mechanism should be employed. The basic idea is that Priority Abort (PA) should
be used in the early stages of transaction execution, whereas Priority Blocking (PB) should be used in
the later stages since in such cases a blocked higher priority transaction may not wait too long before

the blocking transaction completes. More specifically, it follows the mechanism given below:

State-Conscious Priority Blocking (PA_PB): A cohort/updater employs PA until it reaches a
point called the demarcation point after which it employs the PB protocol.

We assign the demarcation points of a cohort/updater T; as follows:

e T; is a cohort:

when T; receives a PREPARE message from its master

e T; is a replica updater:

when T has acquired all the local write locks



Essentially, we want to set the demarcation point in such a way that, beyond that point, the cohort
or the updater does not incur any locally induced waits. So, in the case of O2PL, a cohort reaches its
demarcation point when it receives a PREPARE message from its master. This happens before the
cohort sends PREPARE messages to its remote updaters. It is worth noting that, to a cohort, the
difference between PA and PA_PB is with regard to when the cohort reaches the point after which it
cannot be aborted by lock conflict. In case of the classical priority abort (PA) mechanism, a cohort
enters the PREPARED state after it votes for COMMIT, and a PREPARED cohort cannot be aborted
unilaterally. This happens after all the remote updaters of the cohort vote to COMMIT. On the other
hand, in the PA_PB mechanism, a cohort reaches its demarcation point before it sends PREPARE
messages to its remote updaters. PA and PA_PB become identical if databases are not replicated.
Thus, in state-conscious protocols, cohorts or updaters reach demarcation points only after the two
phase commit protocol starts. This means that a cohort/updater cannot reach its demarcation point
unless it has acquired all the locks. Note also that a cohort/updater that reaches its demarcation point

may still be aborted due to write lock conflict, as discussed earlier in Section 2.3.

4.1 Implementation Complexity

We now comment on the overheads involved in implementing MIRROR in a practical system. Firstly,
note that MIRROR does not require any inter-site communication or synchronization to determine
when its demarcation points have been reached. This information is known at each local cohort or
updater by virtue of its own local state. Second, it does not require any modifications to the messages,
logs, or handshaking sequences that are associated with the two-phase commit protocol. Third, the

changes to be made to the local lock manager at each site to implement the protocol are quite simple.

4.2 Incorporating PA_PB into the 2PL Protocol

Note that the PA_PB conflict resolution mechanism, which we discussed above in the context of the

O2PL-based MIRROR protocol, can be also added to the distributed 2PL protocol.

For 2PL, we assign the demarcation points of a cohort/updater 7} as follows:

e T; is a cohort:

when T; receives a PREPARE message from its master

e T; is a replica updater:

when T; receives a PREPARE message from its cohort



One special effect in combining with 2PL is that, unlike the combination with O2PL, here
a low priority transaction which has reached its demarcation point and has blocked a high priority

transaction will not suffer any lock based waits.

4.3 Choice of Post-Demarcation Conflict Resolution Mechanism

In the above description, we have used Priority Blocking (PB) for the post-demarcation conflict reso-

lution mechanism. Alternatively, we could have used Priority Inheritance instead, as given below:

State-Conscious Priority Inheritance (PA_PI): A cohort/updater employs PA until it reaches

the demarcation point after which it employs the PI protocol.

At first glance, the above approach may appear to be significantly better than PA_PB since not only are
we preventing close-to-completion transactions from being aborted but in addition are helping them
complete quicker, thereby reducing the waiting time of the high-priority transactions blocked by such
transactions. However, as we will show later in Section 6.6, this does not turn out to be the case, and
it is therefore the simpler and easier to implement PA_PB that we finally recommend for the MIRROR

implementation.

5 Simulation Model

To evaluate the performance of the concurrency control protocols described in Section 2, we developed
a detailed simulation model of a DRTDBS. Our model is based on the distributed database model
presented in (3], which has also been used in several other studies (for example, (8, 14]) of distributed
database system behavior, and the real-time processing model of [27]. A summary of the parameters
used in the simulation model are presented in Table 1.

The database is modeled as a collection of DBSize pages that are distributed over NumSites
sites. The number of replicas of each page, that is, the “replication degree”, is determined by the
ReplDegree parameter. The physical resources at each site consist of NumCPUs CPUs, NumDataDisks
data disks and NumLogDisks log disks. At each site, there is a single common queue for the CPUs
and the scheduling policy is preemptive Highest-Priority-First. Each of the disks has its own queue and
is scheduled according to a Head-Of-Line policy, with the request queue being ordered by transaction
priority. The PageCPU and PageDisk parameters capture the CPU and disk processing times per
data page, respectively. The parameter InitWriteCPU models the CPU overhead associated with

initiating a disk write for an updated page. When a transaction makes a request for accessing a data

10



Parameter Meaning Setting
NumSites Number of sites 4
DBSize Number of Pages in the databases 1000 pages
ReplDegree Degree of Replication 4
NumCPUs Number of CPUs per site 2
NumDataDisks | Number of data disks per site 4
NumlLogDisks Number of log disks per site 1

Buf HitRatio Buffer hit ratio on a site 0.1
Arrival Rate Transaction arrival rate (transactions/second) | Varied
SlackFactor Slack factor in deadline assignment 6.0
TransSize No. of pages accessed per trans. 16 pages
UpdateFreg Update frequency 0.25
PageCPU CPU page processing time 10 ms
InitWriteCPU | Time to initiate a disk write 2 ms
PageDisk Disk page access time 20 ms
LogDisk Log force time 5 ms
MsgCPU CPU message send/receive time 1 ms

Table 1: Simulation Model Parameters and Default Settings.
page, the data page may be found in the buffer pool, or it may have to be accessed from the disk. The

BufHitRatio parameter gives the probability of finding a requested page already resident in the buffer
pool.

The communication network is simply modeled as a switch that routes messages and the CPU
overhead of message transfer is taken into account at both the sending and receiving sites and its
value is determined by the M sgCPU parameter - the network delays are subsumed in this parameter.
This means that there are two classes of CPU requests - local data processing requests and message
processing requests. We do not make any distinction, however, between these different types of requests

and only ensure that all requests are served in priority order.

With regard to logging costs, we explicitly model only forced log writes since they are done
synchronously, i.e., operations of the transaction are suspended during the associated disk writing
period. This logging cost is captured by the LogDisk parameter.

Transactions arrive in a Poisson stream with rate ArrivalRate, and each transaction has an
associated firm deadline, assigned as described below. Each transaction randomly chooses a site in
the system to be the site where the transaction originates and then forks off cohorts at all the sites
where it has to access data. Transactions in a distributed system can execute in either sequential or
parallel fashion. The distinction is that cohorts in a sequential transaction execute one after another,

whereas cohorts in a parallel transaction are started together and execute independently until commit

11



processing is initiated. We consider only sequential transactions in this study. Note, however, that the
execution of replica updaters belonging to the same cohort is always in parallel.

The total number of pages accessed by a transaction, ignoring replicas, varies uniformly between
0.5 and 1.5 times T'ransSize. These pages are chosen uniformly (without replacement) from the entire

database. The proportion of accessed pages that are also updated is determined by UpdateFreq.

Upon arrival, each transaction T is assigned a firm completion deadline using the formula
Deadliner = ArrivalTimer + SlackFactor * Ry

where Deadliner, ArrivalTimer, and Rr are the deadline, arrival time, and resource time, re-
spectively, of transaction T, while SlackFactor is a slack factor that provides control of the tight-
ness/slackness of transaction deadlines. The resource time is the total service time at the resources at
all sites that the transaction requires for its execution in the absence of data replication. This is done
because the replica-related cost differs from one CC protocol to another. It is important to note that
while transaction resource requirements are used in assigning transaction deadlines, the system itself
lacks any knowledge of these requirements in our model since for many applications it is unrealistic to
expect such knowledge [20]. This also implies that a transaction is detected as being late only when it
actually misses its deadline.

As discussed earlier, transactions in an RTDBS are typically assigned priorities so as to minimize
the number of killed transactions. In our model, all cohorts inherit their parent transaction’s priority.
Messages also retain their sending transaction’s priority. The transaction priority assignment used in all
of the experiments described here is the widely-used Earliest Deadline policy [16], wherein transactions
with earlier deadlines have higher priority than transactions with later deadlines.

Deadlock is possible with some of the CC protocols that we evaluate — in our experiments,
deadlocks are detected using a time out mechanism. Both our own simulations as well as the results
reported in previous studies [2, 6] show that the frequency of deadlocks is extremely small — therefore

a low-overhead solution like timeout is preferable compared to more expensive graph-based techniques.

6 Experiments and Results

The performance metric employed is MissPercent, the percentage of transactions that miss their dead-
lines. Several additional statistics are used to aid in the analysis of the experimental results, including

the abort ratio, which is the average number of aborts per transaction®, the message ratio, which is

%In RTDBS, transaction aborts can arise out of deadline expiry or data conflicts. Only aborts due to data conflicts

are included in this statistic.
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the average number of messages sent per transaction, the priority inversion ratio (PIR), which is the
average number of priority inversions per transaction, and the wait ratio, which is the average num-
ber of waits per transaction. Further, we also measure the useful resource utilization as the resource
utilization made by those transactions that are successfully completed before their deadlines.

All the missed deadline percentage graphs in this paper show mean values that have relative
half widths about the mean of less than 10% at the 90% confidence interval, with each experiment
having been run until at least 10000 transactions are processed by the system. Only statistically

significant differences are discussed here.
6.1 Expt. 1: Baseline — Real-Time Conflict Resolution

Table 1 presents the setting of the simulation model parameters for our first experiment. With these
settings, the database is fully replicated and each transaction executes in a sequential fashion (note,
however, that the execution of replica updaters belonging to the same cohort is always in parallel). The
parameter values for CPU, disk and message processing times are similar to those in [3]. © While these
times have certainly reduced due to technology advances in the interim period, we continue to use them
here for the following reasons: 1) To enable easy comparison and continuity with the several previous
studies that have used similar models and parameter values; 2) The ratios of the settings, which is
what really matters in determining performance behavior, have changed a lot less as compared to the
decrease in absolute values; 3) Our objective is to evaluate the relative performance characteristics
of the protocols, not their absolute levels. As in several other studies for replicated databases (for
example, [1, 25]), here the database size represents only the “hot spots”, that is, the heavily accessed
data of practical applications, and not the entire database.

Our goal in this experiment was to investigate the performance of the various conflict resolu-
tion mechanisms (PA, PI and PA_PB) when integrated with the 2PL and O2PL concurrency control
protocols. Since the qualitative performance of the conflict resolution mechanisms was found to be
similar for 2PL and O2PL, for ease of exposition and graph clarity we only present the O2PL-based
performance results here.

For this experiment, Figures 1(a) and 1(b) present the missed deadline percentages of transac-
tions for the O2PL-PB, O2PL-PA, O2PL-PI, and MIRROR protocols under normal loads and heavy
loads, respectively. To help isolate the performance degradation arising out of concurrency control,

we also show the performance of NoCC - that is, a protocol which processes read and write requests

8The log force time is much smaller than that of a disk read/write operation because logging activities are sequential

disk operations.
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Figure 1: O2PL-based Algorithms

like O2PL, but ignores any data conflicts that arise in this process and instead grants all data re-
quests immediately. It is important to note that NoCC is only used as an artificial baseline in our
experiments.

Focusing our attention first on O2PL-PA, we observe that O2PL-PA and O2PL-PB have similar
performance at arrival rates lower than 14 transactions per second, but O2PL-PA outperforms O2PL-
PB under heavier loads. This is because O2PL-PA ensures that urgent transactions with tight deadlines
can proceed quickly since they are not made to wait for transactions with later deadlines in the event
of data conflicts. This is clearly brought out in Figures 1(c), 1(d) and 1(e) which present the priority
inversion ratio, the wait ratio and the wait time statistics, respectively. These figures show that O2PL-
PA greatly reduces these factors as compared to O2PL-PB. In contrast to centralized RTDB, a non-zero
priority inversion ratio for O2PL-PA is seen in Figure 1(c) - This comes about due to the inherent

non-preemptability of prepared data as discussed earlier in Section 3.

Note, however, that the performance of O2PL-PI and O2PL-PB is virtually identical. This is
because (1) it takes considerable time for priority inheritance messages to be propagated to the sibling

cohorts/updaters on different sites, and (2) under high loads, high priority transactions are repeatedly
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data-blocked by lower priority transactions. As a result, many transactions are assigned the same
priority by “transitive inheritance” and priority inheritance essentially degenerates to “no priority”,
Le., to basic O2PL, defeating the original intention. This is confirmed in Figures 1(c), 1(d) and 1(e)
where we observe that O2PL-PI and O2PL-PB have similar priority inversion ratio (PIR), wait ratio
and wait time statistics. The similar performance results of PI and PB was also observed in our other
experiments. Hence, we conclude that priority inheritance does not help to improve performance in

distributed environment.

Turning our attention to the MIRROR protocol, we observe that MIRROR has the best perfor-
mance among all the protocols. The improved behavior here is due to MIRRORs feature of avoidance
of transaction abort after a cohort/updater has reached its demarcation point. The performance im-
provement obtained in MIRROR can be explained as follows: Under O2PL-PA, priority inversions that
occur beyond the demarcation point involving a lower priority (unprepared) cohort/updater result in
transaction abort. On the other hand, under MIRROR, such priority inversions do not result in trans-
action abort. The importance of this is quantified in Figure 1(f), where it is seen that a significant
number of priority inversions due to unprepared data take place after the demarcation point. In such
situations, a high priority transaction may afford to wait for a lower priority transaction to commit
since it is near completion, and wasted resources due to transaction abort can be reduced, as is done
by the MIRROR protocol.

In fact, MIRROR does better than all the other O2PL-based algorithms under all the workload

ranges that we tested.
6.2 Expt. 2: Baseline - Concurrency Control Algorithms

The goal of our next experiment was to investigate the performance of CC protocols based on the three
different techniques: 2PL, O2PL and OCC. For this experiment, the parameter settings are the same
as those used for Experiment 1. The missed deadline percentage of transactions is presented in Figures
2(a) and 2(b) for the normal load and heavy load regions, respectively.

Focusing our attention on the locking-based schemes, we observe that MIRROR outperforms
2PL-PA_PB in both normal and heavy workload ranges. For example, MIRROR, outperforms 2PL-
PA_PB by about 12% (absolute) at an arrival rate of 14 transactions/second. This can be explained as
follows: First, 2PL results in much higher message overhead for each transaction, as is clearly brought
out in Figure 2(c), which profiles the message ratio statistic. The higher message overhead results in
higher CPU utilization, thus aggravating CPU contention. Second, 2PL-PA_PB detects data conflicts

earlier than MIRROR. However, data conflicts cause transaction blocks or aborts. In Figures 2(d)
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and 2(e), it is clear that 2PL-PA_PB results in more number of waits per transaction and longer wait

time per wait instance. Thus 2PL-PA _PB results in more transaction blocks and longer blocking times
than MIRROR. On the other hand, MIRROR has less transaction blocks. In other words, unlike in
2PL-PA_PB, a cohort with O2PL cannot be blocked by data conflicts with cohorts or updaters on other

sites before it reaches the commit phase. Thus, with MIRROR, transactions can proceed faster.

Figures 2(f) and 2(g) present the overall and useful concurrency control (CC) abort ratios for

the various protocols. The useful CC abort ratio only includes aborts caused by eventually committed

transactions. Focusing our attention on 2PL-PA_PB and MIRROR, under normal workload range,
MIRROR has significantly lower CC abort ratio than 2PL-PA_PB. Thus MIRROR utilizes resources
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better under normal workloads. Under heavy workload range, MIRROR has higher CC abort ratios
than 2PL-PA_PB. This can be explained as follows : In case of O2PL, it is possible for each copy site
to have an update transaction obtain locks locally, but discover the existence of competing update
transaction(s) at other sites only after successfully executing locally. Discovering the conflict at this
late stage leaves no option for resolving the conflicts except to abort the lower priority transaction.
However, we also observe that MIRROR has much higher useful CC abort ratio than 2PL-PA_PB even
though its total abort ratio is slightly higher than 2PL-PA_PB. For example, at an arrival rate of 22
transactions/second, the total and useful abort ratio of MIRROR are 0.78 and 0.51, respectively, while
the total and useful abort ratio of 2PL-PA_PB at the same arrival rate are 0.69 and 0.26, respectively.
Thus the wasteful CC abort ratio of MIRROR and 2PL-PA_PB are 0.27 and 0.43, respectively. It
demonstrates that MIRROR improves performance by detecting global CC conflicts late in the trans-
action execution thereby reducing wasted transaction aborts.

Finally turning our attention to the OCC protocol, we observe that OCC is slightly worse than
2PL-PA_PB and MIRROR under arrival rates less than 14 transactions/second. This is due to the fact
that OCC has a higher CC abort ratio than 2PL-PA_PB and MIRROR under those loads, as shown in
Figure 2(f). With higher loads, OCC outperforms 2PL-PA_PB. This is because OCC has a lower CC
abort ratio and higher useful CC abort ratio than MIRROR. This is clearly brought out in Figure 2(f)
and 2(g), respectively. In Figures 2(d) and 2(e), it is also clearly shown that OCC has less number of
waits per transaction and shorter wait time per wait instance. Thus OCC can reduce the total blocking

time of a transaction.

It may be considered surprising that MIRROR has the best performance over a wide workload
range, improving slightly even over OCC. With arrival rate less than 18 transactions/second, MIRROR
has much less overall CC abort ratio than OCC. This is clearly brought out in Figure 2(f). With higher
loads, MIRROR has more overall CC abort ratio and less useful CC abort ratio than OCC, as shown in
Figures 2(f) and 2(g), respectively. To compare the performance of OCC and MIRROR more carefully,
we examine the resource utilization and useful resource utilization in Figures 2(h) and 2(i). We observe
that MIRROR has higher useful CPU and disk utilization, even though its overall CPU and disk
utilization is lower than OCC. This clearly indicates that OCC wastes more resources than MIRROR,
does. It implies that the average progress made by transactions before they were aborted due to CC
conflicts is larger in OCC than that in MIRROR.” As observed in the previous studies of centralized

RTDB settings[9], the wait control in OCC can actually cause all the conflicting transactions of a

A transaction’s progress is measured in terms of the resources it has consumed.
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validating transaction to be aborted at a later point in time, thereby wasting more resources even if
OCC has slightly less CC abort ratio than MIRROR. In contrast, MIRROR. reduces wasted resources

by avoiding transaction aborts after cohorts/updaters reach demarcation points.

In summary, although OCC outperforms 2PL-PA_PB, MIRROR, the protocol of O2PL aug-
mented with PA_PB, outperforms OCC in the tested workloads.

6.3 Expt. 3: Varying Update Frequency

The next experiment investigates the performance of these algorithms under different update frequen-
cies. For this experiment, Figure 3(a) and (b) present the missed deadline percentage when the update
frequencies are low and high for an arrival rate of 14 transactions/second. It should be noted that data
is normally replicated in distributed database systems only when the update frequency is not very high.
Therefore the high update frequency results that we present here are only to aid in understanding the

tradeoffs of different protocols.

When the update frequency is comparatively low (less than 0.5), we observe that the qualitative
behavior of the various algorithms is similar to that of Experiment 1. A difference, however, occurs
when the update frequency is high (more than 0.5). We observe in Figure 3(b) that the performance
of MIRROR degrades more drastically with the increase of update frequency. For example, MIRROR
performs slightly worse than both 2PL-PA_PB and OCC when the update frequency is 1.0. The reason
for the degraded performance of MIRROR is that with high update frequency, MIRROR causes much
more aborts due to both data contention in the local site and global update conflicts, as discussed
earlier in Section 6.2. This is clearly brought out in Figure 3(c) which presents both the total abort
ratio and the useful abort ratio of MIRROR and OCC. Although MIRROR and OCC have similar
useful abort ratio when the update frequency is more than 0.4, MIRROR has much higher abort ratio
than OCC. This means that more aborts are wasted under MIRROR.
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In summary, for low to moderate update frequencies, MIRROR is the preferred protocol. For

high update frequencies, on the other hand, OCC performs better than MIRROR.
6.4 Expt. 4: Partial Replication

Database queries can always benefit from data replication since replication improves data locality
and availability. Update transactions, however, may suffer from data replication due to the cost of
updating replicas. Our next experiment therefore investigated the performance of the CC protocols
under different levels of data replication (note that in our earlier experiments the database was fully
replicated).

For this experiment, the NumSites and DBSize are fixed at 8 and 800, respectively, while the
NumCPUs and NumDataDisks per site are set at 1 and 2, respectively. These changes were made to
provide a system operational region of interest without having to model very high transaction arrival
rates. The other parameter settings are the same as those given in Table 1. For this environment,
Figure 4(a) presents the missed deadline percentage of transactions when the number of replicas is varied
from 1 to 8, i.e., from no replication to full replication, for an arrival rate of 14 transactions/second.

In the absence of replication, we observe first that 2PL-PA_PB and MIRROR. perform identically
as expected since O2PL reduces to 2PL in this situation. Further, OCC outperforms all the other
algorithms.

As the number of replicas increases, the performance difference between MIRROR and 2PL-
PA_PB increases. Because of its inherent mechanism for detecting data conflicts, 2PL-PA_PB suffers
much more from data replication than MIRROR and OCC do. We observe a performance crossover
between MIRROR and OCC. The reason for this change in their relative performance behavior is
explained in the abort curves shown in Figure 4(b) (for graph clarity, we only show the abort ratio

and useful abort ratio of MIRROR and OCC), where we see that the number of aborts of MIRROR is
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significantly reduced while data is replicated. This helps reduce the resource wastage in MIRROR.
We also observe a bowl curve for the missed deadline percentage of MIRROR.® In O2PL, read
operations can benefit from local data when data is replicated. However, as data replication level goes
up, update operations suffer due to updates to remote data copies. Hence, the performance degrades
after a certain replication level. On the other hand, we observe that the performance of 2PL-PA_PB
always degrades as data replication level goes up. This is due to the pessimistic conflict detection
mechanism in 2PL since the number of messages sent out for conflict detection increases drastically
which in turn increases CPU contention. The similar behavior of OCC and 2PL is also observed in

conventional replicated databases [4].
6.5 Expt. 5: Varying Data Access Ratio

Our last experiment in this series investigates the impact data access ratio (DAR) has on the perfor-
mance of these algorithms by varying database size. Data access ratio is defined to be the maximum
number of objects that could be simultaneously accessed by all the transactions in the system relative
to the size of the database [9]. The parameter settings are identical to the previous experiment (Expt.
4) except that the number of replicas is fixed at 3. For graph clarity, we focus on OCC and O2PL based
algorithms. In Figure 5, we actually observe that MIRROR is always the best choice under the tested
database sizes. We also observe a performance crossover of O2PL-PA and OCC while the database
size is increased. This observation agrees with the results observed in a centralized database setting
[9]. The same performance is also observed in our study by varying levels of data replication. Due to

space limitation, we do not discuss them in the paper.
6.6 Efficiency of MIRROR

Our previous experiments demonstrated MIRROR'’s ability to provide good performance. But there
still remains the question of how efficient is MIRROR’s use of its state knowledge - in particular,
wouldn'’t replacing the PA_PB mechanism with the PA_PI mechanism described in Section 4, wherein
priority inheritance is used for conflict resolution after the demarcation point, result in even better
performance? This expectation is because, as mentioned earlier in Section 3, PI seems capable of
providing earlier termination of the (priority-inversion) blocking condition than PB.

We conducted experiments to evaluate the above possibility and found that the performance
of O2PL-PA_PI was virtually identical to that of MIRROR in all cases. The reason for this perhaps

counter-intuitive result is that priority-inheritance in the distributed environment involves excessive

8The same bowl curve is also observed for the performance of OCC when the update frequency is lower.
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Parameter Algorithms’ Performance

2PL O2PL ocCC
Load | MsgCost | DAR | UpdateFreq | PB PI PA PAPB | PB PI PA MIRROR | Wait
Low Low High | Low Poor | Poor | Fair | Good Poor | Poor | Good | Best Good
Low | High High | Low Poor | Poor | Poor | Poor Poor | Poor | Good | Best Good
High | Low High | Low Poor | Poor | Poor | Fair Poor | Poor | Fair Best Good
High | High High | Low Poor | Poor | Poor | Poor Fair Fair Good | Best Good
* * High | High Poor | Poor | Poor | Poor Poor | Poor | Poor | Good Best
* * Low | Low Fair | Fair | Fair | Fair Good | Good | Good | Best Good
* * Low | High Poor | Poor | Poor | Poor Good | Good | Good | Good Good

Table 2: Performance of Algorithms.
message costs and dissemination delay, thereby neutralizing its positive points.

In summary, MIRROR provides the same level of performance as O2PL-PA_PI without attract-
ing its implementation difficulties — we therefore recommend it as the algorithm of choice for replicated

RTDBS.
6.7 Summary of Experimental Results

Apart from the experiments described above, we have conducted a variety of experiments that cover a
range of workloads and system configurations, including “infinite” resources® to isolate the impact of
data contention, variations in message cost, message propagation delay, slack factor, etc. The results
in these other experiments were qualitatively similar to those shown here and included in (28]. Table 2
summarizes these results under both tight and loose slack factor: In the table, system parameters, i.e.,
load, message cost, data access ratio (DAR) and update frequency have been coarsely categorized into
low and high, and **’ refers to both low and high categories. The terms “poor”, “fair”, “good”, and
“best” are used to describe the relative performance in a given system state and for a given algorithm.
Whereas in a particular row, “fair” is better than “poor”, “good” is better than “fair”, and “best”
represents the best algorithm in a row, the terms in two different rows are not comparable. The

following general observations pertain to Table 2.

1. 2PL based algorithms perform poorly in most cases, especially when the message cost is high.
Thus 2PL based algorithms are not the proper choices for high message cost environments.

2. O2PL-PA and MIRROR achieve good performance for low to moderate update frequencies but
the O2PL approach does not work well at high update frequencies.

®No queuing for the CPU and disk resources.
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3. OCC achieves better performance than all the O2PL-based and 2PL-based algorithms, except
for MIRROR, over most of the update frequency range.

4. Protocols integrated with only PB or PI (e.g., O2PL-PB, O2PL-PI) always perform poorly. Thus
they are not suited to distributed real-time databases. A similar poor performance of these
mechanisms has also been observed earlier for centralized real-time databases (9].

5. No single algorithm can always outperform all the others: MIRROR (O2PL-PA_PB) performs
best for low to moderate update frequencies whereas OCC performs best at high update frequen-
cies. However, since we expect that most replicated RTDBS applications will belong to the former

category, MIRROR appears to be the best overall choice for implementation in these systems.

7 Related Work

Concurrency control algorithms and real-time conflict resolution mechanisms for RTDBS have been
studied extensively (e.g. [9, 10, 11, 25]). However, concurrency control for replicated DRTDBS has
only been studied in [21, 22, 23, 25]. An algorithm for maintaining consistency and improving the
performance of replicated DRTDBS is proposed in [21]. In this algorithm, a multiversion technique
is used to increase the degree of concurrency. Replication control algorithms that integrate real-
time scheduling and replication control are proposed in (22, 23]. These algorithms employ Epsilon-
serializability (ESR) [26] which is less stringent than conventional one-copy-serializability.

In contrast to the above studies, our work retains the standard one-copy-serializability as the
correctness criterion and focuses on the locking and OCC based concurrency control protocols.

The performance of the classical distributed 2PL locking protocol (augmented with the priority
abort (PA) and priority inheritance(PI) conflict resolution mechanisms) and of OCC algorithms in
replicated DRTDBS was studied in [25] for real-time applications with “soft” deadlines. 1° The results
indicate that 2PL-PA outperforms 2PL-PI only when the update transaction ratio and the level of data

replication are both low. Similarly, the performance of OCC is good only under light transaction loads.

Making clear-cut recommendations on the performance of protocols in the soft deadline envi-
ronment is rendered difficult, however, by the following: (1) There are two metrics — Missed Deadlines
and Mean Tardiness, and protocols which improve one metric usually degrade the other. (2) The choice
of the post-deadline value function has considerable impact on relative protocol performance; (3) There

is no inherent load control, so the system could enter an unstable state. Due to such problems with

1°With soft deadlines, a reduced value is obtained by the application from transactions that are completed after their

deadlines have expired.
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the soft-deadline framework and, more importantly, because many of the replicated applications fall
into the firm-deadline category, we have modeled firm real-time transactions in this paper. Finally, we
also include an investigation of the O2PL algorithm which has not been studied before in the real-time
context.

In (11], a conditional priority inheritance mechanism is proposed to handle priority inversion.
This mechanism capitalizes on the advantages of both priority abort and priority inheritance in real-time
data conflict resolution. It outperforms both priority abort and priority inheritance when integrated
with two phase locking in centralized real-time databases. However, the protocol assumes that the
length (in terms of the number of data accesses) of transactions is known in advance which may not
be practical in general, especially for distributed applications. In contrast, our state-conscious priority
blocking and state-conscious priority inheritance protocols resolve real-time data conflicts based on the

states of transactions rather than their lengths.

8 Conclusions

In this paper, we have addressed the problem of accessing replicated data in distributed real-time
databases where transactions have firm deadlines, a framework under which many current time-critical
applications, especially Web-based ones, operate. In particular, for this environment we proposed a
novel state-conscious protocol called MIRROR which can be eagsily integrated and implemented in
current systems, and investigated its performance relative to the performance of the 2PL, O2PL and
OCC based concurrency control algorithms. Our performance study indicates that OCC outperforms
2PL and O2PL based algorithms when these locking based algorithms are integrated with priority abort
and priority inheritance protocols. However, MIRROR, the O2PL protocol augmented with PA_PB,
can outperform OCC under a wide loading range when the data update rate is low to moderate, which
18 usually the case for replicated database environments. The study has demonstrated the superior
performance of MIRROR as well as its PI-based counterpart, O2PL-PA_PI, over earlier protocols in
both fully and partially replicated environments. Since MIRROR is much simpler to implement than
O2PL-PA_PI, we recommend it as the protocol of choice to designers of distributed replicated real-time

database systems.

Our plans for future research include combining the MIRROR protocol with the optimistic
distributed real-time commit protocol of [8] to investigate the performance improvements that may
arise out of this combination. We will also investigate mechanisms for decoupling the consistency

maintenance of the different replicas. This decoupling might help transactions to complete earlier,
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thereby giving them a better chance to make their deadlines.
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Appendix: Distributed Validation Using Locks

The validation process can be carried out in either of two ways: backward validation or forward val-
idation [9, 10]. In real-time databases, to provide flexibility for priority based conflict resolution, a
transaction should be validated against active transactions instead of committed ones, i.e., forward
validation is preferable.

As in [10], a lock-based implementation strategy for OCC is used — the lock types are read-phase
lock (R-lock) and validation-phase lock (V-lock). An R-lock for a data item is set by a transaction in its
read phase while a V-lock is set by a transaction only in its validation phase. An R-lock is compatible
with another R-lock, but an R-lock is incompatible with a V-lock and a V-lock is incompatible with
another V-lock. The pseudo code of the OCC algorithm which is derived from [10] is given below

(critical sections are bracketed by “<” and “>"):

* Read phase of a cohort/updater of transaction 7;:
for every data object to be read or written do
{ place it in ReadSet(T}) or WriteSet(T;);
<set an R-lock;> }

25



* Validation phase of a cohort/updater of transaction 7}:
Valid := TRUE;
<for every data object in WriteSet(7;) do
{ release T;’s R-lock on the data object;
if another transaction has R-locked it
then Valid:=FALSE & request a V-lock;
else set a V-lock; }
if not Valid

then invoke real-time conflict resolution;>

If a validating transaction attempts to hold a V-lock on an object currently held by R-lock(s),
then a real-time conflict resolution mechanism from [9] is invoked to determine which lock(s) should
prevail. In the centralized OCC algorithm, R-locks of a transaction can be released when it gets
validated. However, in a distributed system all the R-locks of a cohort/updater must be held until
commit time, i.e., when a cohort/updater receives the COMMIT message from its parent. Release of
R-locks when a cohort/updater gets validated but before the commit time may result in the violation

of serializability. All the V-locks must be held until the write phase is finished.
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