

Specifying Coordination in Processes Using Little-JIL

Alexander Wise, Barbara Staudt Lerner, Eric K. McCall,
Leon J. Osterweil, and Stanley M. Sutton Jr.

Computer Science Department
Lederle Graduate Research Center

University of Massachusetts
Amherst, MA 01003-4610 USA

+1 413 545 2013
wise, lerner, mccall, ljo, sutton @cs.umass.edu

ABSTRACT
Little-JIL, a new language for programming coordination in
processes is an executable, high-level process language with
a formal (yet graphical) syntax and rigorously defined oper-
ational semantics. The central abstraction in Little-JIL is the
“step.” Little-JIL steps serve as focus for coordination and
provide a scoping mechanism for control, data, and excep-
tion flow and for agent and resource assignment. Steps are
composed hierarchically, but Little-JIL processes can have
highly dynamic structures and can include recursion and
concurrency.

Little-JIL is based on two main hypotheses. The first is that
the specification of coordination control structures is an or-
thogonal issue. Little-JIL provides a rich set of control struc-
tures while relying on separate systems for support in areas
such as resource, object, and agenda management. The sec-
ond hypothesis is that processes are executed by agents who
know how to perform their tasks but who can benefit from
coordination support. Accordingly, each step in Little-JIL is
assigned to an execution agent (human or automated); agents
are responsible for initiating steps and performing the work
associated with them.

This approach has so far proven effective in allowing us to
clearly and concisely express the agent coordination aspects
of a wide variety of software, workflow, and other processes.

Keywords
Process, process programming, Little-JIL, workflow, coordi-
nation

1 Introduction
There is a growing need for process and workflow specifica-
tion in many contexts. This is evidenced by both a growing
marketplace as well as a thriving research community. Two
general issues are prominent in process and workflow design.
The recognition in many languages that processes can and
should be described in terms of a wide variety of semantics:

organizations, activities, artifacts, resources, events, agents,
exceptions, and so on has lead to a number of languages
that are powerful and semantically rich but also complex and
challenging to use, especially for non-programmers. Counter
to this, language designers have adopted a number of strate-
gies toward simplification; these include narrowing of se-
mantic focus or depth and the use of graphical representa-
tions. While such strategies may indeed foster linguistic sim-
plicity, the processes that they must attempt to capture retain
their semantic breadth and complexity. Consequently, the
practical utility of simplified languages has been limited. In
this paper, we present Little-JIL, a language that attempts to
resolve these two apparently conflicting objectives, semantic
richness and ease of use.

Little-JIL is strongly rooted in our past research on process
programming languages [19, 20], but it makes some impor-
tant breaks with this earlier work. Of primary importance
for this paper is the focus on the coordination of activities
and agents and the premise of process language factoring.
Process language factoring is the separation and potentially
independent treatment of various semantic elements of a pro-
cess. We believe that coordination is a logically central as-
pect of process semantics and is an especially important fo-
cus for a factored process language. Coordination structures
serve as a natural focus to which other factors (such as ob-
jects, resources, or agents) can be related and through which
the use or involvement of other factors in the process can
be orchestrated. Little-JIL is designed to interoperate with
additional specification languages and supporting services to
allow for the expression of process factors that are not ad-
dressed in Little-JIL.

Little-JIL also differs from our prior work in that it is pri-
marily a graphical language. This helps to promote under-
standability, adoption, and ease of use. However, Little-JIL
still supports process semantics in a rigorous way more typ-
ically associated with textual languages. This is facilitated
in part because the focus of the language is narrowed to
coordination-related elements.

We believe that the approach of minimizing the process lan-
guage and factoring out related components can lead to ben-
efits in many areas, including process analysis, understand-
ing, adaptation, and execution. In this paper, we present the

design of Little-JIL and evaluate our experience with it.

2 Approach
The work described here continues our ongoing efforts to
demonstrate how the precision, rigor, and operational se-
mantics of programming languages can be used to provide
the benefits of understandability, analyzability, expressiv-
ity, and executability to software development and workflow
processes.

In previous work, we have investigated extending a conven-
tional programming language with process-motivated exten-
sions (APPL/A [19]). This work suggested that it would be
preferable to develop a new special purpose, high-level lan-
guage designed specifically for process programming. This
new language, JIL, has been described elsewhere [20]. Pre-
liminary evaluation of JIL has suggested: 1) the value of
high-level, process-oriented semantics, 2) the appropriate-
ness of the “step” as a central abstraction, 3) the use of
the step construct as a scoping construct for other features,
and 4) the possibility of a factored language design. Both
APPL/A and JIL aimed to be comprehensive in their fea-
tures and were concerned with supporting full process im-
plementations, including necessary computational and data-
modeling functionality. However, this work also under-
scored difficulties both in developing and in using large and
complex languages.

The language described here is called Little-JIL. Little-JIL
draws on and extends the lessons of JIL, but with a more
precise focus. A main objective of the design of Little-JIL is
to pursue a factored approach, by which we mean separating
different aspects of process definition into orthogonal ele-
ments called factors. Little-JIL attempts to meet this objec-
tive in three ways. First, we adopted semantics that closely
match those in the process domain. Second, we separated
those semantics into linguistic elements that could be spec-
ified and managed more-or-less independently. Third, we
focused Little-JIL on factors related to coordination.

Note, though, that while a language may select specific se-
mantic factors to address, additional factors are still gener-
ally required for complete and effective process representa-
tion and support. A well-factored language is thus part of a
larger process environment along with additional notations
and systems. Little-JIL relies on separate systems for func-
tionality that is not deemed central to the expression of coor-
dination. These systems provide, for example, resource man-
agement, data management, and agenda management. This
factored approach allows the core coordination language to
be simpler and easier to understand, develop, and use. Ad-
ditionally, by factoring certain functions, they can be devel-
oped and evolved in independent ways, as appropriate to the
environments and organizations in which they will be used.

Further following on JIL, Little-JIL retains the step as the
central abstraction and scoping mechanism but refines the
features in terms of which a step is defined. Within this

framework, the design of Little-JIL features was guided by
three primary principles.

Simplicity: To foster clarity, ease-of-use, and understand-
ability, we made a concerted effort to keep the language
simple. We added features only when there was a demon-
strated need in terms of function, expressivity, or simplifica-
tion of programs. Furthermore, by using a factored approach
and concentrating on the key factor, coordination support,
we were able to simplify language design relative to that
of general-purpose programming language. To help make
the language accessible to both developers and readers, we
adopted a primarily visual syntax.

Expressivity: Subject to (and supportive of) the goal of sim-
plicity, we made the language highly expressive. Software
and workflow processes are semantically rich domains, and
a process language, even one tightly focused on coordina-
tion, must reflect a corresponding variety of semantics. We
wanted the language to allow users to speak to the range of
concerns relevant to a process and be able to express their
intentions in a clear and natural way.

Precision: The language semantics are precisely defined.
This precision contributes to several important goals. First,
it enables automatic interpretation and execution of process
programs. Second, precision supports the analyzability of
process programs, as well as fostering clarity of expression
and surety of communication. Analysis is key to assuring
that process programs indeed have properties that are de-
sirable for process safety, correctness, reliability, and pre-
dictability (or, conversely, for showing that those properties
cannot be guaranteed). Analysis also contributes to process
understanding and validation.

We also followed many other software and language design
criteria, such as hierarchic decomposition, scoping, and so
on, but the three principles described were the primary con-
cerns for Little-JIL. These concerns are not unrelated, how-
ever, so the design of Little-JIL has also involved balancing
tradeoffs. For example, adding a control construct may in-
crease expressivity, but it may also increase complexity in
terms of the number of language features. Some additional
complexity may be warranted if new features will be widely
used or they result in a simplification of programs, but such
considerations may be difficult to weigh. Fortunately, our
design principles can also be complementary: separating out
components of the language has increased its simplicity.

In the next section we describe the features of Little-JIL. We
show how Little-JIL can be used to clearly and effectively ex-
press the coordination aspects of agent-based processes us-
ing the familiar problem of trip planning.

3 Language and examples
Capturing the coordination in a process as a hierarchy of
steps is the central focus of programming in Little-JIL. A
Little-JIL program is a tree of steps whose leaves represent

2

the smallest specified units of work and whose structure rep-
resents the way in which this work will be coordinated.

As processes execute, steps go through several states. Typi-
cally, a step is posted when assigned to an execution agent,
then started by the agent. Eventually the step is either suc-
cessfully completed or terminated with an exception. Many
other states exist, but a full description of all states is beyond
the scope of this paper.

There are six main features of the Little-JIL language that
allow a process programmer to specify the coordination of
steps in a process. Due to space constraints, we can only give
an overview of the language. Detailed language semantics
are provided by the Little-JIL language report [21].

The main features of the language and their raisons d’être
are:

Four non-leaf step kinds provide control flow. These
four kinds, “sequential,” “parallel,” “try,” and “choice,”
are the bare minimum for which a need has been clearly
established to date. Non-leaf steps are composed of one
or more substeps whose execution sequence is deter-
mined by the step kind. A sequential step’s substeps
are posted in left to right order until either all com-
plete or one terminates. A parallel step’s substeps are
simultaneously posted and it completes when all its sub-
steps complete. A try step’s substeps are posted in se-
quence until one is completed. A choice step’s substeps
are posted simultaneously until one is started (at which
time, the others are retracted). With just these four step
kinds, the language remains simple to use yet our expe-
rience to date indicates that they are sufficiently expres-
sive to capture a wide range of step orderings.
Requisites are a generalization of pre- and post-
conditions. A prerequisite is a step that must be com-
pleted before the step to which it is attached. Simi-
larly, a postrequisite must be completed after the step
to which it is attached. While requisites decrease the
simplicity of the language, we have found them nec-
essary to allow process programmers to naturally de-
scribe common step contingencies. The need for pre-
and post-requisites appears common enough in process
programs and requisite step semantics seem different
enough from other kinds of sequential steps that a spe-
cial notation was introduced.
Exceptions and handlers augment the control flow con-
structs of the step kinds. Exceptions and handlers are
used to indicate and fix up exceptional conditions or er-
rors during program execution and provide a degree of
reactive control that we believe allows a process pro-
grammer to simply and accurately codify common pro-
cesses.
The exception mechanism in Little-JIL has been de-
signed with great care to be simple yet remain expres-
sive. It is based on the use of steps to define the scope

of exceptions and handlers. Exceptions are passed up
the tree (call stack) until a matching handler is found.
Our experience has indicated that it is necessary to al-
low different exception handlers to work in a variety
of ways. After handling an exception, a continuation
badge determines whether the step will continue execu-
tion, successfully complete, restart execution at the be-
ginning, or rethrow the exception. Detailed semantics
are provided in [21].
Messages and reactions are another form of reactive
control and greatly increase the expressive power of
Little-JIL. The greatest difference between exceptions
and messages is that messages do not propagate up the
program tree, being global in scope instead – any exe-
cuting step can react to a message. Thus, messages pro-
vide a way for one part of a process program to react to
events without being constrained by the step hierarchy.
Because messages are broadcast, there may be multiple
reactions to a single message.
Parameters passed between steps allow communication
of information necessary for the completion of a step
and for the return of step execution results. The type
model for parameters has been factored out of Little-
JIL, thus removing issues such as type definition and
equality that are unrelated to coordination.
Resources are representations of entities that are re-
quired during step execution. Resources may include
the step’s execution agent, permissions to use tools,
and various physical artifacts; resource details are mod-
eled outside of the process program. As with param-
eters, the language attempts to minimize the require-
ments placed on the resource model: Little-JIL requires
that the model support the identification of resources
that match a specification, and that it support resource
acquisition and release to avoid usage conflicts.

What’s “missing” from the above feature list is also impor-
tant to note. As noted above, Little-JIL does not specify a
type model for parameters and resources. It also omits ex-
pressions and most imperative commands. Little-JIL relies
on agents to know how the tasks represented by leaf steps
are performed: Little-JIL is used to specify step coordina-
tion, not execution. These typical language features have
been factored out, thus simplifying Little-JIL.

The graphical representation of a Little-JIL step is shown in
figure 1. This figure shows the various badges that make up
a step, as well a step’s possible connections to other steps.
The interface badge at the top is a circle to which an edge
from the parent may be attached. The circle is filled if there
are local declarations associated with the step, such as pa-
rameters and resources, and is empty otherwise. Below the
circle is the step name, and to the left is a triangle called the
prerequisite badge. The badge appears filled if the step has
a prerequisite step, and an edge may be shown that connects
this step to its prerequisite (not shown). On the right is an-

3

UnitedReservation

Sequential
Try
Choice
Parallel

PlaneReservation InBudget

HotelReservation CarReservation

DaysInnReservation

NotTightBudget

HyattReservation AvisReservation HertzReservation

CarAndHotelReservation

USAir Reservation

PlanTrip

Figure 2: Reservation process showing proactive control: step kinds, requisites.

Prerequisite Badge

HandlerStep

Exception

Step Name

Reaction Step

Message

Parameter

SubStep

Interface Badge

Exception Handler Badge

Continuation Badge

Postrequisite Badge

Control Flow Badge

Reaction Badge

Figure 1: Legend

other similarly filled triangle called the postrequisite badge
to which a postrequisite step may be attached. Within the
box (below the step name) are three more badges. From left
to right, they are the control flow badge, which tells what
kind of step this is and to which child steps are attached, the
reaction badge, to which reaction steps are attached, and the
exception handler badge, to which exception handlers are at-
tached. These badges are omitted if there are no child steps,
reactions, or handlers, respectively. The edges that come
from these badges can be annotated with parameters (passed
to and from substeps), messages (to which reactions occur),
and exceptions (that a handler should handle). It is possible
for an exception to have a null handler, in which case only
the continuation badge determines how execution proceeds.

To better motivate each of these language features and to il-
lustrate their use, we present in figures 2, 3, and 4 a trip plan-
ning process, coded in Little-JIL. The process is based on
one presented in [4]. Our version involves four people: the

traveler, a travel agent, and two secretaries. The basic idea is
to make an airline reservation, trying United first, then US-
Air. If (after making the plane reservation) the traveler has
gone over budget, and a Saturday stayover was not included,
the dates should be changed to include a Saturday stayover
and another attempt should be made. After the airline reser-
vation is made and travel dates and times are set, car and ho-
tel reservations should be made. The hotel reservations may
be made at either a Days Inn or, if the budget is not tight, a
Hyatt, and the car reservations may be made with either Avis
or Hertz.

The separation of the semantic issues into separate graphi-
cal components, as described above, allows an editor tool to
selectively display information relevant to a particular factor
of a Little-JIL program. Indeed, we emulate this approach to
visualization in the subsequent figures to highlight various
language features.

Step kinds
Figure 2 depicts the overall structure of the Little-JIL trip
planning process program. Each of the four step kinds are
used where appropriate; a sequential step to make plane
reservations before car and hotel reservations, a try step to try
United first, then USAir, a parallel step to allow the two sec-
retaries to make car and hotel reservations simultaneously,
and choice steps to allow a secretary to choose which hotel
chain or car company to try first.

Note that the process program is relatively resilient to com-
mon changes. For example, changing the process program
to express a preference in hotel or car rental companies or
deciding to attempt all reservations in parallel, i.e., chang-
ing the way in which these activities are coordinated, can be
accomplished with a straightforward change of step kind.

4

Throw

Restart
Complete

NoPlane

NoUSAir
Continue

PlanTrip

MeetingCanceled

UnitedReservation

PlaneReservation

USAir Reservation
NoUnited: exception NoUSAir: exception

NoPlane: exception

NoMoreChoices

CancelAndStop
IncludeSaturdayStayover

CarAndHotelReservationNoUnited

NotInBudget

Figure 3: Reservation process showing reactive control: exceptions, messages.

Requisites
There are two cases in the example (figure 2) where requi-
site steps have been used (though many more opportunities
exist). A postrequisite has been attached to the PlaneReser-
vation step to check that the airfare hasn’t exceeded the bud-
get. This means that after the travel agent has successfully
made an airline reservation, the agent should complete the
InBudget step. A prerequisite for the HyattReservation
step is also shown. This prerequisite could be considered an
optimization that is based on the assumption that staying at
a Hyatt depletes one’s travel budget more than staying at a
Days Inn. If a secretary chooses to reserve a room at the Hy-
att and the budget is too tight, that step aborts immediately
because it will definitely cause costs to exceed the budget.

While the English description of the process does not specify
who should check the budget, the Little-JIL program speci-
fies that the traveler is responsible for this task. Postrequisite
steps can allow an agent to delegate tasks to subordinates
then check that the tasks have been satisfactorily completed.
This is shown in the PlaneReservation step. If, for exam-
ple, the travel budget were sensitive information, the execu-
tion agent for PlaneReservation could assign the Unite-
dReservation and USAirReservation steps to other agents
without divulging the budget.

Exceptions and handlers
If the agent cannot complete the InBudget prerequisite step
previously mentioned (because it determines that the bud-
get has been exceeded), an exception, NotInBudget (not
shown), is thrown to the parent. The parent step’s handler,
IncludeSaturdayStayover (in figure 31), would check to

1In the figures, ellipses indicate when substeps have been omitted for
clarity. In practice, we expect a visual editor to elide information at the

see that a Saturday stayover was not already included, and if
not, it would change the travel dates and restart the PlanTrip
step with the new travel dates. If there was already a Satur-
day stayover, the handler could throw another exception (not
shown) that would be propagated higher in the tree or would
terminate the program.

Similar to the way in which different step executions result
from the different step kinds, different executions result from
different continuation badges. If, for example, IncludeSat-
urdayStayoverwere rewritten to make alternative plans, the
continuation badge would be changed to “complete,” indicat-
ing that the exception step had provided an alternative imple-
mentation of PlanTrip.

Messages and reactions
An example of a reaction, the “handler” for a message, ap-
pears in figure 3. Here, when the MeetingCancelled mes-
sage is generated, the CancelAndStop substep of PlanTrip
is placed on the traveler’s agenda. In this case, there may be
very little information associated with that step; it is assumed
that the agent will take appropriate action (e.g., phoning the
travel agent and secretaries and asking them to abort).

Parameters
In the example, it is clear that information must be passed
from step to step. For example, the PlaneReservation step
must pass the trip dates and times to the other reservation
steps so that a hotel room and car are reserved for the correct
times. Information is passed between steps via parameters.
Parameter passing is indicated by annotations made on the
step connections, shown in figure 4. Three parameter pass-
ing modes are defined in Little-JIL. Arrows attached to the

user’s request.

5

TripTimes

UnitedReservation

PlaneReservation

USAir Reservation
Airline := United Airline := USAir

TripTimes
Hotel

HotelReservation CarReservation

agent: TravelAgent

PlanTrip

agent: Traveller

agent: Secretary

TripTimes

Airline AirlineTripDates

Airline

TripDates
TripTimes

Car
TripDates

CarAndHotelReservation

Input/output

Output

Input

Budget
TripDates

TripDates
TripTimes

Budget
Car

Hotel

Budget
TripDates

agent: Secretary

Figure 4: Reservation process showing data flow.

parameters indicate whether a parameter is copied into the
substep’s scope from the parent, copied out, or both.

The treatment of the budget says a lot about the approach
we have taken with Little-JIL. The language only specifies
that a parent step’s appropriate parameter values are copied
to and from its child steps as specified in the program. Thus,
it is assumed that the agents executing steps that need to con-
sult the budget know how to do so; “budget” is not explicitly
modeled in the Little-JIL program. Thus, the Little-JIL pro-
gram provides guidance about when to check the budget, but
doesn’t dictate any particular way of doing so.

Resources
Annotations on a step interface denote resource requirements
for the step. Resources play a central role in the execution
of Little-JIL programs, however resource management has
been factored out of Little-JIL. By identifying and acquiring
resources at run time, a resource management component en-
ables a Little-JIL program to adapt to different environments,
allowing more dynamism during process execution. Because
resource management has been factored out of the language,
the details of a resource model do not have to be represented
in each process program.

In figure 4 execution agent resources are specified as anno-
tations on the interface badge. The steps for HotelReser-
vation and CarReservation specify a secretary as the agent
responsible for the task. We expect that these tasks would
be done in parallel by two different secretaries – but in an
environment with only a single secretary, both of these tasks
would automatically be assigned to the same secretary.

In the example, only the agents are being managed as re-
sources, however, resources can be any artifact for which the
resource manager’s ability to identify artifacts and avoid us-
age conflicts would be an asset.

4 Experience
Process programs
The development of Little-JIL began in 1997, and has pro-
ceeded as a series of iterative cycles of design and evalua-
tion. The current version of the language (version 1.0 [21])
is the product of at least three such iterations, each of which
entailed the writing of process programs from a variety of
application areas. With each iteration, existing features have
been honed, and new features have been added only when a
clear need has been demonstrated.

In the software engineering domain, we have written process
programs for coordinating the actions of multiple designers
doing Booch Object Oriented Design [16]. These processes
have focussed on programming coordination among design-
ers, and also on how to assure that the processes provide sup-
port to humans, while not appearing to be too prescriptive
or authoritarian. We have also written process programs for
guiding the use of the FLAVERS dataflow analysis toolset
[8]. In this work we have been particularly interested in
using Little-JIL to support both novice and expert users in
being more effective in using several tools in this complex
toolset. We have also written process programs for guiding
the application of formal verification methods and tools, but
here our experience has been rather limited. Finally, we have
also used Little-JIL to program the ISPW 6 software devel-
opment process [15].

6

We have explored the application of process programming
to data mining as well. In [12] we describe the applicability
of process programming to this domain, and present some
example Little-JIL data mining process code. The focus of
this work has been to explore how well Little-JIL seems to
meet the need for vehicles to integrate diverse tools in this
area, and program important interactions among tools that
focus on distant phases of overall data mining processes.

We are also exploring the use of Little-JIL in programming
high-level strategies for coordinating teams of robots. In this
work we have been particularly interested in coordinating the
activities of humans with those of robots, and in evaluating
the effectiveness of our approach to resource specification.

We have also demonstrated the applicability of Little-JIL in
programming processes taken from the workflow domain,
such as the example used in this paper.

Several idioms have emerged that simplify the design and
understanding of processes. Resource-bounded recursion al-
lows a step to be repeated multiple times executing with a
different resource on each iteration and ceasing when there
are no more resources (by completing on a ResourceNo-
tAvailable exception). Resource-bounded parallelism is
similar to resource-bounded recursion except that in this case
the iterations are allowed to happen in parallel.

Runtime environment
In previous experiences we have been able to learn much
about the expressivity, precision, breadth, and clarity of
Little-JIL. In order to gain more understanding of the ef-
fectiveness of Little-JIL in guiding actual process execution,
however, it seems necessary to actually execute Little-JIL
process programs. In this area our experience has been more
limited.

As has been emphasized earlier, the Little-JIL language has
been designed to allow clean separation of process environ-
ment components that are not integral parts of the process
language. In order to execute Little-JIL process programs,
these separated components must be provided. A Little-
JIL execution environment consists of the following com-
ponents:

Execution agents: these components are required to
accomplish the tasks codified in the process program.
They do the real work in the process, and make deci-
sions such as when a step should be started or which
exception a step throws.
Little-JIL interpreter: this component interprets the pro-
cess program by interacting with the other components
of the environment as dictated by the semantics of the
Little-JIL program being interpreted. It keeps track of
and responds to the state changes that occur during ex-
ecution.
Resource manager: the resource manager is responsi-
ble for managing the resources required by a process

program. Its tasks include processing resource manage-
ment requests generated by the interpreter (including
requests for execution agents for a step) and handling
model change requests generated by execution agents
(upon, for example, the production of a resource needed
by other steps in the process).
Object manager: the object manager is responsible for
managing artifacts produced and needed by the process.
Among other things, it provides the type model used by
the system for parameter type checking and passing.
Agenda manager: this component handles the commu-
nication of the agents (and interpreter) during process
execution. It is responsible, for example, for notifying
an execution agent when the interpreter assigns it a step
for execution.

A variety of software systems could be used to serve as each
of these components. Our prototype Little-JIL process exe-
cution environment, called Juliette, has a mixture of human
and tools as its execution agents, a highly distributed inter-
preter, a resource manager, the Java 1.1 runtime system and a
filesystem as its object manager, and an agenda management
system [17] for communication. An early prototype of the
system has been used to interpret part of the BOOD process
previously mentioned.

5 Evaluation
Our experience with Little-JIL thus far has been encourag-
ing. In general, we have found that the focus on coordina-
tion has made it relatively easy to express the process seman-
tics that we desire. More importantly, separating out factors
did not hinder such expression, simplified language develop-
ment, and made it easier to adopt and use. In this section,
we revisit our main design principles to identify where the
factored approach taken in the design of Little-JIL has suc-
ceeded and where work remains.

Simplicity: By separating out many process-related factors
not directly relevant to coordination, Little-JIL has remains
fairly small and easy to understand. This has been evidenced
by our interactions with researchers from other domains,
specifically from data mining, static analysis, and robotics,
who have found Little-JIL to be easy to read and write.

The factored approach has allowed the creation of a graphi-
cal notation centered around the step, which we have identi-
fied as the focus of coordination. While the notation is cen-
tered on the step, other factors are still well represented.

Expressivity: Factoring issues unrelated to coordination,
such as the specification of types, resource modeling, and
the communication mechanism, has not prevented us from
expressing a wide variety of processes in Little-JIL. As com-
ponents were factored from the language, features that repre-
sented the interfaces to the factored components were added
to maintain expressivity. For example, while resources were
factored from the language so that a resource model defini-

7

tion is independent from Little-JIL, resource specifications
appear in the interface badge, and a Little-JIL interpreter
must be prepared to identify, acquire, and release resources
as it executes process programs.

To maintain its simplicity, we have resisted impulses to add
features to the language, but our experience indicates that it
may yet be necessary to add some traditional language fea-
tures to improve expressivity. In particular, Little-JIL pro-
cesses often use exceptions for non-exceptional conditions,
such as terminating resource-bounded recursion and paral-
lelism, which would be more naturally terminated by testing
whether resources exist rather than failing when resources
are depleted. We are currently considering adding looping
and conditional constructs as well as a simple expression lan-
guage to reduce the inappropriate use of exceptions.

Thus far in our experience, reactions have been used less
than the other control mechanisms. We believe that this is
attributable more to the fact that they have been added to the
language relatively recently than to their inherent utility. As
we get more experience with them, we expect their semantics
to shift somewhat.

Precision: We require precision in our language for two rea-
sons: executability and analyzability.

As as result of the factored approach, components such as
an agenda manager, resource manager, and execution agents
must be provided. We have developed these components as
well as an interpreter for a subset of Little-JIL. We have ex-
ecuted processes written in that subset and are confident that
all of Little-JIL is executable.

Complex processes typically involve a great deal of concur-
rent activity being performed by multiple agents. We want
to reason about common concurrency problems, such as or-
dering of activities, possibilities for deadlock or starvation,
and so on. Much of the detailed behavior of a process is
imprecise. Rather it is left to the agents since we believe
micromanagement of an agent’s process is inappropriate –
it has been factored out. Because this and many other fac-
tors are not completely represented in Little-JIL, it will be
interesting to discover what the practical limits of analysis
are. It will likely be necessary to perform analysis across the
representational boundaries imposed by this factoring.

Thus far our analysis has been limited to manual evaluation
of processes, but we believe Little-JIL is precise enough to
allow application of static analysis technology, especially to
the analysis of issues directly related to the coordination of
step execution.

Our evaluation of Little-JIL is continuing through the def-
inition of processes from a variety of domains, implemen-
tation of an interpreter and supporting components, and use
and analysis of the resulting processes. We expect to learn a
great deal from these experiments and expect to continue to
refine Little-JIL as experience directs us.

6 Related Work
In keeping with the multiple semantic aspects of software
and other processes, Little-JIL is a semantically broad lan-
guage, despite deferring some semantics to factors that are
separate from the language (e.g., agents, resources, data).
The general categories of feature in Little-JIL are adopted
from JIL. Several other process languages are also semanti-
cally rich, with various combinations of features. For mod-
eling process tasks EPOS [7] has instance-level attributes,
procedures, and triggers, and type-level attributes and proce-
dures. The type-level attributes include pre/postconditions,
parameters, tools, substeps, and “role” (i.e., agent kind).
ALF [5] “MASPs” include an object model (parameters),
tools (with pre/postconditions), ordering constraints on op-
erators (path expressions), rules (reactions) and “character-
istics” (postconditions on the MASP as a whole). ALF lacks
explicit exception handlers and assumes that agents are spec-
ified and assigned separately. PEACE [1] has input/output,
pre/postconditions, in/out events, and “intrinsic role” (a hu-
man agent).

To help manage linguistic and process complexity, Little-
JIL is a factored language. Factoring has not been an ex-
plicit theme in the design of many other process languages.
JIL [20] is a factored language, but it retains all of its fac-
tors, since it is intended to be a full-featured process lan-
guage. Several other languages are similarly intended to be
full-featured, or at least nearly so (e.g., ALF, EPOS, Mer-
lin [13]). Many other languages achieve an effect like factor-
ing in that they either depend on, or are intended to capture,
aspects of a process related to externally defined elements,
such as agents, tools, or artifacts. Some examples include
ALF (where agents are defined wholly outside the MASPs,
and operators and objects are bound to external tools and ar-
tifacts), and ProcessWeaver [10] (in which external agents,
tools, and artifacts are coordinated).

In keeping with the need for high-level semantics for process
support in general and for language factoring in particular,
Little-JIL uses the process step is the central abstraction. A
number of process languages based on general-purpose pro-
gramming languages or Petri-Nets, such as APPL/A [19],
AP5 [6], and SLANG [2], lack such high-level, process-
oriented abstractions. Other languages have also focused on
process steps or tasks, including HFSP [14], EPOS, Process-
Weaver, Teamware [22], JIL, and APEL [9]. Still other lan-
guages, such as ALF, Merlin, and Adele-Tempo [3], focus on
notions related to “work contexts” (which may be correlated
with steps). Oikos [18] uses several high-level abstractions.

Little-JIL is based on the premise that coordination of exe-
cution agents is a central, key factor in process specification
and support. Many process languages provide no first-class
representation of execution agent. However, external execu-
tion agents are also associated with processes in languages
including JIL, Merlin, PEACE, EPOS, Teamware, and ALF.
In most of these, some form of agent specification is given as

8

part of the process (ALF being an exception where the agent
specification is factored out). Most of these languages are
specifically concerned with human agents; automated enti-
ties are addressed by mechanisms that incorporate “tools.”
In Little-JIL (and JIL) the notion of “agent” subsumes both
human and automated entities both, where the latter may in-
clude, for example, tools and robots.

Many process languages are entirely or significantly tex-
tual. Little-JIL is primarily a visual language. Its graphi-
cal model is distinctive in that it emphasizes the hierarchi-
cal breakdown of a process while keeping the within-step
flow simple. There are a number of other graphical process
languages. Many use net-based models, including SLANG,
Melmac, ProcessWeaver, and Teamware. These generally
emphasize the “horizontal” flow within a step (although typ-
ically still allowing hierarchical decomposition). Statem-
ate [11] provides three coordinated graphical views, based
on a state model, that incorporate hierarchy with a nested
representation. Oikos uses diagrams to represent structural
relationships among process entities. APEL provides control
and data flow diagrams between activities and state diagrams
within activities. Little-JIL is also distinctive in graphically
capturing requisites, proactive and reactive control and ex-
ception handlers in its process structure. No other graphical
languages represent this variety of control modes, although
some include reactions to events.

A particularly distinctive feature of Little-JIL is its explicit,
scoped exception handling. Support for exception handling
in other process languages, if it exists, usually takes one of
two forms. Some languages provide consistency rules for vi-
olation of consistency conditions (one kind of exception), for
example, Merlin, Marvel, and AP5. Other languages provide
general reactive mechanisms that might be used to handle
exceptional events, although these may not be differentiated
from normal events. Some examples include ALF, Adele-
Tempo, and Statemate.

7 Summary
Little-JIL is a new process programming language based on a
factored design. Little-JIL focuses on agent coordination as a
key process factor. The premise of this focus is that processes
are conducted by agents who understand their tasks but who
can benefit from coordination with other agents.

In Little-JIL, processes are modeled as compositions of
steps. Steps are defined with respect to their interfaces, pre-
requisites and postrequisites, and substeps. Interfaces in-
clude resources, parameters, messages propagated, and ex-
ceptions thrown. Every step has an execution agent as a dis-
tinguished resource. Substeps are organized into proactive
substeps (for which there are four basic control kinds), re-
actions, and exception handlers. Reactions occur to globally
broadcast messages. Exceptions are scoped and propagated
up the step hierarchy; a varied continuation mechanism al-
lows for flexible responses.

This variety of features in Little-JIL is necessary to capture
the variety of semantics that may affect process coordina-
tion. However, in keeping with a factored approach to lan-
guage design, Little-JIL relies on separate specification lan-
guages and mechanisms to address aspects of process se-
mantics that can be treated independently of coordination
structures. These currently include object management, re-
source modeling, and agenda management. This approach
to process language design helps to keep the coordination
language relatively simple while, through a combination of
factors, providing the comprehensive support that processes
require.

The design of Little-JIL was based on three main principles:
simplicity, expressivity, and precision. Simplicity is required
for ease of development and use. Expressivity is needed
to capture the widely varied aspects of process applications.
Precision is essential in supporting executability and analyz-
ability. All language design decisions have been considered
carefully in light of these goals. To further promote ease
of use and comprehensibility, Little-JIL has a graphical syn-
tax. This syntax is relatively unusual, though, in that it em-
phasizes the hierarchical break-down of process steps while
keeping the within-step flow simpler than in most graphical
process languages.

We believe that the combination of a factored design, close
adherence to the principles of simplicity, expressivity, and
precision, and the use of an innovative graphical syntax
makes Little-JIL an especially effective and appealing lan-
guage for expressing a wide variety of software, workflow,
and other processes.

Acknowledgments
The authors would like to thank Rodion Podorozhny for his
early contributions to Little-JIL and the resource manage-
ment factor, and Yulin Dong, Hyungwon Lee, and Marcia
Zangrilli for programming in and providing feedback about
many versions of the language.

REFERENCES

[1] Selma Arbaoui and Flavio Oquendo. PEACE: Goal-
oriented logic-based formalism for process modeling.
In Anthony Finkelstein, Jeff Kramer, and Bashar Nu-
seibeh, editors, Software Process Modelling and Tech-
nology, pages 249–292. John Wiley & Sons Inc., 1994.

[2] Sergio Bandinelli, Alfonso Fuggetta, and Sandro
Grigolli. Process modeling in-the-large with SLANG.
In Proc. of the Second Int’l Conf. on the Software
Process, pages 75–83. IEEE Computer Society Press,
1993.

[3] Noureddine Belkhatir, Jacky Estublier, and Melo L.
Walcelio. ADELE-TEMPO: An environment to sup-
port process modeling and enaction. In Anthony
Finkelstein, Jeff Kramer, and Bashar Nuseibeh, editors,

9

Software Process Modelling and Technology, pages
187 – 222. John Wiley & Sons Inc., 1994.

[4] Elisa Bertino, Sushil Jajodia, Luigi Mancini, and In-
drajit Ray. Multiform transaction model for workflow
management. In Proc. of the NSF Workshop on Work-
flow and Process Automation in Information Systems,
May 1996.

[5] Gérome Canals, Nacer Boudjlida, Jean-Claude Derni-
ame, Cladue Godart, and Jaques Lonchamp. ALF: A
framework for building process-centred software en-
gineering environments. In Anthony Finkelstein, Jeff
Kramer, and Bashar Nuseibeh, editors, Software Pro-
cess Modelling and Technology, pages 153 – 185. John
Wiley & Sons Inc., 1994.

[6] Don Cohen. AP5 Manual. Univ. of Southern Califor-
nia, Information Sciences Institute, March 1988.

[7] R. Conradi, M. Hagaseth, J.-O. Larsen, M. N. Nguyên,
B. P. Munch, P. H. Westby, W. Zhu, M. L. Jaccheri,
and C. Liu. EPOS: Object-oriented cooperative process
modelling. In Anthony Finkelstein, Jeff Kramer, and
Bashar Nuseibeh, editors, Software Process Modelling
and Technology, pages 33 – 70. John Wiley & Sons
Inc., 1994.

[8] Matthew B. Dwyer and Lori A Clarke. Data Flow Anal-
ysis for Verifying Properties of Concurrent Programs.
In Proceedings of the Second ACM SIGSOFT Sympo-
sium on Foundations of Software Engineering, New Or-
leans, pages 62–75. ACM Press, December 1994.

[9] J. Estublier, S. Dami, and A. Amiour. APEL: A graph-
ical yet executable formalism for process modelling.
Automated Software Enginnering, March 1997.

[10] Christer Fernström. PROCESS WEAVER: Adding
process support to UNIX. In Proc. of the Second Int’l
Conf. on the Software Process, pages 12 – 26, 1993.

[11] D. Harel, H. Lachover, A. Naamad, A. Pnueli,
M. Politi, R. Sherman, A. Shtull-Trauring, and
M. Trakhtenbrot. STATEMATE: A working environ-
ment for the development of complex reactive systems.
IEEE Trans. on Software Engineering, 16(4):403 – 414,
April 1990.

[12] David Jensen, Yulin Dong, Barbara Staudt Lerner,
Eric K. McCall, Leon J. Osterweil, Stanley M. Sut-
ton Jr., and Alexander Wise. Coordinating agent ac-
tivities in knowledge discovery processes. In Int’l Joint
Conf. on Work Activities Coordination and Collabora-
tion, July 1998. submitted.

[13] G. Junkermann, B. Peuschel, W. Schäfer, and S Wolf.
MERLIN: Supporting cooperation in software devel-
opment through a knowledge-based environment. In

A. Finkelstein, J. Kramer, and B. Nuseibeh, editors,
Software Process Modelling and Technology, pages
103 – 129. John Wiley & Sons Inc., 1994.

[14] Takuya Katayama. A hierarchical and functional soft-
ware process description and its enaction. In Proc. of
the 11th Int’l Conf. on Software Engineering, pages 343
– 353. IEEE Computer Society Press, 1989.

[15] Marc I. Kellner, Peter Feiler, Anthony Finkelstein,
Takuya Katayama, Leon J. Osterweil, and Maria H.
Penedo. ISPW-6 software process example. In Proc. of
the First Int’l Conf. on the Software Process, pages 176
– 186, 1991.

[16] Barbara Staudt Lerner, Stanley M. Sutton, Jr., and
Leon J. Osterweil. Enhancing design methods to sup-
port real design processes. In 9th IEEE Int’l Workshop
on Software Specification and Design, pages 159–161.
IEEE Computer Society Press, April 1998.

[17] Eric K. McCall, Lori A. Clarke, and Leon J. Osterweil.
An Adaptable Generation Approach to Agenda Man-
agement. In Proc. of the 20th Int’l Conference on Soft-
ware Engineering, pages 282–291, Apr 1998.

[18] Carlo Montangero and Vincenzo Ambriola. OIKOS:
Constructing Process-Centered SDEs. In Anthony
Finkelstein, Jeff Kramer, and Bashar Nuseibeh, editors,
Software Process Modelling and Technology, pages 33
– 70. John Wiley & Sons Inc., 1994.

[19] Stanley M. Sutton, Jr., Dennis Heimbigner, and Leon J.
Osterweil. APPL/A: A language for software-process
programming. ACM Trans. on Software Engineering
and Methodology, 4(3):221–286, July 1995.

[20] Stanley M. Sutton, Jr. and Leon J. Osterweil. The de-
sign of a next-generation process language. In Proc.
of the Joint 6th European Software Engineering Conf.
and the 5th ACM SIGSOFT Symp. on the Foundations
of Software Engineering, pages 142–158. Springer-
Verlag, 1997.

[21] A. Wise. Little-JIL 1.0 Language Report. Technical
Report 98-24, University of Massachusetts at Amherst,
Apr 1998.

[22] Patrick S. Young and Richard N. Taylor. Human-
executed operations in the teamware process program-
ming system. In Proc. of the Ninth Int’l Software Pro-
cess Workshop, 1994.

10

