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Abstract

Packet delay and loss traces are frequently used by network engineers, as well as network appli-
cations, to analyze network performance. The clocks on the end-systems used to measure the delays,
however, are not always synchronized, and this lack of synchronization reduces the accuracy of these
measurements. Therefore, estimating and removing relative skews and offsets from delay measurements
between sender and receiver clocks are critical to the accurate assessment and analysis of network per-
formance. In this paper we introduce a linear programming based algorithm to estimate the clock skew
in network delay measurements and compare it with three other algorithms. We show that our algorithm
has the time complexity of , leaves the delay after the skew removal positive, and and is robust in
the sense that the error margin of the skew estimate is independent of the magnitude of the skew. We use
traces of real Internet delay measurements to assess the algorithm, and compare its performance to that
of three other algorithms. Furthermore, we show through simulation that our algorithm is unbiased, and
that the sample variance of the skew estimates is better(smaller) than existing algorithms.
Keywords: clock skew, clock ratio, end-to-end delay, delay measurement.

1 Introduction

End-to-end delay and loss traces are frequently used in analyzing the network performance. The accuracy of
such measurements is important in several reasons. First, end-to-end measurements may be the only way of
measuring network performance, especially when there is no provision inside the network to provide end-
systems with information about the current status of the network. The current Internet has no mechanism
for providing feedback on network congestion to end-systems at the IP layer, and neither does IPv6 [DH95].
Second, protocols and applications that behave adaptively at the end-system base their control on observed
network performance, and it is critical that they obtain correct measurements.

This research was supported in part by funding from GTE Laboratories, Inc., and by the National Science Foundation under
Grant No NCR-9508274. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation.
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Packet loss can be detected if a sender puts a sequence number on every packet it sends out, and the
receiver sees a gap in the sequence numbers of packets arriving within a reasonable amount of time. For
delay measurements, a sender needs to add timestamps to packets for a receiver to gather delay informa-
tion [SCFJ96]. Since the clocks at both end-systems are involved in measuring delay, the synchronization
between the two clocks becomes an issue in the accuracy of delay measurement. The Network Time Pro-
tocol(NTP) [Mil92b] is widely used on the Internet for clock synchronization, and provides accuracy in the
order of milliseconds under reasonable circumstances. The accuracy, however, is not guaranteed, and not all
hosts on the Internet support it.

Packet loss and delay are crucial in understanding the performance and reliability of the Internet. To
provide unbiased and quantitative measures of performance, there has been much effort to define one-way
loss and delay metrics [PAMM98]. To obtain an accurate measurement of one-way delay, errors and uncer-
tainties related to clocks need to be accounted for. When two clocks involved in the measurement run at
different frequencies (that is, have a clock skew), inaccuracies are introduced in the measurement. In this
paper we focus on filtering out the effects of clock skew specifically in one-way delay measurements.

The rest of the paper is organized as follows. In Section 2 we present a typical delay trace that moti-
vated us to design a skew estimation algorithm. In Section 3 we define the terms needed to describe clock
behavior, and introduce the notation to be used in the remainder of the paper. In Section 4 we formalize the
clock synchronization problem between two hosts, and show how the skew and offset affect the delay mea-
surements. Then we list several desirable properties expected of a skew estimation algorithm. We introduce
our skew estimation algorithm based on a linear programming technique in Section 5, and three existing
algorithms in Section 6. In Section 7 we compare the four algorithms presented in this paper, and in Section
8 discuss how this work can be extended to the cases where the skew is not constant. We conclude the paper
in Section 9.

2 Motivation
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Figure 1: Trace 1

Before we introduce the skew estimation algorithms, let us first examine a sample of one-way delay
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measurements. This sample illustrated in Figure 1 is taken from a trace described in Section 7.4 (Trace 1 in
Table 2). The -axis is the sender timestamp, and the -axis is the delay calculated by subtracting the sender
timestamp from the receiver timestamp. The measured delay lies in the range of 31.15 to 31.5 seconds. The
measured delay is not the actual end-to-end delay, but includes the clock offset between the two clocks plus
the end-to-end delay. Clock offset is the difference in time, and skew is the difference in clock speed. We
defer the formal definitions of offset and skew to Section 3.

In Figure 1 the delay shows an increasing trend of about 100 milliseconds over the duration of 70 minutes
at the receiver. It is significant enough to distort performance metrics such as the average and autocorrelation
of end-to-end delay. While one might imagine that the ever increasing minimum delay is due to increasing
congestion and queueing delay, this is unlikely as the minimum observed delay increases over time. Instead,
the linear increase in delay attests to a constant speed difference between two clocks.

The end-to-end delay consists of transmission and propagation delays plus variable queueing delay.
When all of the packets go through the same route to the receiver, they have the same propagation delay,
and, if they have the same size, the transmission delay also is the same. Even if the packets go through the
same route, and have the same size, the packets experience different levels of queueing inside the network.
This is what causes the variability in the end-to-end delay.

Previous work by Paxson[Pax97, Pax98] addresses problems in delay measurements due to clock ad-
justments and rate mismatches. It uses forward and reverse path measurements of delay between a pair of
hosts to deal with clock synchronization problems, such as relative offset and skew. Many applications,
however, see only one-way delay, and still have to deal with the clock synchronization problems in packet
delay. One-way measurements alone are not enough to infer the clock offset, and we cannot distinguish the
clock offset from the fixed portion of end-to-end delay. For example, in the figure shown above, it is difficult
to tell how much of the 31.15 seconds is due to the time difference between clocks and the fixed transmis-
sion and propagation delay, without the availability of more information. Due to this lack of information in
one-way delay, we focus on the variable portion in one-way delay measurements.

The variable queueing delay serves a very important role in network and application design. Continuous-
media applications such as audio and video need to absorb the delay jitter perceived at the receiver for
smooth playout of the original stream [RKTS94, MKT98, DS95]. Determining the correct amount of buffer-
ing, and reconstructing the original timing is crucial to the performance of continuous-media applications.
The variable queueing delay is also useful in monitoring the network performance at the edges of the net-
work; the transmission and propagation delay is fixed per route, and does not convey any information about
the dynamic changes inside the network when packets follow a fixed route.

3 Background

3.1 Clock terminology

In this section we introduce the terminology we use to describe clock behavior. Let us begin by defining a
clock. It is a piecewise continuous function that is twice differentiable except on a finite set of points:

where and exist everywhere except for where is
finite.

A “true” clock reports “true” time at any moment, and runs at a constant rate. Let denote the “true”
clock; it is the identity function given below,

and
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In the paper, we use the following nomenclature from [Mil92a, Mil92b] to describe clock characteristics.
Let and be two clocks:

offset: the difference between the time reported by a clock and the “true” time; the offset of is
. The offset of the clock relative to at time is .

frequency: the rate at which the clock progresses. The frequency at time of is .

skew: the difference in the frequencies of a clock and the “true” clock. The skew of relative to
at time is .

drift: The drift of clock is . The drift of relative to at time is .

Two clocks are said to be synchronized at a particular moment if both the relative offset and skew are
zero. When it is clear that we refer to clocks that are not the “true” clock in our discussion, we simply refer
to relative offset and relative skew as offset and skew, respectively.

It is sometimes convenient to compare the frequency ratio between two clocks instead of the skew. This
is captured by the following definition.

clock ratio: the frequency ratio between a clock and the “true” clock; the ratio of is . The
ratio of relative to at time is .

Let and have constant frequencies, and and be the clock ratio and skew of relative to ,
respectively. and . Then the relation between the clock ratio and the skew is:

(1)

From now on, we assume that the sender and receiver clocks have constant frequencies, and thus their skew
and clock ratio are constant over time; we use them interchangeably, and use (1) whenever necessary to
convert one from the other.

3.2 Time duration consistent with a clock

In the previous section, we have defined a clock and terms relevant to its behavior. In this section we look
at how a time duration is measured according to a clock. Let denote the time that has passed
according to between and of the “true” clock. Since a clock is a piecewise continuous function, we
define the time duration as:

where and

If then

(2)

When two clocks are not synchronized and, more specifically, have different frequencies, time duration
measured with one clock will be different from the other. We say that a time duration measured with a clock
is consistent with any other clock of the same frequency and any offset. If two clocks have a non-zero skew,
time measured on one clock will not be consistent with the other clock.

4



We have modeled a clock as a piecewise continuous function in order to take into account the restrictions
of real clocks. The resolution of a clock on a computer system is the smallest unit by which the clock’s time
is updated, and is greater than zero. At best, a clock in a computer is a step function with increments at every
unit of its time resolution. We consider the time reports by a real clock with a fixed minimum resolution
as samples of a continuous function at specific moments, and thus circumvent the discretization effect of
the real clock. Another problem a real clock poses is the abrupt time adjustment possible through a time
resetting system call. Some systems that do not run NTP [Mil92b] have a very coarse-grain (in the order of
hours) synchronization mechanism in the cron table. The time adjustment in such a case can be several
orders of magnitude larger than the usual increment of the clock resolution, and the time can even be set
backward. The piecewise nature of a clock function accommodates the abrupt time adjustment.

When a delay measurement involves more than one clock, the synchronization between those clocks
has a tremendous impact on the accuracy of the measurement. Let us consider a case of measuring a packet
delay between two hosts. The sender adds a timestamp to a packet when it leaves the sender, and the receiver
records the time the packet arrives at the receiver. When the two host clocks are perfectly synchronized, the
difference between the two timestamps is the end-to-end network delay experience by that packet. If the
clocks on the two hosts have a non-zero offset, but no skew, the difference between two timestamps includes
not only the end-to-end delay, but also the offset. Given only a one-way measurement, we cannot distinguish
the offset from the measurement, unless we are given the network delay, which is what we intended to
measure in the first place. If the clocks have a non-zero skew, not only is the end-to-end delay measurement
off by an amount equal to the offset, but it also gradually increases or decreases over time depending on
whether the sender clock runs slower or faster than the receiver clock.

In the following sections we formalize the clock synchronization problem outlined above, and show how
to remove the clock skew in measurements.

4 Basics of a Skew Estimation Algorithm

In the previous section we have defined a clock, and what is meant for a delay to be consistent with a clock.
In this section we discuss the estimation and removal of the effects of clock skew in delay measurements.
We first derive how much the clock skew contributes to the measured end-to-end delay if the skew is non-
zero and constant. This derivation provides a basis for the discussion of several desirable properties for skew
estimation algorithms.

4.1 Delay measured between two clocks

From Section 4.1, if the clock ratio between the sender and receiver clocks is greater than or less than 1,
network delays will appear to become longer or shorter over the course of a measurement period. The
purpose of removing this effect of skew on the delay measurements is to transform the delay measurements
so that they are consistent with a single clock. In our work, we have chosen to make the delay measurements
consistent with the receiver clock. When there is no provision at the receiver to the “true” clock, the only
clock the receiver has access to is its own clock. It is thus natural to measure one-way delay according to the
receiver clock. Without loss of generality, we fix the receiver clock to be the “true clock”, i.e.
and , and derive the notations below as such.

For packets of different sizes, the clock skew may not be distinguishable from the delay trend, if any.
For example, if the packet size grows over time and the route from the sender to the receiver is fixed, then
the transmission delay gradually increases, and it is hard to distinguish a skew from this delay trend. Thus
we assume all the packets have the same size in the following sections.

Let us now introduce the terminology for clocks, timestamps, and delays used in measurements.
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: sender clock.

: receiver clock.

: number of packets that arrive at the receiver.

: timestamp of the -th packet leaving the sender according to , .

: timestamp of the -th packet leaving the sender according to , ; .

: timestamp of the -th packet arriving at the receiver according to , .

: end-to-end delay measurement of the -th packet, ;

(3)
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Figure 2: Timing chart showing constant delay

Figure 2 shows the timing between and when runs half the speed of and all the packets
experience the same network delay. The end-to-end delay of the -th packet consistent with is .

, however, is not known at the receiver, and we calculate using and . As a result, in this case, the
end-to-end delay is consistent with neither nor . To make it consistent with , we need to determine
the skew of relative to , and remove it from the measurement .

4.2 Clock Skew in Delay Measurements

When there is a constant clock skew between two clocks, the clock offset between them gradually increases
or decreases over time, depending on the sign of the skew. The amount of increase or decrease in the clock
offset is proportional to the time duration of observation. The longer you observe, the larger the offset is. We
use this amount of offset change to estimate the clock skew. Thus it is more convenient to use timestamps
relative to a specific point in time, such as the departure and arrival times of the first packet, than absolute
timestamps. Below we introduce relative timestamps at the sender and the receiver.

: time duration between the first and the -th packets’ departures at the sender consistent with .

: time duration between the first and the -th packets’ arrivals at the receiver consistent with .
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Figure 3: Timing chart showing variable delay

By (1) and (2),

(4)

Figure 3 illustrates the relationship between and on a timing chart. The quantities and
shown in the figure are defined as below.

: end-to-end delay consistent with .

(5)

The quantity , however, is not obtainable directly from measured timestamps, due to the skew between the
sender and receiver clocks. The quantity that is obtainable from actual timestamps is the following.

: delay calculated from and .

(6)

The goal of estimating and removing the clock skew is to obtain from the actual delay measurement, .
From (3) and (6), we note that the difference between and is:

Also note in (6) that is different from by minus a constant . If , grows
linearly with , and thus gets larger. This is what contributed to an increasing trend we observed in
Figure 1. Finally, from (6), it is obvious that the measured network delays can be made consistent with
given and according to:

(7)

Let and be the estimates for and . Then the delay after the skew removal, , is:

(8)
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4.3 Desirable Properties for Skew Estimation Algorithms

Before we delve into details of the skew estimation algorithm, we first state the desirable properties that any
such algorithm should exhibit. We use these properties later as a basis of comparing different estimation
algorithms.

To formally state the properties, we hereby introduce the notations for an estimation algorithm and
estimates parametrized by the estimation algorithm. Let be a skew estimation algorithm. We make the
same assumption as in Section 4.1 that the skew between the sender and the receiver clocks is constant,
and the receiver clock is the “true” clock. Given a set of end-to-end delays, , which are
predetermined and fixed, and also consistent with the “true” clock, we know that the delay measurements,

’s, are equal to if there is no clock skew between the two hosts ); ’s are different from if
the clock skew is not zero ( ). In that sense is dependent on the clock skew, , and , and is noted

.
We define and as the estimates of and , respectively, delivered by algorithm

, when given and . Below is a list of desirable properties that should be exhibited by
algorithm .

Property 1: The time and space complexity of algorithm should be linear in . The computational
complexity of an algorithm in terms of time and space is an important metric in assessing the perfor-
mance and applicability of the algorithm. We will compare the time complexity of skew estimation
algorithms as a function of the number of delay measurements.

Property 2: Since the purpose of the skew estimation is to remove the skew from delay measurements,
it is desirable that the delays be non-negative after the skew is removed.

Property 3: The skew estimation algorithm should be robust in the sense that it is not affected by the
magnitude of the actual skew. That is, the difference between the estimate and the actual skew should
be independent of the actual skew. Under the same network condition, the skew estimate for different
skews should exhibit the same margin of error from the actual skew, no matter how small or large the
skew is. We state this property as follows:

(9)

for any .

In the following section, we introduce a new algorithm based on linear programming to estimate in
delay measurements, and use the result to remove the skew from one-way delay measurements to make them
consistent with the receiver clock. In the next two sections, we focus on a simple case where the clock skew
is constant, and defer the discussion of a time-varying skew case to Section 8.

5 Linear Programming Algorithm

Figure 1 illustrates a trace where the skew between two clocks was nearly constant over the measurement
duration. Looking at the figure, one is tempted to pick up a ruler, draw a line that skims through the bottom
of the mass of the scatter-plot, measure the angle between the line and the -axis, and calculate the skew
using simple trigonometry. This approach is hard to automate, and invites human errors that are untraceable.
A second thought would be to pick the first and last data points, and draw a line between them. The accuracy
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of this approach, however, can be easily thrown off, since delay has formidable variability that is in the order
of magnitude bigger than the skew all through the measurement duration. Our approach is to fit a line that
lies under all the data points, but as closely to them as possible.

We have formulated the above idea as a linear programming problem. The condition that the line should
lie under all the data points forms the first part of our linear programming problem, and defines the feasible
region for a solution; the objective function of the linear programming problem is to minimize the sum of
the distances between the line and all the data points on the -axis.

5.1 Algorithm

Having presented our intuition behind the algorithm, we now introduce the algorithm formally. The goal
of the skew estimation algorithm is to estimate the clock ratio given and . The output of the skew
estimation algorithm is: and , where is the estimate of , and is the estimate of . We return to
the interpretation of the end of this section. If we estimate both and correctly, then we can subtract

from , and obtain , which is the end-to-end delay consistent with and free of clock
skew. Even when the estimates and are not exactly the same as and , we still want the resulting
end-to-end delay to be non-negative, after the skew is removed. When we formulate our skew estimation as
a linear programming problem, this condition defines the feasible region where a solution should lie.

(10)

There are infinitely many pairs of and that satisfy the condition above, if the feasible region from (10) is
not trivial. Our objective function to minimize the distance between the line and all the delay measurements
is stated as:

(11)

and is used to determine the solution to and from (10).
One important point to note in (10) is that the estimated end-to-end delay of , calculated as

once and are obtained, will be greater than zero, instead of being greater than . Thus
is actually an estimate of ( + ). The resulting delay of is not the end-to-end

delay, but rather the variable portion of the end-to-end delay.
In the following sections, we look into other algorithms that can be used in skew estimation, and com-

pare them with our linear programming algorithm in terms of the properties listed in Section 4, and their
performance in actual and synthetic measurements.

6 Other Algorithms

6.1 Paxson’s algorithm

In [Pax97, Pax98], Paxson designed an algorithm for removing a clock skew from a set of forward and
reverse path delay measurements. In this section we briefly describe how we use his algorithm when given
delays in only one direction. Assume that the input to the algorithm is the same as in the previous linear
programming algorithm: and , for . Readers are referred to [Pax97, Pax98] for more detail.

Paxson’s algorithm is as follows:

Step 1. Partition ’s into segments, and pick the minimum delay measurement from each seg-
ment. The selected measurements are called the “de-noised” one-way transit times (OTTs).
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Step 2. Pick the median of the slopes of all possible pairs of the “de-noised” OTTs. If the median
slope is negative, assume that the OTTs have a decreasing trend (here we assume a decreasing trend
is detected).

Step 3. Select the cumulative minima test from the “de-noised” OTTs (see [Pax97]), and test if the
number of cumulative minima is large enough to show that the the decreasing trend found in Step 2 is
probabilistically not likely, if there is no trend.

Step 4. If it passes the cumulative minima test, pick the median from the slopes of all possible pairs
of the cumulative minima: output it as the estimate of . Otherwise, the algorithm concludes no
skew, and outputs zero.

The core of Paxson’s algorithm is the robust line fitting technique based on robust statistics[HMT83]. It
uses the median as a robust estimate for the slope. As mentioned in [Pax97, Pax98], robust line fitting alone
fails in estimating the slope of the trend due to the high variability in OTTs, and that is why the “de-noised”
OTTs and cumulative minima are used in his algorithm.

6.2 Linear regression algorithm

Linear regression is a standard technique for fitting a line to a set of data points. It is optimal in the mean
square sense if the network delays are normally distributed, but is not robust in the presence of outliers. As
pointed out in [Pax97, Pax98], it is not a good choice for a skew estimation, even when applied to the “de-
noised” OTTs above. Here we use it only as a reference algorithm that has no knowledge of the underlying
behavior of delay measurements.

The linear regression algorithm in a skew estimation provides estimates of and that minimize the
mean square error in:

(12)

6.3 Piecewise minimum algorithm

There is another simple algorithm to illustrate the difficulty in estimating the skew. It partitions the delay
measurements into segments, picks a minimum from each segment, and connects them to obtain a concate-
nation of line segments. The minima are the same as the “de-noised” OTTs in Section 6.1. The resulting
concatenation of line segments is the estimate of the skew, and is very unlikely to be a straight line.

When the skew is as obvious as in Figure 1, the resulting concatenation of line segments is close to a
straight line, and can be used as a rough estimate. It, however, does not perform as well in other situations.
We look at such cases later in Section 7.4

7 Comparison of the Four Algorithms

In this section we compare the four algorithms based on the desirable properties from Section 4. Also
we apply the algorithms to actual delay measurements, and compare their performance by looking at the
adjusted delays. Lastly, we use delay measurements from simulation to compare our approach to Paxson’s
algorithm.
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7.1 Computational complexity

The time complexity of a linear programming problem of a finite dimension of two is proven to be
[Dye83, Meg83]. We have implemented a simple and efficient algorithm that exploits the fact that ’s
are sorted in our specific problem. Refer to Appendix A for its pseudo code. Paxson’s algorithm has

complexity. Going back to the algorithm in Section 6.1, all the other steps have or
smaller complexity except for Step 2. The number of slopes of all possible pairs of the “de-noised” OTTs is

, and finding a median of numbers is . The time complexity of the linear regression
and piecewise minimum algorithms is .

7.2 Non-negative delay after the skew removal

In order to guarantee that the delay remains positive after the skew is removed, a skew estimation algorithm
must estimate correctly. The linear programming algorithm, however, is the only one that estimates
(or ), as explained in Section 5. Paxson’s original algorithm for skew estimation is for two-
way measurements after the clock offset has been removed. The linear regression algorithm provides an
estimate of . However this is just a -intercept of the regression line which bears no relevance to the
correct estimation of . The piecewise minimum algorithm outputs a concatenation of line segments, and
the slopes of those line segments are skew estimates. The algorithm does not have any provision to guarantee
that all the data points lie above the concatenation of line segments.

For the three algorithms that do not provide an estimate for that ensures that delays are non-negative
after the skew removal, we choose a that satisfies the following condition for all ’s in each algorithm:

(13)

where and for in Paxson’s and linear regression algorithms; in the piecewise
minimum algorithm and are determined by the line segment to which and belong to.

7.3 Robustness

We will next demonstrate another property of the linear programming algorithm that distinguishes it from
the other three algorithms: its performance, as measured by the difference between the estimate and the
actual skew, depends only on the variability of the network delays, and not on the magnitude of the clock
skew. It guarantees that the estimation algorithm performs reliably, in the sense that the margin of error
remains the same, no matter how large the skew is.

We first show that the linear programming algorithm satisfies this property, and follow it with a discus-
sion about other algorithms.

7.3.1 Linear Programming Algorithm

We use the same assumptions and notations for the skew estimation algorithm and estimates as in Section
4.3 when considering two different clock skews: a set of delays, , where ’s are fixed, and the
clock ratio varies from one to some constant. It can be restated as follows. From one set of measurements
to the other, nothing changes except for the frequency of the sender clock relative to the receiver clock.
The receiver observes that the delay measurements, ’s, are different between two sets, but the end-to-end
delays consistent with the receiver clock remain the same in both sets. We also note that ’s remain the
same in both sets.

Consider the sender and receiver clocks are “true” clocks, and a set of packet delays, , is
consistent with the “true clock.” Suppose that we measure those delays when the frequence of the sender
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clock changes so that the skew is . We have

(14)
(15)

from (6).
Let be the linear programming algorithm, and consider the problem of determining and when

both clocks are “true” clocks. By (10), (11), and (14), the problem becomes minimizing

such that

for

Let and be the values that solve this problem.
Now define , and substitute with above, and the above

problem is now equivalent to choosing and that minimize

such that

for

By (15), it is equivalent to choosing and to minimize

such that

for

which solves the case when the skew is . Let and be the values that solve the
above problem. Then we can conclude:

and

7.3.2 Other algorithms

It is clear that the linear regression algorithm satisfies Property 3. For the piecewise minimum algorithm,
we use Figure 4 to demonstrate how a minimum-based algorithm does not exhibit Property 3. In the figure,
the -axis represents the sender timestamp, and the -axis represents the measured delay. We assume that
there are four delay measurements available, that and they are partitioned into two segments, each with two
measurements. The minima of the segments are marked as black in the figure. When there is no clock skew,
as shown in the left-hand side, the second and the fourth measurements are the minima of the segments,
and the estimated skew has the slope of the horizontal solid line that lines with the -axis. If the clock
skew is bigger than , as shown in the right-hand side, the measured delay will increase proportional to their
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-1 Linear programming Paxson Linear programming Paxson
mean var. mean var. mean var. mean var.

0.01 0.01 0.9666e-5 0.01 0.0373e-3 0.01 0.8405e-4 0.01 0.0002
0.1 0.1 0.9666e-5 0.1 0.1073e-3 0.1 0.8405e-4 0.1001 0.0004
4 4 0.9666e-5 4.0001 0.3945e-3 4 0.8405e-4 4.0001 0.002

Table 1: Simulation results to test Property 3

corresponding sender timestamp, as the arrow curves indicate in the figure. The increase in measured delay
due to a clock skew is a function of the sender timestamp, but not of the end-to-end delay as stated in (6).
As the skew gets larger, the increase due to the clock skew becomes the dominant part of a measured delay,
and the minimum of a segment is more likely to be found near the beginning of the segment. It is illustrated
in the right-hand side, as the second and third measurements are picked as minima when the skew is above

and the estimated skew has the slope of the dotted arrow line. Depending on the magnitude of the skew, a
minimum-based algorithm uses different minima, and clearly the differences between the estimate and the
actual skew in these two cases are not the same.
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Figure 4: Example of minima that change depending on the magnitude of skew

Since Paxson’s algorithm employs a robust line fitting technique on top of local minima, we choose to
simulate Paxson’s algorithm to examine its robustness. In the simulation, the number of packets is 600,
and changes from 0.01 to 0.1 and 4. The end-to-end delay consistent with , , is assumed to have an
exponential distribution with the means, and . The purpose of the simulation is
to show the variability of the difference between the estimate and the actul skew over a range of clock skews.
Thus we use the same set of for all three values of , and calculate the sample mean and the variance of
the estimates. As shown in Section 7.3.1, the difference between the actual skew and the estimate does not
change in the linear programming algorithm case, and thus the sample variance of the estimates from the
algorithm remains the same for the three values of in the simulation. The sample variance of Paxson’s
algorithm, however, increases as the skew increases. This illustrates that the difference between the actual
skew and the estimate of Paxson’s algorithm grows as the skew grows, and thus the algorithm does not
satisfy Property 3.
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Trace Date Type Source Destination Interval Time Duration
1 14Nov97 uni im.cs.umass.edu anhur.sics.se 80ms 12:50 4hr 10min
2 20Nov97 multi eraser.cs.umass.edu maria.wustl.edu 160ms 15:54 10hr
3 21Nov97 uni im.cs.umass.edu anhur.sics.se 160ms 0:03 5hr 54min

Table 2: Trace Descriptions

Figure 5: Linear Programming Algorithm Figure 6: Paxson’s Algorithm

Figure 7: Linear Regression Algorithm Figure 8: Piecewise Minimum Algorithm
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Figure 9: Linear Programming Algorithm Figure 10: Paxson’s Algorithm

Figure 11: Linear Regression Algorithm Figure 12: Piecewise Minimum Algorithm
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7.4 Measurement

In this section we use Internet delay measurements to see how each algorithm performs when applied to
actual measurements. We collected several traces of delay and loss measurements over the Internet and
MBone [Eri94] between November 14, 1997, and December 21, 1997. Table 2 provides a brief description
of the traces. The clocks of the end-hosts were not synchronized in all traces. We used constant-length UDP
packets whose payloads consisted of a sequence number and a timestamp, and they were sent out at periodic
intervals.

Figures 5 to 8 are from Trace 1 in Table 2. On the -axis the sender timestamp, is plotted, and on the
-axis, the delay before and after the skew estimation and removal, and , are plotted.

The gray foreground is the delay before the skew is estimated and removed, and the black background is
the delay after the skew is removed. Even though the linear skew trend is conspicuous, the frequency ratio
between the two clocks is small, and it is hard to verify visually which algorithm is better among the three
algorithms with the exception of the linear regression algorithm, which is the only one whose adjusted delay
is not as close as other algorithms to the -axis between 0 and 2.5 hours.

Figures 9 to 12 are from Trace 2 in Table 2. The same is on the and axes, as in Figures 5 to 8. The
linear skew trend is apparent as in Trace 1, but the delay behavior changes significantly in the later half of
the trace, and more losses are detected. This is a multicast packet delay measurement, and the overall loss
rate of the trace is very high: 42%. The losses are more pronounced as the jagged bottom of the gray plot
in the second half of the trace. Considering the extraordinary high loss rate of the trace, we think that the
clock skew was constant, but due to heavy congestion inside the network the queueing delay has increased
significantly over an extended period of time, and is shown in measurements.

In Figure 11 The linear regression algorithm fails miserably in estimating a skew trend. The large
delayss between 6 and 8 hours on the -axis produce outliers which have a significant impact on the linear
regression. After the skew is filtered out, the delay has a decreasing trend, which is the opposite of the
original increasing trend. Since the linear programming and Paxson’s algorithms come up with one estimate
for the constant skew, the resulting delays from both algorithms are close to the -axis, while keeping the
increased delay trend intact. The piecewise minimum algorithm calculates too high a minimum over the
increased delay period, and ends up interpreting the increased delay trend as a skew. The result is that the
effect of network congestion on delay is removed along with the skew.

Figures 5 to 12 visually demonstrate the relative performance of each algorithm. The linear program-
ming and Paxson’s algorithms estimate the skew accurately in the presence of different levels of network
congestion. In contrast, the linear regression and piecewise minimum algorithms perform poorly when the
network is heavily congested, and the delay fluctuates significantly. In order to investigate the relative per-
formance more precisely, we simulate the the linear programming and Paxson’s algorithms with synthetic
delay, and compare the sample mean and variance of the estimate in the next section.

7.5 Simulation

The purpose of the simulation is to examine the average performance of a skew estimation algorithm in
terms of the sample mean and variance of the estimate. We have performed two sets of simulations for each
of the linear programming and Paxson’s algorithms. The first set of simulations (referred to as Set 1) uses
a periodic inter-packet departure time of 20 milliseconds; the second set (Set 2) uses a periodic inter-packet
departure time of 1 second. The other parameters of the simulation are the number of packets, the mean
delay ( ), and the skew. The number of packets is either 600 or 3000. In Set 1, 600 packets correspond to 12
seconds and 3000 to 1 minute; in Set 2, to 10 minutes and 1 hour, respectively. We assume an exponential

Here we actually plot and to plot the delays before and after the skew estimation and
removal in the same range of values on the -axis.
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Linear Programming Algorithm
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Figure 13: Set 1 - Histograms of when the number of packets is 600
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Linear Programming Algorithm
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Paxson’s Algorithm
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Figure 14: Set 1 - Histograms of when the number of packets is 3000
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Linear Programming Algorithm
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Paxson’s Algorithm
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Figure 15: Set 2 - Histograms of when the number of packets is 600
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Linear Programming Algorithm
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Paxson’s Algorithm
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Figure 16: Set 2 - Histograms of when the number of packets is 3000
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distribution for end-to-end delays in our simulation and vary the mean ( ) of the exponential distribution
from 1 millisecond to 10, 100, and 1000 milliseconds for both Sets 1 and 2. We also vary the magnitude of
the clock ratio( ) from 1.0001 to 1.1 and 5. For a set of fixed values of the number of packets, mean delay,
and skew, 1000 runs were executed, and the histograms of the skew estimates from the 1000 runs are plotted
in Figures 13 to 16. The -axis plots , and the -axis, the frequency. In all the graphs, histograms
have a fixed bin size of 30; the greater distance between the minimum and maximum of the estimates is, the
wider the bin is.

Figures 13 and 14 plot the results of the linear programming and Paxson’s algorithms from Set 1, when
the number of packets is 600 and 3000, respectively. Figures 15 and 16 from Set 2. The first rows of Figures
13 to 16 is for , the second rows for , and the last rows for . The ranges
on the -axis and -axis are fixed for a given in a set to make it easy to compare how the histograms
spread horizontally between the linear programming and Paxson’s algorithms.

In both Sets 1 and 2, the histograms when the number of packets is 600 are more widespread than when
the number of packets is 3000. This is because the estimate gets more accurate as more delay measurements
are available.

Most histograms are symmetric around, and their estimates are very close to the true values with a
sample variance less than of . However, as gets closer to 1, the distribution of estimates starts to
diverge from a symmetrical shape in Paxson’s algorithm. In the upper-right graph of Figure 13 where the
number of packets is 600 and , the histograms for and are not plotted
because their frequencies are 1 at . The same is true for when the number of packets is
3000 in Set 1 (Figure 14), and for when the number of packets is 600 in Set 2 (Figure 15). This
is because of Step 3 in Paxson’s algorithm. If the number of cumulative minima is not significant enough,
Paxson’s algorithm assumes no skew, and outputs . The simulation results show that it is hard to pass
Step 3 and the algorithm is biased against a small skew, when the average delay is relatively large, and the
measurements span over a short period of time.

The histograms of the linear programming algorithm are consistently less spread out than those of Pax-
son’s algorithm for the given range of parameter values. We have shown through simulation that the estimate
of our linear programming algorithm is unbiased against a small skew, and is likely to have less variance
than that of Paxson’s.

8 Further Discussion

8.1 Non-zero Clock Drift

In the delay traces, we have observed mostly linear skew trends, and in some cases non-linear trends. Trace
3 in Table 2 is one such case. Figure 17 displays on the -axis and on the -axis from Trace 3. The
slope of the delays is changing over time in the first hour of the trace. The drift, as defined in Section 3.1, is
non-zero. It attests that a slowly varying drift is present in the first hour of the trace, and then a linear trend
sets in and lasts until the end of the trace. Figure 18 is a 100 times magnified view of the first 3.5 minutes in
Figure 17. The slowly varying drift in a large time scale of hours is not noticeable in the magnified graph.
Instead in this small time scale of less than 10 minutes, we only see a constant skew trend.

This implies that we can apply the constant skew estimation algorithms in a piecewise manner on a
smaller time scale. How to detect a non-zero drift, and to determine the proper size to partition a long trace
are important issues, and need further study. Another issue concerning the piecewise application of the
skew estimation algorithms is to conserve the continuity of end points between partitions. We think that by
carefully applying the current algorithms we can avoid the discontinuity in delay between partitions after
the skew and drift are removed.
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Figure 17: Non-zero Drift
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Figure 18: Non-zero Drift: Magnified View

8.2 Detection of clock adjustments

When a clock adjusts its time, the adjustment is likely to show in delay measurements. Paxson uses two-way
measurements to detect such a clock adjustment[Pax97, Pax98]. It is harder to distinguish a genuine clock
time adjustment from the delay fluctuation due to network congestion in one-way delay measurements, and
needs further study.

9 Conclusion

In this paper, we have presented a framework for understanding the systematic errors introduced in one-way
network delay measurements by unsynchronized clocks, and discuss several properties desirable of a skew
estimation algorithm. We have developed an linear-programming-based algorithm, and compared it with
three other existing algorithms. The linear regression and piecewise minimum algorithms demonstrated a
poor performance over traces of Internet delay measurements. We generated synthetic delay measurements,
and analyzed the sample mean and variance of the estimates of our and Paxson’s algorithms. The results
show that the estimate of the linear programming algorithm is likely to be unbiased and have less variance.
In conclusion, the linear programming algorithm addresses all the desirable properties, and is simple, fast,
and robust.
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A Linear programming algorithm
1. PROCEDURE: IN( , , ) OUT( , )
2. // slope, y-intercept returns a line.
3. // line1, line2 and line1, line2 return - and -coordinates of intersection.
4.
5. FOR to
6. FOR downto
7. IF
8. BREAK;
9. ENDIF

10. ENDFOR
11. // Note that is when the FOR loop in line 6 runs to the end.
12. ,
13. ENDFOR
14.
15. FOR to
16. IF AND
17. ,
18.
19. BREAK;
20. ENDIF
21. ENDFOR
22. ENDPROCEDURE
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B Paxson’s algorithm
1. PROCEDURE: IN( , , ) OUT( )
2. // p1, p2 returns the slope of the line
3. // is from [Pax98]
4. // is either or .
5.
6. FOR to
7. ,
8.
9. ENDFOR

10. IF
11. ,
12. ,
13.
14. ENDIF
15.
16. // Here we assume that is negative and thus the trend is decreasing.
17.
18.
19. FOR to
20. IF
21.
22. ENDIF
23. ENDFOR
24. IF
25. RETURN( )
26. ENDIF
27.
28. ENDPROCEDURE
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