An Efficient Algorithm for
Computing MHP Information for
Concurrent Java Programs

Gleb Naumovich, George S. Avrunin and Lori A. Clarke

CMPSCI Technical Report 98-44
October 5, 1998

Laboratory for Advanced Software Engineering Research
Computer Science Department
University of Massachusetts

Effort partially supported by the Air Force Materiel Command, Rome Laboratory, and the Defense
Advanced Research Projects Agency under Contract number F30602-97-2-0032 and by the National Science
Foundation under Grants CCR9407182 and CCR-9708184.

The views and conclusioins contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency, Rome Laboratory, or the U.S. Government.

An Efficient Algorithm for Computing MHP Information
for Concurrent Java Programs*

Gleb Naumovich, George S. Avrunin, and Lori A. Clarke
Laboratory for Advanced Software Engineering Research
Department of Computer Science
University of Massachusetts at Amherst
Amberst, MA 01003-6410
{naumovic, avrunin, clarke }@cs.umass.edu

1 Introduction

Information about which statements in a concurrent program may happen in parallel (MHP) has a number
of important applications. It can be used in program optimization, debugging, program understanding tools,
improving the accuracy of data flow approaches (e.g. [11, 8, 14]), and detecting synchronization anomalies,
such as data races. For example, in optimization, if it is known that two threads of control will never attempt
to enter a critical region of code at the same time, any unnecessary locking operations can be removed.

In general, the problem of precisely computing all pairs of statements that may execute in parallel is
undecidable. If we assume that all control paths in all threads of control are executable, then the problem
is NP-complete [15). In this paper, we call the solution with this assumption the ideal MHP information
for a program. To compute the MHP information efficiently, a trade-off must be made, where instead of the
ideal information, a conservative estimate of all MHP pairs is computed. In this context a conservative set
contains all the pairs that can actually execute in parallel but may also contain spurtous pairs. The precision
of such approaches can be measured by comparing the set of pairs computed by an approach with the ideal
set, if the latter is known.

In this paper we propose a data flow algorithm for computing a conservative estimate of the MHP
information for Java programs with a worst-case time bound that is cubic in the size of the program. In the
rest of this paper we refer to this algorithm as the MHP algorithm. To evaluate the practical precision of our
algorithm, we have carried out a preliminary experimental comparison of our algorithm and a reachability
analysis that determines the ideal MHP information for concurrent Java programs. This initial experiment
indicates that our algorithm precisely computed the ideal MHP information in the vast majority of cases we
examined. In the two out of 29 cases where the MHP algorithm turned out to be less than ideally precise,
the number of spurious pairs was small compared to the total number of ideal MHP pairs.

Several approaches for computing the MHP information for programs using various synchronization
mechanisms have been proposed. Callahan and Subhlok [4] proposed a data flow algorithm that computes,
for each statement in a concurrent program with post-wait synchronization, the set of statements that must
be executed before this statement can be executed (B4 analysis). Duesterwald and Soffa [5] applied this
approach to the Ada rendezvous model and extended B4 analysis to be interprocedural. Masticola and Ryder
proposed an iterative approach of non-concurrency analysis [12] that computes a conservative estimate of the
set of pairs of communication statements that can never happen in parallel in a concurrent Ada program.

*This research was partially supported by the Defense Advanced Research Projects Agency and the Air Force Research
Laboratory/IFTD under agreement F30602-97-2-0032, and by the National Science Foundation under Grant CCR-9708184.
The views, findings, and conclusions presented here are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the Defense Advanced Research Projects
Agency, the Air Force Research Laboratory/IFTD, the National Science Foundation, or the U.S. Government.

(The complement of this set is a conservative approximation of the set of pairs that may occur in parallel.)
In that work, it is assumed initially that any statement from a given process can happen in parallel with any
statement in any other process. This pessimistic estimate is then improved by a series of refinements that
are applied iteratively until a fixed point is reached. Masticola and Ryder show that their algorithm yields
more precise information than the approaches of Callahan and Subhlok and of Duesterwald and Soffa.

Recently, Naumovich and Avrunin [13] proposed a data flow algorithm for computing the MHP infor-
mation for programs with a rendezvous model of concurrency. Although the worst-case complexity of this
algorithm is O(S®), where S is the number of statements in a program, their experimental results suggest
that the practical complexity of this algorithm is cubic or less in the number of program statements. Fur-
thermore, the practical precision of this algorithm was very high. For a set of 132 concurrent Ada programs,
the MHP algorithm failed to find the ideal MHP information in only 5 cases. For a large majority of the
examples, the MHP algorithm was more precise than non-concurrency analysis.

The MHP algorithm described in this paper is similar in spirit to the algorithm in [13] but has a number
of significant differences prompted by the difference between the rendezvous-based synchronization in Ada
and the shared variable-based synchronization in Java. First, the program model for Java is quite different
from the one for Ada. Second, while the algorithm for Ada relies on distinguishing between only two node
types (nodes representing internal operations in tasks and nodes representing intertask communications),
the algorithm for Java has to distinguish between a number of nodes corresponding to the eclectic Java
synchronization statements. This also implies that the two algorithms employ very different sets of flow
equations. Third, while the algorithm for Ada operates on a completely precomputed program model, the
program model used by the algorithm for Java can be improved during the algorithm run, in the interests
of computing a more precise estimate of the MHP information for the program. Finally, the worst-case
complexity of the MHP algorithm for Java is only cubic in the number of statements in the program.

The next section describes the Java concurrency model and the terminology used in this paper and
describes a graph model for concurrent Java programs. Section 3 describes the MHP algorithm in detail.
The complexity of the MHP algorithm is discussed in Section 4, where a more efficient form of the algorithm
is proposed. Section 5 introduces a reachability approach to computing the “ideal” MHP information and
proves conservativeness of our algorithm with respect to this information. Section 6 describes the results of
an experiment in which the MHP information was computed for a number of concurrent Java programs using
both the MHP algorithm and the reachability approach in order to evaluate the precision of the algorithm.
We conclude with a summary and discussion of future work.

2 Overview

2.1 Java Model of Concurrency

In Java, concurrency is modeled with threeds. Although the term thread is used in the Java literature to
refer to both thread objects and thread types, in this paper we call thread types thread classes and thread
instances simply threads. There are two ways in which new thread classes can be defined. One is to extend
the standard class Thread and the other is to implement the standard Runnable interface. The distinction
between these ways is subtle but both involve specifying executable behaviors for threads of this class in
the method with the predefined name run(). For the purposes of this paper we can assume without loss of
generality that all thread classes are defined by extending the Thread class. Figure 1 contains an example
in which thread class MyThread is defined by extending the standard Java Thread class. Thread t1 of this
class is created and used in the main method of class Example.

Any Java application must contain a unique main() method, which serves as the “main” thread of
execution. This is the only thread that is running when the program is started. Although the object
containing this method does not have to extend the Thread class, it is a separate thread of control.

In Java, execution of all threads, except the main thread, is started by calling their start() methods.
The run() method is never called explicitly. Since only the main thread is running initially, in multi-
threaded programs, the main thread must instantiate and start some of the other threads. These threads
may then instantiate and start other threads. For example, in Figure 1 the main thread creates (by calling

class MyThread extends Thread class Example extends Thread

{ {
Bbject lock; public static void
public MyThread(Cbject obj) main(String [] args)
{ {
lock = obj; Object lock = new Object();
} MyThread tl1 = new MyThread(lock);
public void run() synchronized (lock)
{ {
synchronized (lock) tl.start();
{ lock.wait();
lock.notify(); }
} t1.join();
System.out.print(‘‘Thread tl done’’); }
} }

}

Figure 1: Java code example

the appropriate constructor) thread t1 of class MyThread and later starts it by invoking its start () method.

Java uses shared memory as the basic model for communications among threads. In addition, threads
can affect the execution of other threads in a number of other ways, such as dynamically starting a thread
or joining with another thread, which blocks the caller thread until the other thread finishes. In Figure 1,
the main thread is blocked until t1 terminates at the point where it calls the join() method of thread t1.

The most important of the Java thread interaction mechanisms is based on monitors. A monitor is a
portion of code (usually, but not necessarily, within a single object) in which only one thread is allowed to
run at a time. Java implements this notion with synchronized blocks and locks. Each Java object has an
implicit lock, which may be used by synchronized blocks and methods. Before a thread can begin execution
of a synchronized block, this thread must first acquire the lock of the object associated with this block. If
this lock is unavailable, which means that another thread is executing a synchronized block for this lock,
the thread blocks until the lock becomes available. Thread releases the lock when it exits the synchronized
block. Since only one thread may be in possession of any given lock at any given time, this means that at
most one thread at a time may be executing in one of the synchronized blocks protected by that lock. A
synchronized method of an object obj is equivalent to a regular method, the whole body of which is a
synchronized block protected by the lock of the object obj. In Figure 1, an object lock of Java predefined
class Object is used to create the monitor in which both threads main and t1 participate. Note that the
identity of object lock has to be conveyed to thread t1. In this case this is done via the constructor new
MyThread(lock).

Threads may interrupt their execution in monitors by calling the wait() method of the lock object of
this monitor. During execution of the wait() method, the thread releases the lock and becomes inactive,
thereby giving other threads an opportunity to acquire this lock. The main thread Figure 1 performs such
a call to the wait() method of object lock. Such inactive threads may be awakened only by some other
thread executing either the notify() or the notifyA11() method of the lock object. The difference between
these two methods is that notify() wakes up one arbitrary thread from all the potentially many waiting
threads and notifyA11() wakes up all such threads. Similar to calls to wait(), calls to the notify()
and notifyAll() methods must take place inside monitors for the corresponding locks. Both notification
methods are non-blocking, which means that whether there are waiting threads or not, the notification call
will return and execution will continue. In Figure 1, thread t1 calls the notify() method of object lock.

The example in Figure 1 will be used throughout this paper for illustrations. Despite the presence of
two threads (the main thread and thread t1) in this example, there is very little non-determinism during
execution of this program due to synchronization mechanisms used. Because the main thread starts threads
t1 while this main thread is executing the synchronized block for object lock, thread t1 cannot start
execution of its synchronized block until the main thread releases the lock of object 1ock. The main thread
does that by calling the wait() method of lock. After that thread t1 can enter its synchronized block
and execute the notify() method of object lock. At this point the main thread is awakened but before

it can continue, it has to ackquire the lock of object lock again. The main thread cannot acquire this
lock immediately because first thread t1 has to release this lock. This happens when thread t1 exits its
synchronized block. The only non-determinism in the program execution can happen only now. Execution
of the print statement by thread t1 and reacquiring the lock of object lock and subsequent exiting the
synchronized block by the main thread may be interleaved. If by the time the main thread starts executing
the join() call thread t1 have not terminated, the main thread will block until thread t1 terminates.
Otherwise, the main thread executes this call without blocking and then terminates.

In the rest of the paper we refer to start(), join(), wait (), notify(), and notifyAl1() methods as
thread communication methods.

Note that concurrency primitives join() and wait() in Java have “timed” versions. For example, in
addition to method join(), threads have method join(long msec). If a thread t1 calls this method for
thread t2, thread t1 waits for thread t2 to terminate, but not for more than msec milliseconds. If thread
t2 is still active after this time expires, thread t1 stops waiting and continues its execution. The “timed”
version of method wait() operates according to similar semantics. In this work we do not describe the
support necessary for these “timed” versions of join() and wait(). Since in our model there is no explicit
notion of time, the difference between “timed” and “untimed” versions of these synchronization primitives
is that the threads executing the timed versions of join() and wait() have an option of not waiting for
thread termination or a notification call respectively. Most aspects of the algorithm presented in this work
can be easily modified to take the possibility of the “timed” synchronizations into account. In the interest
of simplicity, we do not do this here.

2.2 Program Model

In this section we present and discuss construction of the program model, Parallel Ezecution Graph (PEG).
The PEG for a concurrent Java program is built by combining control flow graphs (CFGs) for all threads
that may be started in this program with special kinds of edges.

Dynamic creation of threads is a well-known problem for static analysis. The number of instances of each
thread class may be unbounded. For our analysis we make the usual assumption that there exists a known
upper bound on the number of instances of each thread class.

At present we inline all called methods into control flow graphs for the threads. This results in a
single CFG for each thread. Each call to a communication method is labeled with a tuple of the form
(object,name, caller), where name is the method name, object is the object owning method name, and
caller is the identity of the calling thread. For example, for the code in Figure 1, the call t1.start in the
main method will be represented with the label (t1, start,main). For convenience, we will use this notation
to label nodes that do not correspond to method calls by replacing the object part of the label with symbol
’. For example, the first node of a thread t is labeled (,begin,t) and the last node of this thread is
labeled (*,end,t). A node representing an if branch that occurs in thread t is labeled (x, if,t).

To make it easy to reason about groups of communications, we overload the symbol ’+’ to indicate that
one of the parts of the communication label can take any value. For example, (t,start,x) represents the
set of labels in which some thread in the program calls the start method of thread t. We will write
n € (t,start, *) to indicate that n is one of the nodes that represent such a call. In general, it will be clear
from the context whether a tuple (object, name, caller) denotes a label of a single node or a set of nodes
with matching labels.

For the purposes of our analysis, additional modeling is required for wait () method calls and synchronized
blocks. Because an entrance to or exit from a synchronized block by one thread may influence executions
of other threads, we represent the entrance and exit points of synchronized blocks with additional nodes
labeled (lock, entry,t) and (lock, exit,t), where t is the thread modeled by the CFG and lock is the lock
object of the synchronized block. We assume that the thread enters the synchronized block immediately
after the entry node is executed and exits this block immediately after the exit node is executed. Thus, the
entry node is outside the synchronized block and the exit node is inside this block.

The execution of a wait () method by a thread involves several activities. The thread releases the lock of
the monitor containing this wait () call and then becomes inactive. After the thread receives a notification, it
first has to re-acquire the lock of the monitor, before it can continue'its execution. To be able to reason about

{

(lock,wait,t) |

{ (lock,waiting,t)
(Lock,wait, t) — *

(Lock,notified-entry,t)

Figure 2: CFG transformation for wait () method calls

all these activities of a thread, we perform a transformation that replaces each node representing a wait ()
method call with three different nodes, as illustrated in Figure 2. The node labeled (1ock,wait,t) represents
the execution of the wait() method, the node labeled (lock,waiting,t) represents the thread being idle
while waiting for a notification, and the node labeled (lock,notified-entry,t) represents the thread after
it received a notification and is in the process of trying to obtain the lock to re-enter the synchronized block.
The shaded regions in the figure represent the synchronized block. Note that the thick edge between the
waiting and notified-entry nodes in Figure 2 does not represent the normal transfer of control between
two nodes. The reason for this is that when a thread executes the wait() method of a lock object, the
moment when this thread is awakened does not depend on this thread, but rather on some other thread that
executes the notify() or notifyAll() method of this lock object. Thus, execution of a notified-entry
node depends not only on its waiting predecessor by also on the node representing such a call to notify()
or notifyAll().

The CFGs for all threads in the program are combined in a PEG by adding special kinds of edges between
nodes from different CFGs. These edges are used by our algorithm for capturing certain dependencies between
thread synchronization statements in different threads. We define the following edge kinds.

local A local edge is non-waiting edge between two nodes from the same CFG. For example, the edge
between nodes labeled (lock,wait,t) and (lock,waiting,t) is a local edge.

waiting A waiting edge is created between waiting and notified-entry nodes as shown in Figure 2.

notify A notify edge is created from a node m to a node n if m is labeled (o,notify,r) or (o,notifyAll,r)
and n is labeled (o,notified-entry,s) for some thread object o, where threads r and s are different.
The set of notify edges is not precomputed but rather built during the algorithm. This improves
the precision of the algorithm since the information about which nodes may happen in parallel may
suppress addition of such edges in some cases, which restricts the amount of information that may
propagate into notified~entry nodes from notify and notifyAll nodes.

start A start edge is created from a node m to a node n if m is labeled with (t, start, *) and n is labeled
with (*,begin,t). That is, m represents a node that calls the start () method of the thread t and n
is the first node in the CFG of this thread. All such edges can be computed by syntactically matching
node labels.

Note that, unlike for notify-all nodes, no edges from other threads can enter join nodes. Despite the
similarity between a thread waiting for a notification from another thread and a thread waiting for another
thread to terminate, there is a significant difference. When a thread executes the wait() method of a lock

t1 main

710 [(+, begin, +1) m

nn

N9 I(lock,entry,main)l

n13 |(lock,not:i.fy,1:1) I"\ 733 (t1, start,main)

s AN
71513 (lock,exit, t1)| | N Ny |(lock,wait,mai

A Y
s Ny |(1ock,waiting,main1

N

A Y
g |(lock, notifiedentry, mainj

N4

N5

(lock, exit,main)

Ng |(t1, join,main)
Ny

Figure 3: PEG example

object, it always has to wait until some other thread executes the notify() or notifyAll() method for
this lock object. But when a thread executes the join() method of another thread t, it only has to wait if
t is in fact executing. If thread t either has not been started yet or has already terminated, no waiting is
necessary. Thus, our proposed algorithm handles these two thread communication mechanisms differently,
not requiring additional edges for join nodes.

Figure 3 shows the PEG for the program in Figure 1. The shaded regions include nodes in the monitor
of the program, where thin solid edges represent control flow within individual threads, the thick solid edge
is a waiting edge, the dotted edge is a start edge, and the dashed edge is a notify edge. Note that this notify
edge is not present in the PEG originally but will be created during the MHP algorithm.

For convenience, we associate a number of functions that map each node to the set of this node’s prede-
cessors of a specific edge kind:

LocalPred(n) returns the set of all immediate local predecessors of n.

NotifyPred(n) returns the set of all notify predecessors of a notified-entry node n.

StartPred(n) returns the set of all start predecessors of a begin node n.

WaitingPred(n) returns a single waiting predecessor of a notified-entry node.

Sets of successors LocalSucc(n), NotifySucc(n), StartSucc(n), and WaitingSucc(n) are defined similarly.
Let T denote the set of all threads that the program may create. Let N(t) denote the set of all PEG
nodes in thread t € T. Furthermore, we define a function thread : N — T that maps each node in the PEG
to the thread to which this node belongs. For example, for the PEG in Figure 3, thread(ns) = main and
thread(ng) = t1.
For convenience, we associate two sets with each lock object. notifyNodes(obj) is the set of all notify
and notifyAll nodes for lock object obj: notifyNodes(obj) = (obj,notify,*) U (obj,notifyAll, x).

Similarly, waitingNodes(obj) is the set of all waiting nodes for lock object obj: waitingNodes(obj) =
(obj,waiting, *). For the example in Figure 3, notifyNodes(lock) = {n4} and waitingNodes(Lock) = {n, }.

In Java, monitors are given explicitly by synchronized blocks and methods. Since our model captures
a set of known threads, we can also statically compute the set of nodes representing code in a specific
monitor. Let Monitor.,; denote the set of PEG nodes in the monitor for the lock of the object obj and let
Monitorop;(t) denote the part of the monitor executed by tread ¢: Monitoro;(t) = Monitorey; N N(t). For
the example in Figure 3, Monitoriocx = {n4,ns,n10,713} and Monitor,cx(main) = {nq4,ns}.

3 The MHP algorithm
3.1 High Level Overview

In [13] we introduced an MHP algorithm for computing pairs of statements that may happen in parallel in
programs with the rendezvous model of concurrency. The general structure of the algorithm presented here
is similar. Initially we assume for each node in the PEG that this node may happen in parallel with no other
nodes. The data flow algorithm then uses the PEG to infer that some nodes may happen in parallel with
others and propagates this information from one node to another, until a fixed point is reached. At this
point, the computed information represents, for each node, a conservative overapproximation of all nodes
that may happen in parallel with it.

An interesting feature of the proposed MHP algorithm for Java is that in addition to the information
about which nodes may happen in parallel, it also dynamically computes some control information. The
MHP information computed by the algorithm is used to compute notify edges. Subsequently, these notify
edges can be used for propagating the MHP information. Using this approach allows us to compute the
MHP information more precisely.

To each node n of the PEG we assign a set M (n) which contains nodes that may happen in parallel with
node n, as computed at a given point in the algorithm. In addition to the M set, we associate an OUT
set with each node in the PEG. This set includes the MHP information to be propagated to the successors
of the node. The OUT set for a node is computed by adding some nodes to and/or removing some nodes
from the M set for this node. The reason for distinguishing between the M (n) and OUT(n) sets is that,
depending on the thread synchronizations associated with node n, it is possible that a certain node m may
happen in parallel with node n but may never happen in parallel with n’s successors or that some nodes that
may not happen in parallel with n may happen in parallel with n’s successors. Section 3.4 gives a detailed
description of all cases where nodes are added to or removed from the M set of a node to obtain the QUT
set for this node.

We propose a worklist form of the MHP algorithm. At the beginning, the worklist is initialized to contain
all start nodes in the main thread of the program, checking for each such node if it is reachable from the
begin node of this main thread. The reasoning for this is that places in the main thread of the program
where new threads are started are places where new parallelism is initiated. Our algorithm generates nodes
to be put in OUT sets of such start nodes. The MHP algorithm then runs until the worklist becomes
empty. At each step of the algorithm a node is removed from the worklist and the notify edges that come
into this node, as well as the M and OUT sets for this node, are recomputed. If the OUT set changes, all
successors of this node are added to the worklist. The following four subsections describe the major steps
taken whenever a node is removed from the worklist. This node is referred to as the current node.

3.2 Computing notify edges

Notify edges connect nodes representing calls to notify() and notifyAl1() methods of an object to
notified-entry nodes for this object. The intuition behind these edges is to represent the possibility
that a call to notify() or notifyA11() method wakes a waiting thread (the waiting state of this thread
is represented by the corresponding waiting node) and this thread consequently enters the corresponding
notified-entry node. This is possible only if the waiting node and the notify or notifyAll node may
happen at the same time. Thus, the computation of notify successors for the current node can be captured

|(lock, notify,tl)l\\ I(lock,waiting,tZ)l l(ti,start,main) |

. ‘) RN
n I(lock, notified-entry, f.m

ml(t2, start,main) l

.

Figure 4: Example of a situation when a node m is contained in a notify predecessor but not in the waiting
predecessor of a notified-entry node

concisely as

{m|m € (o,notified-entry, *) A WaitingPred(m) € M(n)}, if n € notifyNodes(o)

L3, =
NotifySucc(n) {un defined, otherwise

(1)
3.3 Computing M Sets

To compute the current value of the A set for the current node, we use the OUT sets of this node’s
predecessors, as well as some additional information for nodes with certain labels. Equatlon (3) gives the
rule for computing the A set for nodes with all possible labels.

For begin nodes, the M set is computed as the union of the OUT sets of all start predecessors of this
node, with all nodes from the thread of the current node excluded!. The explanation is that since the
start () method is non-blocking, the first node in the thread that is started may execute in parallel with all
nodes that may execute in parallel with the node that started it.

For a notified-entry node n, first we compute the union of the OUT sets of all notify predecessors of
this node. The resulting set of nodes is then intersected with the OUT set of the waiting predecessor of n
and then the GEN 5,4y au(n) set is added to the result. The intuition behind taking the union of the OUT
sets of all notify predecessors is that once a thread executes wait (), it becomes idle, and quite some time can
pass before it is awakened by some other thread. Only once this happens (after a notify() or notifyAll()
method call), this thread may resume its execution. This means that in effect, these notify and notifyAll
nodes are the “logical” predecessors of the node that follows the waiting node. The reasoning for intersecting
the resulting set with the OUT set of n’s waiting predecessor is that this waiting predecessor represents
the state of this thread immediately before it becomes notified. Thus, if one of the notify predecessor of n
may happen in parallel with some node m but the waiting predecessor of n may not happen in parallel with
m, n may not happen in parallel with m. An example is illustrated by the PEG fragment in Figure 4. one of
notify predecessors of n may happen in parallel with a node that starts the thread containing n. Such a node
will never be contained in the OUT of n’s waiting predecessor. Another case where intersecting the union of
OUT sets of the notify predecessors of a node with the OUT set of this node’s waiting predecessor is if the
waiting predecessor of n may happen in parallel with some node r but none of n’s notify predecessor may
happen in parallel with 7. This case is illustrated in Figure 5. In this example the waiting predecessor of n
may happen in parallel with a waiting node r for the same lock object in another thread. The notifyAll
predecessor p of n wakes up all threads for this lock object and thus node 7 is not included in OUT(p) (see
equations (4) and (6)). Thus, node n correctly does not obtain node r for its M set because the threads
containing n and r become notified simultaneously, and so nodes n and r do not execute in parallel.

The GEN ,ouipyau set in equation (3) handles a special case of a single notifyAll statement awaking
multiple threads. In this case the corresponding notified-entry nodes in these threads may all execute in
parallel. We conservatively estimate the sets of such notified-entry nodes, labeled (o,notified-entry, %)
from other threads than that of the current node n, also labeled (o,notified-entry,*). A node m has to

!begin nodes are included in the OUT sets of the corresponding start nodes. See equations (4) and (5).

0 i

P l(lock, notify, tl)F: -~ ~_l (lock,waiting, t2)| r I (lock,waiting, t3) |
TR N
n | (lock,notified-entry, t2) | s |-6.ock, notified-entry,t3) I

Figure 5: Example of a situation when a node m is contained in in the waiting predecessor but not in a
notify predecessor of a notified-entry node

be put in GEN nosipyan(n) if m is also labeled (o,notified-entry,*), the WaitingPred nodes of m and n
may happen in parallel, and there is a node r labeled (o,notifyAll, %) that is a notify predecessor of both
m and n. For example, in the PEG example in Figure 5 nodes n and s are inserted into GEN pnosigyan of
each other. Equation (2) formally states this:

GEN pnotigyan(n) = 0, if n & (obj,notified-entry, *)

{m|30: m € (o,notified-entry, x)A
WaitingPred(n) € M(WaitingPred(m))A (2)
(3r € N :r € (o,notifyAll, x)A
r € (M (WaitingPred(m)) N M (WaitingPred(n))))}, otherwise

(UPESlartPred(n) OUT(p) \ N(thread(n))), ifne (*, begin, *)
1"[(11,) =]\/I(n) U ((UPGNO“IyPred(n) OUT(]))) n OUT(WaitingPred(n))) ' -
U GEN notigyau(n), if n € (x,notified-entry, *)
Upe LocalPred(n) OUT(p), otherwise

3)
3.4 Computing QUT Sets

The OUT(n) set represents the MHP information that has to be passed to the successors of n. In general,
OUT(n) is not equal M (n) because of the semantics of some Java communication methods. Equation (4)
gives the general way of computing the QUT set for the current node n.

OUT(n) = (M(n)U GEN(n)) \ KILL(n) (4)

GEN(n) is the set of nodes that, although they may not be able to execute in parallel with n, may execute
in parallel with n’s successors. KILL(n) is a set of nodes that must not be passed to n’s successors, although
n itself may happen in parallel with some of these nodes. Computation of both GEN and KILL for the
current node depends on the label of this node.

The following equation gives the rule for computing the GEN set for the current node n.

(*,begin, t) , if n € (t,start, %)
GEN(n) = < NotifySucc(n), if n € notifyNodes(o) (5)
0, otherwise

For start nodes, GEN consists of a single node that is the begin node in the thread that is being started.
Suppose, the current node is in thread r, starting thread t. Once this node is executed, thread t is ready to
start executing in parallel with thread r. Thus, the begin node of thread r has to be passed to all successors

main t

ns[(*, something, main)l

T4|(%, end, main)

Figure 6: Illustration of the necessity of the symmetry step

of the current node. Note that while the current start node is executing, thread r has not been started yet,
and so its begin node is not in the M set of the current node.

For notify and notifyAll nodes, the GEN set equals the set of all their notified successors. This conveys
to the local successors of such notify and notifyAll nodes that they may happen in parallel with all such
notified-entry nodes. Note that these notified-entry nodes may not be in the M sets of the notify
and notifyAll nodes because a thread that is being awakened becomes notified only after the corresponding
notify or notifyAll node completes its execution.

The KILL(n) set represents the nodes that must not be passed to the successors of n. The computation
of this set depends on the label of n. The following equation gives a rigorous description of this computation.

N(t), if n € (t, join, %)
Monitor if n € (o, entry, *) U (o,notified-entry,)
KILL(n) = < waitingNodes(o), if (n € (o,notifyAll, *))V (6)
(n € (o,notify, *)A | waitingNodes(o) |= 1)
0 otherwise

If the current node n represents joining another thread ¢, the thread containing the current node will
block until thread ¢ terminates. This means that after n completes its execution, no nodes from ¢ may
execute. Thus, all nodes from M (n) N N(t) should be taken out of the set being passed to n’s successors.

Computing the KILL set for entry and notified-entry nodes is quite intuitive. The semantics of such
nodes are such that while the thread is executing in a entry or notified-entry node, it is not in the
monitor entrance to which this node represents. Once the execution of this node terminates, the thread is
inside this monitor. Thus, the successors of such entry or notified-entry node may not happen in parallel
with any nodes from this monitor.

Finally, if the current node is a notifyAll node for lock object o, this means that once this node
completes its execution, no threads in the program will be waiting on this object. Thus, no nodes labeled
(o, waiting, *) must be allowed to propagate in the local successors of the current node. If the current node
is a notify node, its execution wakes up no more than one thread. If there is exactly one waiting node
that represents a state from which the thread may be woken up by this notify node, this waiting node
must finish execution by the time this notify node finishes its execution.

3.5 Symmetry Step

Up to this point the algorithm is a standard forward-flow data flow algorithm. However, after computing
M and OUT sets for each node, we have to take an additional step to ensure the symmetry n, € M(np) &
n2 € M(n1) by adding ns to M(n,) if ny € M(nz). The necessity of this step is illustrated in Figure 6,
which shows the PEG for a very simple program consisting of two threads. In this example, nodes nz and
ng represent some non-synchronization statements. Node ns is inserted in the QUT(n,) set according to

10

equation (4) and later, according to equation (3), ns is added to the M set of node n3. However, unless the
symmetry step is performed, according to equation (3), M(ns) stays empty. As a result, ng € M(n3) but
na & M(ns).

The symmetry step is done after the M and OUT sets for a node are computed. The nodes whose M
sets have been updated in this way are added to the worklist, since the change in their M sets may result in
a change in their OUT sets, and so influence other nodes in the graph.

3.6 Worklist Version of the MHP Algorithm

The Java MHP algorithm, based on the equations described above, consists of two stages: initialization
stage that computes KILL sets for all nodes, as well as the GEN sets for start nodes, and iteration stage
that computes A and OUT sets and notify edges using a worklist containing all nodes that have to be
investigated.

The following algorithm implements the first stage of computing the MHP information. All steps of this
algorithm correspond to computations described by equations (5) and (6).

Algorithm 1 (Stage I, Initialization). Input:
CFGs for all threads in the program
Output:
VYn € N : sets KILL(n),and GEN(n)
Initialization:
Vn € N :KILL(n) = GEN(n) =0

(1) VneN:

(2) case

(3) n € (t,join,*) = KILL(n) = N(t)

(4) n € (o,entry,*) U (o,notified-entry, x) = KILL(n) = Monitor,
(5) n € (o,notifyAll,) = KILL(n) = waitingNodes(o)

(6) n € (o,notify,*) =

(N if | waitingNodes(o) |=1 then

(8) KILL(n) = waitingNodes(o)

9) n € (t,start,*) = GEN(n) = (*,begin, t)

The following algorithm implements the second stage of computing the MHP information.
Algorithm 2 (Stage II, Base MHP Algorithm). Input:

CFGs for all threads in the program and
VYn € N : sets KILL(n) and GEN(n)

Output:

Vn € N : a set of PEG nodes M(n) such that Vm € M : m may never happen in parallel with n.
Additional Information:

W is the worklist containing nodes to be processed
Vn € N, OUT(n) is the set of nodes to be propagated to the successors of n

Initialization:
Vn€ N:M(n)=0UT(n)=0

Initialize the worklist W to include all start nodes in the main thread

11

Main loop:
We evaluate the following statements repeatedly until W =

// n is the current node:
(1) n = head(W)
// n is removed from the worklist:
(2) W =tail(W)
/] Moia, OUT 14, and NotifySucc,ia are the copies of the M, OUT, and NotifySucc sets for this node,
// computed to determine new nodes inserted in these sets on this iteration
(3) Meoa = M(n)
4) OUT,4 = 0OUT(n)
(5) NotifySuccoia = NotifySucc(n)
// computing the new set of notify successors for notify and notifyAll nodes
(6) if Jo: n € notifyNodes(o) then

)] Ym € M(n) N waitingNodes(o):
// create a new notify edge from node n to the waiting successor of node m
(8) NotifySucc(n) = NotifySucc(n) U { WaitingSucc(m)}
// if new notify edges were added from this node, add all notify successors of this node to the worklist
9 if NotifySuccoia(n) # NotifySucc(n) then
(10) W = W U NotifySucc(n)

(11) Compute the set GEN ,oiyau(n) as in equation (2)

(12) Compute the set A (n) as in equation (3)
// the only nodes for which the GEN set has to be recomputed are notify and notifyAll nodes;
// their GEN sets are their notify successors:

(13) if Jo: n € notifyNodes(o) then

(14) GEN (n) = NotifySuce(n)

(15) Compute the set OUT(n) as in equation (4)
// do the symmetry step for all new nodes in M (n):

(16) if Mg # M(n) then

(17 Vme (M(n)\ Moa(n):
(18) M(m) = M(m)U {n}

// add m to the worklist because the change in A (m) may lead to a change in OUT(m)
(19) W =Wu{m}

// if new nodes has been added to the OUT set of n, add all n’s successors to the worklist
(20) if OUT o1qa # OUT(n):
(21) W = W U (LocalSucc(n) U StartSuce(n))

The following lemma proves that the order in which nodes are added to the worklist by executing lines
(19) and (21) and then taken from the worklist does not affect the final values of the M sets computed by
the algorithm for each node in the PEG.

Lemma 1. The result of running Algorithm 2 on a PEG does not depend on the order in which nodes are
placed on and removed from the worklist.

Proof. Fix two arbitrary orders in which Algorithm 2 puts nodes on and takes nodes off the worklist. We
will superscript the sets computed by the run of this algorithm with the first order with 1 and with the
second order with 2 in this proof. In addition, we will subscript all sets by the iteration on which they are
computed. Thus, M(n)} refers to the M set of node n computed on the i’th iteration of the algorithm with
the first order of putting nodes on the worklist.

To prove this lemma, we use the induction by the number of iterations of the main loop of the algorithm
with the first order of putting nodes on the worklist to show that any node m found to be in M (n)! on some
iteration is also found to be in M (n)? on some iteration and, similarly, any node m found to be in QU T(n)?
is also found to be in OUT(n)?. For the inductive step of the proof, we consider all possible ways in which

12

nodes may be inserted in M (n)! and OUT(n)! and for each of these ways we prove, relying on the inductive
hypothesis, that the same way is used for inserting the same nodes in M(n)? and OUT(n)? respectively.

Since before any iterations of the algorithm Yn € N, M(n) = OUT(n) = 0, trivially each node in M(n)}
is also in M(n)2 and each node node in QUT} is also in OUT(n)3.

Suppose that Vi : 1 < i < s,m € M(n)} = 3j,m € M(n)?, and, similarly, Vi : 1 < i < s,m €
OUT(n)} = 3j,m € OUT(n)%.

Suppose that n is the current node on s+ 1’st iteration. First we investigate computing M (n);,,. Node
m can be inserted in M(n)},, either by symmetry or as computed by equation (3). If m is inserted in
M(n);,, by symmetry, this means that n € M(m);, and so by the induction hypothesis 3j,n € M(m)3.
Hence, the symmetry step will be performed by the algorithm with the second order of the worklist, and so
m € M(n)3.

According to equation (3), computation of M sets depends on the node label. Suppose first that n €
(*,begin, *). Then

M), = Mm)}lu U OUT(p)} \ N(thread(n))
pEStartPred(n)

and

M(n)3,, = M(n)}U U OUT(p)? \ N(thread(n))
pEStartPred(n)

There are two cases which lead to a node m being inserted in M(n)!,,. The first case is when m € M (n)!.

Then by the induction hypothesis 3j,m € M (n);%. The second case is when 3p € StartPred(n) : m €

OUT(p)y Am & N(thread(n)). Again, by the induction hypothesis, 3j,m € OUT(p)?, and so m € M(p)2,,.
If n € (*,notified-entry, *), then, according to equation (3),

M)l = M) u((U OUT(p)!) N OUT(WaitingPred(n))!) U GEN noripyau (1) 541
pE NotifyPred(n)! |
and
M(n)?,, = M(n)2 U ((U OUT(p)3) N OUT(WaitingPred(n))3) U GEN woigyan(n)3,;.
pENotif;,;Pred(n):;.’Jrl

First we prove that if m € NotifyPred(n);,,, then 3k, m € NotifyPred(n)} ,. According to equation (1),
NotifySucc(n);,, = {m|m € (o,notified-entry,*) A WaitingPred(m) € M(n)!}

and
Notify.S'ucc(n):;?+I = {m|m € (o,notified-entry, *) A WaitingPred(m) €]\[(n)j}

By the induction hypothesis, since m € M(n); = 3j,m € M(n)?, it follows that m € NotifySucc(n)?, ;.

Now we prove that if m € GENnonpyan(n)l,y, 3k',m € GEN norigyau(n)i,. The computation of
GEN notigyan sets depends only on values of M} sets (see equation (2)), and so by the induction hypothesis,
and because once the M set of a notify or notifyAll node changes, its notified-entry successors are put
on the worklist, 3k',m € GEN posifyan(n)?,.

For all other kinds of nodes m € M(n)l,, = 3jme M (n)fj easily follows from the induction hypothesis.

Now consider the computation of OUT? _, sets. According to equation (4), m is inserted in OU T(n)l,,
if m is either in M(n)},, or GEN(n)},, but not in KILL(n). Since KILL sets for all nodes are precomputed
and do not change during the algorithm, the effect of these sets on the algorithm runs with both orders of
putting nodes on the worklist is the same.

If m € M(n)!,, Am ¢ KILL(n), then, as we have just proved, 3j,m € M(n)f, and so by equation (4),
m € OUT(n)3.

13

Suppose now that m € GEN(n)!,,. Since GEN sets for all nodes except notify and notifyAll nodes
are precomputed, we only have to consider notify and notifyAll nodes. According to equation (5), for each
such node the GEN set equals the set of its notify successors. In the proof of the part for M sets we have
already proved that m € NotifySucc(n);,, = 3j,m € NotifySucc(n)?. Thus, for any node m € GEN(n)l,,,
3j,m € GEN(n)3. O

3.7 Example

We illustrate the MHP algorithm on the example Java program in Figure 1. The PEG for this example
appears in Figure 3. Initially, the notify edge between nodes nj2 and ng is absent from the graph. The first
stage of the algorithm computes initial values of the GEN and KILL sets for all nodes. These sets are empty
for all nodes, except for the following cases:

e GEN(n3) = {nio}

o KILL(ny) = {n12,m3)}

o KILL(ng) = {n12,n13}

e KILL(ny,) = {ns,n4,nz}
o KILL(ni2) = {ns}

The table in Figure 7 shows the information computed on each iteration of the MHP algorithm for this
example. The first column in this table shows the iteration number; the second column gives the ID for the
current node (just a number k instead of n;); the third column lists nodes that were added to the M set of
the current node as a result of this iteration; the fourth column lists nodes that were added to the OUT set
of the current node as the result of this iteration; the fifth column shows the nodes into whose M sets the
current node is added by the symmetry step; and the final column shows the worklist after the iteration®.
Figure 8 shows the PEG for this example with all nodes annotated with their M sets at the termination of
the MHP algorithm.

4 Termination and Complexity

The following theorem states that the MHP algorithm presented in the previous section always terminates
after a finite number of iterations.

Theorem 2. For any Java program, Algorithms 1 and 2 always terminate.

Proof. The proof for Algorithm 1 is trivial. Since every node in the PEG is examined only once, this
algorithm terminates in O(|N|) steps.

For all m € N, let M (im); be the value of M (m) at the end of the i-th iteration of the main loop, (1)-(21)
of Algorithm 2. Similarly, let OUT (m); be the value of OUT (1) at the end of the i-th iteration. To show
that Algorithm 2 always terminates in a finite number of steps, it suffices to show that, for m € N and
all 7 > 0, M(m); € M(m)iy, and OUT(m); C OUT(m);. Since M(m);, OUT(m); C N for all i, this
shows that the there is some finite k such that the sets M(m) and OUT(im) stabilize in k iterations, i.e.,
that M(m); = M(m);;1 and OUT(m); = OUT(m);41 for all i > k. Once this happens, the worklist will
eventually become empty and the algorithm will terminate.

To show that A/(m) and OUT(m) stabilize in a finite number of iterations, we argue by induction. Since
the initial values of M and OUT sets are empty (M(m)o = OUT(m)o = 9, the claim is clear for i = 0.
Suppose it holds for all 7 < s and’ consider iteration s + 1.

2Note that in this example the position in the worklist to which nodes are added is chosen to minimize the number of
iterations. According to Lemma 1, the order in which nodes are put on and taken from the worklist does not affect the outcome
of the algorithm.

14

[Iter | Current n [New nodes in M(n) | New nodes in OUT(n) | Symmetry | Worklist
1 3 10 4,10
2 4 10 10 10 5, 10
3 5 10 10 10 10
1 10 15 11
5 11 15 15 4,5 12,4, 5
6 12 5 6 5 13,4, 5,6
7 13 6 6 6 14,4,5,6
8 14 6 6 6 15,4,5,6
9 15 6 6 6 156
10 1 11 5, 6
11 5 11, 12 6
12 6 14, 15 7
13 7 14, 15 14, 15 14, 15 8,14, 15
14 8 14, 15 14, 15 9,14, 15
15 9 14, 15
16 14 7,8 15
17 15 7,8

Figure 7: Information computed on the iterations of the MHP algorithm for the example in Figure 3

t1 main | _,
n M = {4,5} 1=
10 [(+, begin, t)New. 11 n
-OUT = {4,5) ouT =90
n M = {4,3}., | ' IM =0
11 n lock,entry,main
(y)OUT_{45} 2 |(entry) _
............................ ouUT =190
M—{s} E

7l12 I(lock notify, t1) }‘

| ‘O\UT {6} OUT & {10}
. M = {6} *, M ={10,11}
513 : ‘\ T4 |(Qock,vait,mai
................. our {5} N L S ——0uT = {10, 11;
M = 78} N ={10,11,12
N4 . ns bck wa1f.1ng,ma1ni
[ouT=1{6,7,8} \\\ oUT = {10,11,12}
M = {6,7,8} M = {13,14, 15}
N5 d,t1 —
Tg I(lock,notifiedentry,main
oUT = {6,7,8} JUCSRSRS FSSR OUT = {14,15}
: M :' {14,15}
iz
___________________________ QI{T = {14, 15}
M = {14,15}

ng

(t1, join,main)

oUT =0

M=0

ouT =0

Ng

Figure 8: PEG for the example with the MHP information added

15

Let n = head(W) be the current node for this iteration. We distinguish three cases, according to the
label of n.

Suppose n € (*,begin, *). Then line (12) of the algorithm computes M (n) according to equation (3) and
we have

Mmn,=(U OUT(p)s-1) \ N(thread(n))
pEStartPred(n)

and

Mmem=(| OUT(p)s) \ N(thread(n))
pEStartPred(n)

By the induction hypothesis, we know that, for all p, OUT(p)s—1 C OUT(p)s, so clearly M(n); C M(n)s41-

The only way in which this iteration of the algorithm can change the value of any M (m) is by adding n
to M(m); in lines (16)-(18). It follows that M (m); C M(m),s4, for all s € N.

The set OUT(n) is computed in line (15) of the algorithm, using equation (4). Since n € (*,begin,),
we know that the sets GEN (n) and KILL(n) do not change, and OUT(n); C OUT(n)s4,- This iteration of
the algorithm does not change QUT (m) for any m # n, so we have QUT(m) C OUT(m);s4, for all m € N.

Now suppose n € (*,notified-entry, *). According to equation (3),

M(n)s = M(n)s—, U ((U OUT(p)s—1) N OUT(WaitingPred(n))s—1) U GEN notigyau(n)s
pE NotifyPred(n),

and

M(n)s+1 = M(n), U ((U OUT (p)s) N OUT(WaitingPred(n))s) U GEN potifyai(n)s+1
pENotifyPred(n)s41

By the induction hypothesis, we know that, for all p, OUT(p);—1 C OUT(p)s and M(p)s—; C M(p)s.
Thus, to prove that M (n), C M (n)s41, we have to prove that (1) GEN noupyan(n)s € GEN norigyant(n)s+1
and (2) NotifyPred(n), C NotifyPred(n)s+,. Consider (1). According to equation (2),

GEN sotipyan(n)s ={m|3o : m € (o,notified-entry, x) A WaitingPred(n) € M (WaitingPred(m));_; A
(3r € N :r € (o,notifyAll,) Ar € (M (WaitingPred(m))s—1 N M(WaitingPred(n))s—1))}

and

GEN notifyan(n)s+1 ={m|30: m € (o,notified-entry,*) A WaitingPred(n) € M(WaitingPred(m)), A
(3r € N : 7 € (o,notifyAll, *) Ar € (M (WaitingPred(m))s N M (WaitingPred(n));))}

Since by the induction hypothesis, for any node p, M(p);—; C M(p)s, (1) follows.
Now consider (2). According to equation (1),
NotifySucc(n)s = {m|m € (o,notified-entry,*) A WaitingPred(m) € M(n);_;}
and
NotifySucc(n)s41 = {m|m € (o,notified-entry, x) A WaitingPred(m) € M(n),}

Again, by the induction hypothesis, (2) follows. Thus, we proved that M (n)s C M (n),4, for notified-entry
nodes. The proof of OUT(n); C OUT(n),4, is identical to the proof of this statement for begin nodes.

16

Finally, consider the case where n is any node except a begin or notified-entry node. Then, according
to equation (3),

M(n)s = U OUT(p)s—1
p€ LocalPred(n)
and
M@m)= |J OUT(p),

p€ LocalPred(n)

M(n)s C M(n)s41 follows from the induction hypothesis of OUT(n);—, C OUT(n);.
According to equation (4),

OUT(n)s = (M(n)s U GEN(n),) \ KILL(n),
and
OUT(n)s4+1 = (M(n)s41 U GEN(n)s41) \ KILL(n)s41

The KILL sets are constant for all nodes in the TFG, so KILL(n); = KILL(n)s+,. For all nodes except
notify and notifyAll nodes, GEN(n); = GEN(n)s4+1. For notify and notifyAll nodes, according to
equation (5), GEN(n); = NotifySucc(n)s and GEN(n)s4.1 = NotifySucc(n)s41, and we already proved in
the previous case that NotifySucc(n)s C NotifySucc(n)s¢1. Thus, OUT(n)s C OUT(n)s41- (]

Before we make a statement about the complexity of our MHP algorithm, we introduce an efficient
form of the worklist version of this algorithm. This optimized algorithm limits the amount of information
computed and passed among the nodes in the PEG by sending each node from the OUT set of a given
node to each of its successors only once. In addition, instead of completely recomputing the GEN notifyan
set for notified-entry nodes, a notified-entry node may be added to the GEN ,,1ifyau node of another
notified~-entry node only once. This is done by associating an additional set notifiedPartners with each
notified-entry node n. Another notified-entry node m is inserted in this set if these two nodes are
in different threads, m has never been inserted in notifiedPartners(n) before, and m and n have a common
notify predecessor. After node m appears in notifiedPartners(n), it is copied in GEN pnosisyan(n) if it is
detected that the waiting predecessors of m and n appear in the M sets of each other. This two-step
computation of GEN noufyan sets implements equation (2). In interests of efficiency, when a node m is
copied from notifiedPartners(n) to GEN youigyan(n), it is removed from notifiedPartners(n). Combined with
the fact that a node is added to notifiedPartners(n) at most once over the run of the algorithm, this ensures
that a node is added to GEN ,,5tipyan(n) at most once over the run of the algorithm.

The GEN sets for notify and notifyAll nodes are managed in a way similar to the way the OUT sets
for all nodes are managed: a node m can be added to GEN(n) at most once. This is done by inserting a
notified-entry node m in the GEN set of a notify or notifyAll node n only at the point where it is
first determined that n is a notify predecessor of m. After GEN(n) is updated in such a manner, it is used
for computing OUT(n) and then is set to be an empty set at the end of the iteration of the main loop. This
ensures that a node that appears in GEN(n) is inserted in OUT(n) exactly once.

Another new set used in this algorithm is set M. (n), computed for each node n in the PEG. This set
is used to store nodes that were determined to be able to happen in parallel with n since the last time n
was the current node. Nodes are added to M., (n) both by symmetry and while n is the current node of
the main loop of the algorithm. Using the set My, (n) instead of M(n) in many cases allows us to reduce
the number of nodes used in several of the set operations computed by the algorithm. At the end of each
iteration of the main loop of the algorithm, nodes from the M., set of the current node are copied in the
M set of this node and then this M., set becomes empty.

Finally, because a node m is added to the QUT set of another node n at most once and the next time n
is the current node m is removed from OUT(n), when a new notify successor m is computed for a notify or
notifyAll node n, an additional step should be taken to propagate all nodes that have appeared in OUT (n)

17

from the beginning of the run of the algorithm in M., (m), and not only the nodes that are currently in

OUT(n).

After presenting a rigorous pseudocode description of the efficient algorithm, we show that this algo-
rithm computes exactly the same information as Algorithm 2 and prove that the complexity of the efficient
algorithm is O(|N|3).

Algorithm 3 (Stage II, Efficient MHP Algorithm). Input:

CFGs for all threads in the program and Vn € N : sets KILL(n) and GEN(n)

Output:

Vn € N : a set of PEG nodes M(n) such that Ym € M : m may happen in parallel with n, and
Vm & M(n) : @ may never happen in parallel with n.

Additional Information:

W is the worklist containing nodes to be processed. It is implemented as a FIFO buffer

Vn € N, OUT(n) is the set of nodes to be propagated to the successors of n

Vn € (x,notified-entry, x), notifiedPartners(n) is the set of candidates for inclusion in set
GENnotifyAll(n)

Vn € (*,notified-entry,), Mwprea(n) is the set of nodes in the M set of the corresponding
waiting node during the previous iteration with n as the current node

Vn € N, Mpeu(n) is the set of nodes that may happen in parallel with n, discovered since the
previous iteration with n as the current node

Initialization:

Vn € N : M(n) = Muew(n) = OUT(n) = OUTpuu(n) = 9

Vn € (*,notified~entry, *), Mwpred(n) = notifiedPartners(n) = 0

Initialize the worklist W to include all start nodes in the main thread

Main loop:

We evaluate the following statements repeatedly until W =)

(1) n = head(W)
(2) W =tail(W)
(3) GENnoti]yAll (Tl) =0
// If n is a notified-entry node, check if the M set of its waiting predecessor changed
// since the last time n was the current node:
(4) if n € (x,notified-entry, *x) and Mwpreq(n) # M(WaitingPred(n)) then
// For all nodes in the notifiedPartners set of n, check if their waiting predecessors
// are in the M set of n’s waiting predecessor; add each such node to GEN notifyAn(n)
// and remove it from the notifiedPartners set of n:
(5) Vm € notifiedPartners(n):
(6) if WaitingPred(m) € M (WaitingPred(n)) then
(7) GENnotifyAll (’Il) = GENnatifyAll (Tl) U {ﬂl}
(8) notifiedPartners(n) = notifiedPartners(n) \ {m}
// Remember what the Af set of the waiting predecessor of n contained on this iteration:
9) Mwprea(n) = M(WaitingPred(n))
(10) if n € (x,notified-entry,*) then
(11) Compute the set M,y (n) as in equation (3)
else

18

(12) Compute the set My, (n) as in equation (3), except use OUT yuu(WaitingPred(n))
instead of QUT(WaitingPred(n))
// Remove from M,,.,,(n) all nodes that previously appeared there:
(13) Muew(n) = Muew(n) \ M(n)
(14) if 3o : n € notifyNodes(o) then
Examine all waiting nodes in M., (n):
(15) Vm € (Myew(n) N waitingNodes(o)):
// If nis a notifyAll node, insert the notified-entry successor of node m in the
// notifiedPartners sets of those notify successors of n that are not in the same
// thread with m only if it was not inserted there before:

(16) if n € (o,notifyAll, *) then

n Vv € NotifySucc(n):

(18) if WaitingSucc(m) was never inserted in notifiedPartners(v) before and
thread(m) # thread(v), then

(19) notified Partners(v) = notifiedPartners(v) U { WaitingSucc(m)}

// Make the waiting successor of node m a notify successor of the current node
// and also insert it in the GEN set of the current node:
(20) NotifySucc(n) = NotifySucc(n) U { WaitingSucc(m)}
(21) GEN (n) = GEN (n) U { WaitingSucc(m)}
// Also, recompute the KILL set of the current node and insert
it in the M., set for the new notify successor
(22) Mpew(WaitingSucc(m)) = Mpeyw(WaitingSucc(m)) U OUT pu
(23) OUT(n) = (Mpew(n)U GEN(n)) \ KILL(n)
// Do the symmetry step for all nodes in M., (n) and also put all these nodes on the worklist:
(24) Vm € Mpuew(n):
(25) Mpew(m) = Mpey(m) U {n}
(26) W =Wu{m}
// If new nodes has been added to the OUT set of n, add all n’s successors to the worklist
(27) if OUT(n) # 0 then
(28) W = W U (LocalSucc(n) U NotifySucc(n) U StertSucc(n))
// Copy all nodes from My, (n) to M (n) and make the GEN and M., sets of n empty:
(29) GEN(n) =10
(30) M(n) = M(n)U M,ey(n)
(31) Mpew(n) =10
(32) OUTpu(n) = OUT fuu(n) U OUT (n)

The following theorem proves that this efficient algorithm computes precisely the same MHP information
for all nodes in the PEG as that computed by the base algorithm 2. Since both algorithms accumulate the
nodes that may happen in parallel with any given node n in a set A{(n), this theorem proves that for every
node n in the PEG, after both algorithms terminate, the M sets for n computed by the two algorithms are
the same.

Theorem 3. Algorithms 2 and 3 compute identical M information for all nodes of the given PEG graph.

Proof. There are a number of differences between the two algorithms, the most significant being that the
efficient algorithm never puts a node in the OUT set of any node more than once. This restricts the amount
of information that is propagated among nodes. This change necessitates the implementation of the worklist
as a FIFO in the efficient algorithm, so that all successors of the current node are taken from the worklist
before the current node is taken from the worklist again.

Since, according to Lemma 1, the order in which nodes are put on the worklist and taken from the
worklist does not matter, the second difference alone cannot induce different results being produced by the
two algorithms.

In this proof, we superscript the sets computed by algorithm 2 with ®2*¢ and superscript the sets computed
by algorithm 3 with . We subscript these sets with the number of the iteration of the main loop of the

19

corresponding algorithm on which they were computed. For example, OU T(n);f'ﬁr refers to the OUT set of
node n, computed on the j’s iteration of the efficient algorithm 3.

First we prove that for each node in the TFG the efficient algorithm computes a superset of the M set
that the base algorithm computes for this node. For this, we prove the following two statements that, when
combined, result in a stronger statement.

Vi,¥m,n € N,m € M(n)}**¢ = 3j,m € M(n)$¥ (7)

Vi,¥m,n € N,m € OUT(n)?**® = 3j,m € OUT(n)$¥ (8)

We prove both statements at the same time using induction on the number of iterations of the base
algorithm. For the inductive step of the proof, we reason about all possible ways in which a node m may
propagate in the M set of node n by the base algorithm. For each of these ways we show that a mechanism
exists in the efficient algorithm that puts m in M(n). Simultaneously, the same is proved for the QUT sets
for the nodes in the PEG.

For the base case of induction, trivially ¥n € N, M(n)8*¢ = M(n)F = OUT(n)b**e = OUT(n)SF =
By the way of the induction hypothesis, we suppose that both equations (7) and (8) hold for all i <
Consider iteration s + 1.

Let n = head(W) be the current node for this iteration. Suppose that in the base algorithm m is inserted
in M(n)%¢ for the first time on this iteration. Suppose first that m is inserted in M (n)%% by symmetry.
Then it must be the case that 3i < s : n € A (m)?**¢. By the induction hypothesis, 3j : n € M (m);.:ﬁ , and
so m is inserted in M (n),,ew;ﬂ by symmetry, from which it gets in M (n);ﬂ .

If m is not inserted in M (n)2%%¢ by symmetry, we consider several cases based on the label of n. Suppose
first that n € (*,begin,). According to equation (3),

0.
s.

M (n)23%E = M(n)be*e U (U OUT(p)b**¢ \ N(thread(n)))
pE StartPred(n)

By the induction hypothesis, 3j,m € OU T(p);t7 . At this iteration j of the efficient algorithm, since
OUT(p)*¥ changes, all successors of p, including n, are put on the worklist and, since the worklist is
processed in FIFO order, n will be taken from the worklist before p is taken from the worklist the next time.
This means that 35’ > j,m € Mpey (n)jﬁ, and so m € M(n)}ﬂr.

Suppose now that n € (*,notified-entry,). According to equation (3),

M(n)?3% = M(n)be U ((U OUT(p)2***) N OUT(WaitingPred(n))2*®) U GEN norigyan(n)2%¢
P€NotifyPred(n)f'iLi

and according to the efficient algorithm,

Maew(n) | = Mpey (n)eF U ((U OUT(p)F) N OUT juu(WaitingPred(n))8) U GEN youigyan(n)F

s+1
pENotifyPred(n) |

Consider some node m € QUT(p)%**¢, where p € NotifyPred (n)g‘f{’. Since the base algorithm determines
that n is a notify successor of p on some iteration prior to s + 1. In computing notify successors of a node,
both the base and the efficient algorithms use the same procedure, utilizing A sets computed so far for
certain nodes in the graph. By the induction hypothesis, we can conclude that there exists an iteration j
of the main loop of the efficient algorithm, on which n is made a notify successor of p. Suppose first that
35’ < j,me OU T(p);,ﬂ . Then m will be inserted in M,,e,,,(n);?” in line (20) of the efficient algorithm. If, on

the other hand, Vj' < j,m ¢ OU T(p);,ﬂ , then, by induction hypothesis, 35" > j,m € OU T(p)f;t?r , and hence

20

all successors of p, including », are put on the worklist. Since the worklist has a FIFO order, n will be taken

from the worklist before p is taken from the worklist the next time, and thus m will propagate in M. (n)ef,

since by the induction hypothesis, if m € QUT(WaitingPred(n))?®*¢, then 3k, m € OUT(WaitingPred(n) :ﬂ

and hence m € OUT puu(WaitingPred(n))f:” . Then, for ¥’ = max(j", k), OU Tf,,u(p);',ﬁ contains m.
Suppose now that m € GEN not;fy,m(n)gf"_"’f According to equation (2),

GEN pnotifyau (n)gf‘,_’f ={m|3o : m € (o,notified-entry, *) A WaitingPred(n) € M(WaitingPred(m))>**¢ A
(3r € N :7 € (o,notifyAll, «) Ar € (M(WaitingPred(m))t®*¢ N M(WaitingPred(n))%*¢))}

By the induction hypothesis,

3j, WaitingPred(n) € M(WaitingPred(m))$¥ Ar € M(WaitingPred(m))$¥ Ar € M(WaitingPred(n))7.
(9)

Thus, we only have to prove that the efficient algorithm performs all these checks. Note that the efficient
algorithm associates a notifiedPartners set with each notified-entry node n. A node v is added to this set
if it is determined that both v and n are notify successors of the same notifyAll node, which is equivalent
to checking equation (9).

Now consider the computation of QUT sets. According to equation (4),

OUT(n)2%% = (M(n)2%°f U GEN (n)84¢) \ KILL(n)%.

According to the efficient algorithm,
OUT()F = (Myew(n)¥ U GEN(n)$F) \ KILL(n)7.

Since the KILL sets are precomputed and never changed in the main loop of the algorithm, they are the same
for both algorithms. Suppose now that m € A (n)!¢. As we have just proved, 3j,m € M,y (n);ﬁ , and so

m € OUT(n);ﬁ. Suppose that m € GEN(n)%%f. If n is not a notify or notifyAll node, then its GEN
set is constant and the same in both the base and the efficient algorithm. If n is a notify or notifyAll
node, then GEN (n)2%%¢ = NotifySucc(n)?¢. In the part of the proof for M sets we already proved that
the efficient algorithm computes the same notify edges as the base algorithm. Thus, they compute the same
GEN sets.

Showing that the MHP information computed by the efficient algorithm is also computed by the base
algorithm 2 is similar. O

The following theorem states and proves the worst-case time bounds on the efficient version of the MHP
algorithm.

Theorem 4 (Polynomial-Time Boundedness). The worst-case time bound for computing MHP sets for
all nodes in the PEG is O(|N|?).

Proof. In this proof we assume that all sets are implemented as lookup tables and the worklist is a linked
list. Instead of multiplying the maximal possible number of iterations of the main loop by the complexity
of the operations performed on each iteration, this proof reasons about each of the operations that may be
performed on an iteration of the main loop, computing the complexity of this operation over all iterations
of the main loop.

The efficient algorithm puts a node on the worklist if either its M., set changes by symmetry or the
OUT set of one of its predecessors changes. Since the M set of a node can have O(|N|) nodes, the maximal
number of times a node can be put on the worklist because its M set is updated by symmetry is O(|N]).
Because each node has O(|N|) predecessors and the OUT set of each of its predecessors can change O(|N|)
times, the total number of iterations of the main loop is O(|N|3). This bound equals the upper bound on
the running time of this algorithm and so we have to consider all steps in the main loop except those taking

21

constant time (lines 1-3, 26, 28). For the rest of the computations in the main loop we have to use amortized
analysis, estimating their complexity over all iterations of the algorithm.

Consider computations in lines 4-9. Computing the condition in line 4 takes constant time, assuming that
checking equality of two M sets does not require examining these sets element by element®. Since lines 5-9
are computed only if the M set of the unique waiting node corresponding to the current notified-entry
node changes, these lines have to be computed O(|N]) times for each of the O(|N|) notified-entry nodes
in the graph. Computing the loop in lines 5-8 takes O(|NV]), and thus over the complete run of the efficient
algorithm computation of code in lines 4-9 takes O(|N|3).

The My set for the current node is computed according to equation (3), where M (n) is replaced with
M ew(n). The common step for each of the three cases in this equation is to add nodes from the QUT sets of
all predecessors of n. Since any node m € N can appear in the OUT set of a node only once and each node
has O(|N|) predecessors, adding a single node from one of n’s predecessors to M,.,(n) happens O(|N|?)
times for each of N nodes in the graph. For begin nodes there is an additional step of checking that the
node being added is not in N (thread(n)). This takes constant time for each added node and thus does not
change the overall O(|N|3) bound. Similarly, for a notified-entry node n there is the step of finding the
intersection of the union of the OUT sets of n’s notify predecessors with the OUT j,y set of the n’s waiting
predecessor. For each node in this union checking whether it should be placed is in the intersection takes
constant time. Thus, the overall O(|N|3) bound is not changed.

Line 13 takes nodes that are already in M (n) from M., (n). Since each of the N nodes in the PEG can
appear in My, (n) O(N|) times, over the course of the algorithm this check takes O(|N|?) for each of the
N nodes.

For each of the O(]N|) notify and notifyAll nodes, the condition in line 15 is checked O(|N]) times,
since this is the number of times a new node can appear in M., (n). The fact that at this point in the
algorithm a node can appear in M., (n) only on a single iteration of the main loop ensures that the loop in
lines 15-22 is executed O(|N|) times for each of the O(|N|) notify and notifyAll nodes. This means that
over the course of the algorithm, for each such node, loop in lines 17-19 is executed O(|N|) times for each
pair (n,m), where n is a notify or notifyAll node and m is a waiting node for the same lock object. Each
iteration of this loop (lines 18-19) takes constant time. Computation of lines 20 and 21 also takes constant
time. Line 22 adds the OUT s, set of the current node to the M., set of its new notify successor. Since
this is done only once for each notify edge created during the algorithm, over the course of the algorithm it
can be done O(|N|?) times. Each time the operation takes O(|N|). Thus, over the course of the algorithm,
for each notify and notifyAll node the computation of lines 14-22 is O(|N|?).

For each node n in the PEG, the computation of OUT(n) in line 23 is necessary only if either M., (n)
or GEN(n) changes, which happens O(JN|). Similarly, for cach node n, the computations in lines 24-26
take O(|V]) over the whole run of the algorithm.

Since the set OUT(n) can become non-empty O(|N|) times over the course of the algorithm, computations
in lines 27-28 take O(|N|?) for each node in the graph.

Finally, over the course of the algorithm, computing lines 30 and 32 takes O(|N]) for each node in the
graph.

Combining the complexities for all parts of the main loop, we obtain the complexity claimed in the
statement of this theorem. O

5 Conservativeness

To prove that the proposed MHP algorithm is conservative, we define a reachability analysis for computing
the MHP information and then prove that the information computed by the MHP algorithm is not “bet-
ter” than that computed by the reachability approach. Formally, we prove that whenever the reachability
approach determines that two nodes may happen in parallel, the MHP algorithm determines this as well.

3For example, a unique integer ID can be associated with each set. This ID should change when new nodes are added to the
set but should be copied when the set is copied. Then after the assignment in line 9, sets Myyprq(n) and M(WaitingPred(n))
have the same ID. If the comparison in line 4 indicates that these two nodes have different IDs, this means that new nodes have
been added to M(WaitingPred(n)) since the last time n was the current node.

22

For the reachability algorithm, we will characterize states of the program with tuples in which each of
the components represents the state of a single thread. A state of the thread is uniquely given by the node
in this thread that is currently executing and the following two symbols:

B — indicates that this thread is in a “before execution” state, that is, this thread has not been started
yet, and

D — indicates that this thread is in a “dead” state, that is, it has terminated its execution.

We call these tuples markings and refer to them using lower-case Greek letters.

We use A to denote the transition function for markings. This function operates on a marking is associated
with a PEG node present in this marking. The transition function describes the set of markings that can
be obtained as a result of executing this node in the given marking. One or more threads may change their
state as a result of each transition. Let u = (n;,ns,...,ny7|) be the current marking and let n denote the
identity of one of the nodes n;, where 1 < k < |T|. The transition A,(u) depends on the label of node n as
is defined as follows:

n € (t;, start,t;) =

{(n1, ..y ey, o) | 0y € LocalSucc(ny), label(n}) = (*,begin, t;)}, if n; = B;

An(u) = < {1}, if n; = D;
9, otherwise
(10)

ne (tiajOinatk) =

A _ J{(n1,smpy oy Diy ooy) | 0y € LocalSuce(ng)}, if n; = D;
a(p) = . (11)
0, otherwise
n € (o,entry,t;) U (o,notified-entry, t;) =
Nlyeyhyery n} € LocalSucc(ng)}, ifVi,1 <1t <|T|,i # k,n; # Monitor,
A = {0 mim) L) < SIT1yi # ki # Moitor, 1
0, otherwise
n € (o,notify,ty) =
{(n1, ..., 0y, oy myry) | 0 € LocalSuce(ny)}, if vi,1 <1 <|T|,n; & (o,waiting, %)
An(p) = UlSiSIT!:n;E(o,Haiting,*){(nl’ ey Ty weey Ry ey 1y Y) |
ny, € LocalSucc(ny)}, where ,n; = WaitingPred(n}), otherwise
(13)
n € (o,notifyAll, t;) =
{(n1, s gy oy ypy) | 0 € LocalSuce(ny)}, ifVi,1<i<|T|,n; & (o,waiting,)
{(n1, s, oy ooy 0oy mypy) | 1), € LocalSuce(ng)},
An(p) = where V5,1 < j <r,nj; € (o,waiting, *),
ni; = WaitingPred(n;)
AVs:Vj,1<j<r,s#rns € (o,waiting,), otherwise
(14)
otherwise
Ap(p) = {(n1, .. g, ooy yy) | Nt € LocalSuce(ny)} (15)

23

If node n is not one of the nodes in the given marking g, we define A, (1) to return the empty set:
Ap(p) =0if n € N(t) and g = (n1, ..., 2, .-, 2y7y), Where ng #n (16)

The reachability graph is constructed in the usual way, picking nodes in the current marking one by one
and executing their transition functions, connecting each resulting marking with the current one by an edge.
This process starts with the initial marking po = (no, B2, ..., Bj1y), where label(no) = (*,begin,main). We
denote the set of all reachable markings for a program ReachMarkings.

The following theorem proves that the presented reachability algorithm produces a conservative estimate
of all reachable states of a concurrent Java program.

Theorem 5. For any program state reached during the program exzecution there exists a marking p produced
by the reachability algorithm.

Proof. We prove this by induction on the length of the program execution, measuring it by the length of
the corresponding sequence of PEG nodes. This proof relies on our belief that the transitions presented in
equations (10) — (16) completely and correctly describe the set of all possible actions in a concurrent Java
programs under restrictions described in Section 2.1.

Before any code was executed, the program is in its initial state, where only the main thread is initialized
and ready to start execution. This is represented by marking .

Suppose the statement of the theorem holds for the first s steps of the program execution

Consider the s+ 1’st step of the execution. Since a step of the execution is represented by an instruction
in one of the threads, and these instructions are mapped to the PEG nodes, this execution can be represented
by the execution of a PEG node. The transitions of the reachability function accurately describe all possible
results of an execution of a PEG node. Therefore, the state of the program reached as the result of this
s + 1'st step is represented by one of the markings obtained as the result of the reachability algorithm
transition based on the executed node. O

Before we prove conservativeness of the MHP algorithm, we prove the following lemma stating that the
reachability algorithm never produces a marking containing two nodes from the same monitor.

Lemma 6. Vu € ReachMarkings,Ym,n € u : ~3Monitor,,n,n € Monitor,.

Proof. We prove the statement of this lemma by induction on the path from o to x. To prove the inductive
step, we investigate all possible ways in which nodes from monitors may be inserted in the markings. For
each of these ways we show that a node from a monitor is never inserted in a marking if this marking already
contains a node from this monitor.

If the length of this path is 0 (in other words, u = ug), the statement of this lemma trivially holds, since
the initial marking contains only one node (the first node of the main thread).

Suppose that the statement of this lemma holds for all paths from po to p of length s.

Consider any g such that the path from po to g has length s+ 1. Let u’ be the previous marking on this
path, i.e., the p' is reachable from p in s transitions and 3r € N : u € A, (¢'). By the induction hypothesis,
the statement of this lemma holds for u’. Consider the following cases based on the label of r.

Suppose first that 7 € (o, entry, *) U (o,notified-entry, *) for some lock object 0. By the transition
rule (12), in order for transition A,(y') to produce a non-empty set of markings, it should be the case that
no nodes in x4’ except 7 may be in Monitor,. Since only 7 is changed in marking p' to obtain marking p,
the statement of the lemma holds for u.

Now consider all other labels, i.e., r € (*,entry, *) U (¥,notified-entry, *). By the construction of the
PEG, a thread enters a monitor only after its current node changes from an entry or notified-entry node
to any of its successors. According to the transition rules, this is possible only as the result of transition (12).
Thus, since all other transitions cannot change the number of nodes from any given monitor in the marking,
the statement of this lemma holds for p. O

The following theorem proves conservativeness of the MHP algorithm by showing that for any marking
obtained by the reachability algorithm, all pairs of nodes from this marking are identified by the MHP
algorithm as able to happen in parallel with each other.

24

Theorem 7 (Conservativeness). Yu € ReachMarkings,Yn,m € p:n € M(m) Am € M(n).

Proof. We prove this theorem by induction on the length of the path from g to p. For the inductive step
we consider the last transition on the path from pgo to p. We consider all possible labels for the node on
which this transition is based. For each label, we show that, under the inductive hypothesis, any two nodes
that appear in marking p are placed in the M sets of each other by the base algorithm 2. The statement of
this theorem trivially holds for a path of length 0 (1 = o), since po contains only one PEG node.

Suppose that the statement of this theorem holds for all markings reachable from the initial marking via
a path of length s.

Now consider any marking u reachable from g via a path of length s+ 1. Let u’ be the previous marking
on this path, i.e., the g’ is reachable from yp in s transitions and Ir € N : u € A,(y'). By the induction
hypothesis, the statement of this lemma holds for p'. We consider all possible cases based on the label of r.
Note that in all cases it is implied that if neither n nor m were changed by transition A,, by the induction
hypothesis n € M (m). Also, in all cases the symmetry step of the MHP algorithm ensures that whenever it
is proved that n € A/(m), it automatically follows that mn € Af(n), and vice versa.

T € (tr,start,t;) There are several possibilities that depend on the place of n and m in gx. Suppose first
that n = n; (and thus r € LocalPred(n)) and m # ny. Then m € u'. By the inductive hypothesis
(r € ' as well), m € M(r). According to the MHP algorithm, m is placed in OUT(r) (KILL set of a
start node is always empty). Thus, m propagates into IN pocarprea(n) and hence into A (n).

Suppose now that n = n; and m = ng. Then, according to the reachability transition (10), m €
(*,begin, tt). Then the MHP algorithm puts m in the GEN 44,4 (r) set. Hence, m € OUT(r) = M (n).

Suppose that n # n; and m = ng. Then n € u’' and so by the inductive hypothesis, n € M(r) = n €
M(r) = n € OUT(r) = n € IN siartprea(m) = n € M(m).

r € (tg, join,t;) Suppose first that n = n; and m # nx. Then m € g’ and by the inductive hypothesis
m € M(r). Because m € N(t;), it follows that m & KILLj,in(r). Hence, m propagates into OUT(r)
and from there into M (n).

Note that it is impossible that m = n; because for the transition (11) to be possible, it must be the
case that ny = Dy, before the transition. Since this transition does not change ny, it remains equal D),
after the transition.

r € (o, entry,t;) U (o,notified-entry,t;) Suppose n = n;. Because the transition (12) changes only one
node in the marking, m € p'. By the induction hypothesis, m € M(r). Then, by construction
of monitors (any entry node is outside the monitor but all its successors are inside the monitor),
n € Monitor,. By Lemma 6, m ¢ Monitor,, and so m € KILLponitor (r). Thus, m € OUT(r), and so
m propagates into M (n).

r € (o,notify,t;) We consider several possibilities based on the position of m and n in marking p and
their labels. Suppose first that n = n;, m € (o,notified-entry,t;), and m is a new node in the
marking (i.e., m ¢ u'). Let node u be the waiting predecessor of m: u = WaitingPred(m). Since
u € ', by the inductive hypothesis u € M (r). According to the MHP algorithm, this is the necessary
condition for » € NotifyPred(m). Using this connection between r and m, the MHP algorithm puts m
in GEN 545y (r). Because m is not a waiting node, m ¢ KILL(r), and so m € OUT(r) = m € M(n).

Suppose now that n = n; and m is not a new node in the marking. Then m € y' and so m € M(r).
Suppose that m € (o,waiting, *). According to the transition rule (13), there must have been another
waiting node for the monitor of the lock object o in marking p' that was used for this transition. Thus,
3Im,q € i’ :m,q € (o,waiting, x). This means that m ¢ KILL,otigyan(r). If m is not a waiting node
for the monitor of the lock object o, then m ¢ KILL,ouifyan(r). Hence, m € OUT(r) = m € M(n).

Suppose that n # n; and m is a new notified-entry node in the marking. Since n € ', by the
induction hypothesis n € M (r). Suppose first that n € (o,waiting, *). This means that n ¢ KILL(r)
and son € OUT(r) = n € IN notiyprea(m) = n € M(n). Suppose now that n € (o,waiting, x). Then
there are at least two waiting nodes for the monitor of the lock object o in markings g'. It follows
that n € KILLouipyau(r) = n € OUT(r) = n € M(m).

25

class MyThreadl class MyThread2 extends Thread
{
Object lock; MyThread2 ()
public MyThreadl(Cbject obj) {
{ suger{):
lock = obj;
} public void run()
public veid run() {
{ Object lock = new Object();
synchronized (lock) MyThreadl tl = new MyThreadl(lock);
{ synchronized (lock)
System.out.print{"stmcl=); (
tl.start{);
} System.cut.print{*stmt3*-):
} tl.jein();
)
class Main }
{ }
public static void
main({String (] args)
{
MyThread2 t2 = new Mythread2();
t2.stare();
System.out.print{°stmt2°};
}
)

Figure 9: Code for a counter-example showing that the MHP algorithm is less precise than the reachability
algorithm

r € (o,notifyAll,t;) Transitions on notifyAll nodes may produce multiple new notified-entry nodes
in marking resulting from the transition rule (14). Also, according to the same transition rule, marking
4 contains no waiting nodes for the monitor of the lock object used in this transition.

Suppose first that n = n; and m is a new notified-entry node in marking p. Reasoning that proves
that m propagates into M (n) is the same as in the similar case for transitions based on notify nodes.

Suppose now that n # n; and n is not a new notified-entry node, while m is a new notified-entry
node. Then n € u' and by the induction hypothesis n € A{(r). Since, according to the rules of
this transition, it is impossible that n € (o,waiting,*), n &€ KILL(r) = n € OUT(r) = n €
INNoﬁfyPred(m) =>neE A’I(Tn).

Suppose that both m and n are new notified-entry nodes in marking pu. Let py = WaitingPred(n)
and p; = WaitingPred(m). Since py,p2 € p', by the induction hypothesis p; € M(p2)Ar € M(p1)Ar €
M (p2). Hence, n € GEN notigyan(m) and thus n € M(m).

Finally, suppose that n = n; and m is not a new notified-entry node. Then m € p’' and by

the induction hypothesis m € M(r). According to the transition rule (14), it is impossible that
m € (o,waiting, *), which means that m ¢ KILL(r) = m € QUT(r) = m € M(n).

All other cases Whenever a transition happens based on a local event, only one node r in marking p’
changes to one of its successors. Suppose that n is such a successor in marking p. Since m € ', by

the induction hypothesis m € A{(r). Since KILL(r) = @, m propagates into OUT(r) and from there
to M(n).

Note that the list of all possible labels of r is missing the possibility of r being a waiting node. The reason

for this is that a transition (15) based on a waiting node produces no new markings because waiting nodes
have no local successors. O

The following lemma shows that in general the MHP algorithm is not as precise as the reachability
algorithm. This is done by showing a counterexample to the hypothesis that the MHP algorithm is not less
precise than the reachability algorithm.

Lemma 8. 3 @ program such that 3m,n € N : m € M(n) AVu € ReachMarkings: m € uAn & p.

Proof. We prove the statement of this lemma by demonstrating an example, the code for which is shown in
Figure 9 and the corresponding PEG shown in Figure 10. For this example the MHP algorithm finds a pair
of nodes that never happen in the same marking found by the reachability algorithm.

In this program, the main thread starts thread t2 and then executes a print statement. Thread t2 enters
a monitor, starts thread t1, executes a print statement, waits for thread t1 to terminate and then exits the

26

tl t2 main

o
3 .
,,,,,,,,,,
. .
‘. .
""""""""

nig

72 |(lock,entry,t1) M7 {(lock,entry, t2)

X ? fg [(s1,start, 2)
n4 (lock,exit,t1)

715 |(*, print,main)

N1e I(*, end,main)l

ne

ns

(t1, join, t2)
71 [(10ck, exit, t2)

no

N2

Figure 10: PEG for the counter-example in Figure 9

monitor. Thread t1 enters the same monitor, executes a print statement and then exits the monitor. Note
that the example program always deadlocks, because by the time thread t2 starts thread t1 (at node ng),
thread t1 is already in the monitor. Further, thread t1 does not exit the monitor before calling the join
method of thread t2 (at node n)0). This means that thread t1 can never enter the monitor, in other words,
go past node n,. Thus, the program enters a state where thread t2 is waiting for thread t1 to terminate
and thread t1 is waiting for thread t2 to exit the monitor. This lets the reachability algorithm detects that
node n3 is not reachable. In the MHP algorithm, however, node n;5 can propagate into M (n3) (since node
ns is not in the monitor, it can propagate from OUT (n2) in M(n3).

6 Experimental Results

In this section we present the results of an initial experimental evaluation of the MHP algorithm. We
compare the precision and analysis time of our algorithm with that of a reachability-based analysis algorithm
introduced in Section 5. This reachability algorithm represents a theoretically more precise but less efficient
way to compute the MHP information. We show that for the sample of concurrent Java programs we used in
this study, our algorithm has significantly lower timing requirements than the reachability algorithm, while
being almost as precise. In the next subsection we describe the design of our experiment and the programs
we used. In Section 6.2 we give the numerical results of the experiment. Finally, in Section 6.3 we discuss
and summarize the results of this experiment.

6.1 Design of the Experiment

We use the reachability analysis approach from Section 5 to measure the precision of the MHP analysis.
According to Theorem 7, the reachability analysis always computes at least as precise MHP information as
the MHP algorithm. (The reachability algorithm exhaustively examines all possible paths through the PEG
and thus finds not only pairs of nodes that may happen in parallel, put also triples, quadruples etc. of such
nodes. This adds precision because more information about node interaction is captured.) Thus, the MHP
information computed by the reachability analysis represents an “ideal” MHP information for the program.
Note that this does not imply that if the reachability algorithm finds that two nodes may happen in parallel,
then there exists a real execution of the program on which these two nodes happen in parallel. It is possible

27

that in reality no such execution exists because manipulations of program variables preclude some of the
executions of the program that were examined by the reachability algorithm.

We measure the precision of both the MHP algorithm and the reachability analysis by the number of
pairs of nodes that this approach claims can happen in parallel. The smaller this number, the more precise
is the approach, since both approaches can never underestimate the possibility for two nodes to happen in
parallel. We write Ppyyp for the set of pairs found by the MHP algorithm and Ppregscn for the set of pairs
found by the reachability analysis. We say that the MHP algorithm is perfectly precise if Pyyp = Preach-
For the cases where this equality does not hold, we are interested in the ratio between the number of spurious
MHP pairs and the number of all pairs found by the reachability analysis (|Pyup \ Preachl)/|Preact|-

In comparing time requirements for the two approaches, we do not not include the time taken to derive
the PEG model, because this has to be done by both approaches. Thus, for each example we compute three
timing characteristics: the time to build the PEG model, the time to run the MHP algorithm, and the time
to run the reachability analysis for this example. For our experiments, we used a Symantec JIT compiler for
JDK 1.1 on a workstation equipped with a 266 MHz Pentium II processor and 128Mb of memory, running
Windows NT.

Because there is no standardized benchmark suite of concurrent Java programs, we collected a set of
Java programs from several available sources. We modified these programs to enable the parser currently
used with the MHP algorithm to handle them, so that we could use all the example without a preliminary
semantical analysis. In addition, we removed the timed versions of the synchronization statements and any
exception handling, since thse are currently not handled in our algorithm.

The majority of our examples came from Doug Lea’s book on Java concurrency [9] and its Web supple-
ment [10]. For the majority of these examples Lea gives only the classes implementing various synchronization
schemes, sometimes with a brief example of their use in concurrent programs. We used these synchroniza-
tion schemes to construct complete multi-threaded programs. For example, given the class Semaphore, we
wrote a program that consists of four threads, each of which repeatedly asks for permission to enter a single
common semaphore. This semaphore permits no more than a pre-set number of threads to execute a critical
region of code. After having received permission to enter the semaphore, each thread executes this critical
region and then exits the semaphore. In this and most other examples we removed some statements, such
as assignment statements, that do not affect the precision of the MHP information computed by either the
MHP algorithm or the reachability algorithm. This allowed us to reduce the size of the reachable state space
for the examples, which enabled the reachability algorithm to complete in more cases. Similarly, for exam-
ples involving a number of identical threads, such as producer-consumer type of examples where a number
of producer and consumer threads utilize a shared resource, we sometimes had to decrease the number of
threads to enable the reachability algorithm to handle these cases.

Several more examples in our set came from other sources [1, 2, 3] on the Web. Finally, we wrote Java
implementations for several of the Ada concurrent examples, such as dining philosophers, that are commonly
used in the concurrency analysis literature. The following table lists all 29 examples and for each gives its
brief description and an indication of where it comes from.

| Name

Description | From

AlternatingMessagePrinter A simple example with two threads alternatingly en- | p. 19, [9]
tering a monitor to print a line of text.

AutomatedBanking Extends the PessimBankAccount example by adding | p. 290, [9]
a thread that automatically transfers money from a
checking account to the linked savings account if the

amount in the checking account exceeds a certain
threshold.

GroupPictureRenderer Simulates rendering a picture. The main thread di- | p. 206, [9]
vides the picture into three parts and starts a thread
to render each of the parts. The main thread then
waits for these three threads to terminate before pro-
ceeding to assemble display the completed picture.

28

HeatingSystem

A temperature sensor measures outside temperature
and passes the measurement on to a temperature com-
parator, which decides whether the temperature is
above or below optimal. The comparator then passes
a command onto a heater to either turn on or turn off.
The three threads implementing these three entities
communicate via bounded synchronized buffers.

based on p. 227, [9]

HeatingSystemPutTake

Same as the HeatingSystem example, except that
threads communicate via zero-capacity put-take con-
nectors [10].

based on p. 227, [9]

PCTwoLockQueue

Two producers and two consumers operate on a syn-
chronized queue that uses different locks for putting
elements at the end of the queue and taking elements
from the front of the queue.

based on p. 76 and p.
144, [9]

PessimBankAccount

Two users have access to two accounts. The avail-
able operations are a deposit to, withdrawal from an
account, and transfer between the two accounts.

p. 271, [9]

PrintService

Two print service threads compete for a single printer
resource. Instead of using a synchronized resource, the
threads use their own locks to gain exclusive use of the
printer. This example contains a deadlock.

p. 52, [9]

RWVSN

An example with two readers and two writers accessing
a shared resource. A complicated system of locks is
used to implement an efficient queueing mechanism.

p. 301, [9]

SplitRenderer

Similar to the GroupPictureRenderer example, except
here the main thread uses the join mechanism instead
of the wait() mechanism to wait for the four threads
that it starts to terminate.

p- 204, [9]

SplitRendererNested

Similar to the SplitRenderer example, except that the
main thread starts two helper threads, each of which
may or may not start two more helper threads. The
join mechanism is used to ensure that the helper
threads complete.

based on p. 204, [9]

Threaded Applet

A very simple applet involving three threads without
synchronization.

p. 15, [9]

Threaded AppletV2

The ThreadedApplet example with a single monitor
added.

p- 15, [9]

CyclicBarrier

Implements the synchronization scheme where all
threads (four in this instantiation) repeatedly synchro-
nize at a single point.

[10]

LayeredSemaphore

Protects a region of critical code with two semaphores
instead of one, as in the Semaphore example. Four
threads repeatedly access this region of critical code.

based on LayredSync,
(10]

Mutex

Implements a non-reentrant locking mechanism. This
example contains three threads that repeatedly ac-
quire and release this lock and one thread that at-
tempts to acquire this lock twice without releasing it
between the first and second acquisitions.

[10]

29

Semaphore

Contains four threads that repeatedly enter a
semaphore that permits a limited number of threads
to execute at the same time.

(10]

SemaphoreControlledChannel

Two sending and two receiving threads use a message
channel that is protected with two semaphores.

(10]

BridgeTest

Simulates a one-lane bridge that can hold at most 3
cars at a time. This example represents an instantia-
tion with 6 cars.

(1)

OneCarBridgeTest

Simulates a one-lane bridge that can hold at most 1
car at a time. This example represents an instantiation
with 6 cars.

(1]

CHAN_OF_INT

An example of two readers and two writers using the
channel with different queues for waiting readers and
writers

[2]

CorrectHalves

An applet that starts two threads, of which one scans
down the top of the window, drawing it alternately red
then white, and one which scans down the bottom of
the window, drawing it alternately green then black.

8]

CorrectSquares

An applet that starts two threads which attempt to
simultaneously cause squares of random sizes to be
drawn.

(3]

IncorrectHalves

Same as the CorrectHalves example except that insuf-
ficient synchronization results in colors appearing in
incorrect halves of the screen.

[3]

IncorrectSquares

Same as the CorrectSquares example except that in-
sufficient synchronization results in the possibility of
drawing non-square rectangles.

(3]

Chiron

Our implementation of an instantiation of a Chiron
user interface architecture [7].

Written by the
thors based on
Ada example

au-
the

Phil

The dining philosophers example with three philoso-
phers sitting in a circle. Each of the philosophers
alternates between eating and thinking. To eat, a
philosopher must acquire two forks, each of which it
shares with one of its neighbors. To avoid deadlock, all
philosophers except one pick the fork to their left first,
then the fork to their right. All philosophers are im-
plemented with threads and the forks are represented
as resources shared by the philosopher threads.

Written by the
thors based on
Ada example

the

RW

The readers-writers example with two readers and two
writers repeatedly accessing a single shared object pro-
tected by a single lock.

Written by the
thors based on
Ada example

au-
the

GasStation

A simulation of a gas station with three customers,
one cashier, and one pump. To get gas, each cus-
tomer must pay the cashier first. Having obtained a
payment, the cashier orders the pump to dispatch a
certain amount of gas to the correct customer. All
customers and the cashier are implemented as threads
and the pump and the cash register are implemented
as shared synchronized resources.

Written by the
thors based on
Ada example

au-
the

30

Program Threads | Nodes | Synch. | |Puup| |P sup R | time [time time

nodes \P geach | PEG | MHP Reach
AlternatingMessagePrinter 3 35 27 261 0 0| 0.33 0.10 0.08
AutomatedBanking 3 280 182 | 11166 0 0| 0.27 2.03 7.51
BridgeTest 5 66 46 1193 0 0 0.24 0.15 11.79
CHAN_QF_INT 5 62 54 974 40 | 0.043 | 0.26 0.13 5.76
Chiron 5 112 87 3382 0 0| 0.26 0.29 | 1059.57
CorrectHalves 3 33 24 188 0 0| 0.67 0.11 0.08
CorrectSquares 4 33 21 271 0 0| 024 0.08 0.14
CyclicBarrier 5 54 38 887 0 0 0.3 0.12 10.45
GroupPictureRenderer 4 35 26 240 0 0| 023 0.09 0.13
GasStation 5 93 71 2626 0 0| 0.29 0.24 84.61
HeatingSystem 4 66 41 1140 0 0| 0.27 0.17 2.69
HeatingSystemPutTake 4 76 53 1497 0 0] 0.25 0.21 4.56
IncorrectHalves 3 31 20 174 0 0| 0.23 0.08 0.06
IncorrectSquares 4 27 15 171 0 0 0.23 0.08 0.09
LayeredSemaphore 4 77 59 1720 0 0| 024 0.21 5.90
Mutex 5 75 54 1688 0 0| 0.69 0.23 36.25
OneCarBridgeTest 7 39 32 420 0 0| 0.29 0.08 10.29
PCTwoLockQueue 5 34 22 358 0 0] 0.25 0.09 1.01
PessimBankAccount 3 446 288 | 44128 0 0} 035 6.28 41.91
Phil 4 68 59 1355 0 0| 0.26 0.19 3.78
PrintService 3 23 16 108 0 0| 027 0.08 0.05
Readers-writers b 56 46 876 0 0] 024 0.11 7.75
RWVSN 5 116 80 3224 0 0| 030 0.27 | 107.81
Semaphore 5 66 46 1349 0 0] 049 0.17 25.23
SemaphoreControlledChan) 66 46 1423 0 0] 0.25 0.16 32.22
SplitRenderer 5 33 18 250 0 0 021 0.08 0.22
SplitRendererNested 7 51 26 727 50 | 0.074 | 0.25 0.09 4.74
ThreadedApplet 3 10 8 18 0 0| 0.20 0.06 0.04
Threaded AppletV?2 3 14 12 36 0 0] 0.21 0.08 0.05

6.2 Results

Figure 11: Raw experimental data

Figure 11 presents the raw data of running the MHP and reachability algorithms on our set of examples.
In this figure, for each example Java program, the first column gives the name of the program; the second
column gives the number of threads, including the main thread; the third column gives the overall number
of nodes in the PEG model of the example; the fourth column gives the number of nodes that are used to
model thread synchronizations, e.g., waiting nodes; the fifth and sixth column give the number of node
pairs found by the MHP and reachability algorithm respectively; the seventh column gives the number of
node pairs found by the MHP algorithm but not by the reachability analysis; finally, the eighth, ninth, and
tenth columns show the time in seconds taken to construct the PEG for the example and to run the MHP
and reachability algorithms respectively.

Note that out of the 29 example programs, the MHP algorithm was less precise than the reachability
algorithm on only two examples, CHAN_OF_INT and SplitRendererNested. In the latter, the main thread

31

starts two helper threads (external helper threads) and then executes join() for each of them. Each of these
helper threads can in turn spin off two helper threads of their own (internal helper threads) and then execute
join() for each of them. The information available to the MHP algorithm is not sufficient to deduce that
when a call to the join() method of one of the external helper threads in the main thread succeeds, it means
that both internal helper threads for this external helper thread, if started, must have terminated. Note
that this example was constructed by us specifically to demonstrate a case where imprecision is introduced
in this way. While this example represent a reasonable architecture, it would be interesting to see if the
join() mechanism of Java is used in similar examples in practice.

6.3 Discussion

The results of this initial experiments are very encouraging, as they show that our algorithm is both very
precise and efficient. Of the 29 examples we ran the MHP algorithm and the reachability analysis on, only in
two cases did the MHP algorithm find some node pairs that were not found by the reachability analysis. In
both of these cases the number of pairs found by the MHP algorithm that were not found by the reachability
analysis was small compared to the total number of pairs of nodes that may happen in parallel (40 out of
934 for the CHAN_OF_INT example and 50 out 677 for the SplitRendererNested example).

The timing data indicate that in practice the MHP algorithm is very efficient. For all examples, except
the AutomatedBanking and PessimBankAccount examples, running the MHP algorithm took under 1 sec-
ond. For all but the simplest examples running the MHP algorithm took much less time than running the
reachability analysis. In fact, for most examples it took more time to construct the PEG model than it took
to run the MHP algorithm.

7 Conclusions

Information about which pairs of statements may execute in parallel has important applications in opti-
mization, detection of anomalies such as race conditions, and improving the accuracy of data flow analysis.
Efficient and precise algorithms for computing this information are therefore of considerable value. In this
paper, we have described a data flow method for computing a conservative approximation of the set of pairs
of statements in a concurrent Java program that may execute in parallel. Qur algorithm has a worst-case
bound that is cubic in the number of statements in the program.

We carried out an initial experiment evaluating the precision of our algorithm against the precision of a
technique based on the exhaustive exploration of the program state space. Since this reachability technique,
which is exponential in the program size, is not practical in general, we restricted the size of our example
programs to those for which we could compute the “ideally” precise MHP information. On 27 of the 29
example programs, the MHP algorithm produced as precise results as the reachability analysis.

In the future, we plan to extend the MHP algorithm to apply to programs containing method calls
without using inlining. Even in its current form, the MHP algorithm does not require inlining methods that
do not contain thread synchronizations. Such methods calls may be represented in the PEG for the program
with a single node, where the MHP information computed for this node is sufficient to determine the MHP
information for all nodes in the corresponding method. Thus, if n is a call node for method M, then any node
in the body of M may happen in parallel with any node that may happen in parallel with a node representing
the call to M. Special care must be taken when there is a possibility that a method may be called by more
than one thread, in which case executions of multiple instances of this method may overlap in time. In this
case, unlike thread nodes, the MHP information for the nodes from this method will contain other nodes
from the same method. To determine whether this might happen, we have to check whether any of the call
nodes to M is in the MHP set of any of the other call nodes to this method (this has to be done recursively
for nested method calls), in which case the MHP sets of all nodes in M must contain all nodes in M.

In the case of methods containing thread synchronization mechanisms, we plan to use a context-sensitive
approach, extending the PEG model to include method call and return edges, similar to the approach of 6],
and modifying the MHP algorithm accordingly.

32

At present, the MHP algorithm is being used as a part of the FLAVERS/Java tool [14] for data flow-
based verification of application-specific properties of concurrent Java programs. Using the MHP algorithm
results in a more precise model of concurrent execution. We plan to measure the impact of the precision
improvements obtained and overheads incurred by using the MHP algorithm on data flow algorithms used
in verification of concurrent Java programs.

References
[1} http://vislab-www.nps.navy.mil/~ java/course/sourcecode.
[2] http://wuw.hensa.ac.uk/parallel/groups/wotug/java/applets.
[3] http://wuw.kai.com/assurej.

[4] D. Callahan and J. Subhlok. Static analysis of low-level synchronization. In Proceedings of the SIG-
PLAN/SIGOPS Workshop on Parallel and Distributed Debugging, pages 100-111, 1988.

[5] E. Duesterwald and M. L. Soffa. Concurrency analysis in the presence of procedures using a data flow
framework. In Proceedings of the ACM SIGSOFT Fourth Workshop on Software Testing, Analysis, and
Verification, pages 36-48, Victoria, B.C., October 1991.

[6] S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow analysis. In Proceedings of the
Third ACM SIGSOFT Symposium on the Foundations of Software Engineering, pages 104-115, Oct.
1995.

[7] R. K. Keller, M. Cameron, R. N. Taylor, and D. B. Troup. User interface development and software
environments: The chiron-1 system. In Proceedings of the 13th International Conference on Software
Engineering, pages 208-218, October 1991.

[8] J. Krinke. Static slicing of threaded programs. In Proceedings of the ACM SIGPLAN/SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, pages 35-41. ACM Press, June
1998.

[9] D. Lea. Concurrent Programming in Jave. Addison-Wesley, Reading, MA, 1997.

[10] D. Lea. Concurrent programming in Java. Design principles and patterns, online supplement. http:
//gee.cs.oswego.edu/dl/cpj/index.html, Sept. 1998.

[11] S. Masticola and B. Ryder. A model of Ada programs for static deadlock detection in polynomial time.
In Proceedings of the Workshop on Parallel and Distributed Debugging, pages 97-107. ACM, May 1991.

[12] S. Masticola and B. Ryder. Non-concurrency analysis. In Proceedings of the Twelfth of Symposium on
Principles and Practices of Parallel Programming, San Diego, CA, May 1993.

[13] G. Naumovich and G. S. Avrunin. A conservative data flow algorithm for detecting all pairs of statements

that may happen in parallel, Nov. 1998. To appear in the proceedings of the Sixth. ACM SIGSOFT
Symposium on the Foundations of Software Engineering. http://laser.cs.umass.edu/abstracts/
98-023.html.

(14] G. Naumovich, G. S. Avrunin, and L. A. Clarke. Data flow analysis for checking properties of concurrent
Java programs. Technical Report 98-22, University of Massachusetts, Amherst, Apr. 1998. http:
//laser.cs.umass.edu/abstracts/98-022.html.

[15] R. N. Taylor. Complexity of analyzing the synchronization structure of concurrent programs. Acta
Informatica, 19:57-84, 1983.

33

