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Abstract

The long-term goal of this collaboration between the Baystate Medical Cen-
ter and the University of Massachusetts is to establish a working understanding of
the relationship between blood pressure treatment and ischemic stroke patient out-
come. An intermediate goal is the determination of the relationship, if any, between
changes in stroke lesion size and patient outcome. To this end, the University of
Massachusetts is developing a system to automatically determine stroke lesion vol-
ume using a custom graphical user interface for a technician to supply an initial
focus of attention.

This report describes progress and results for the first six months of the project.



Introduction

This project is a research collaboration between the Baystate Medical Center, led
by Dr. Pleet, Head of the Neurology Department, and Dr. Hicks of in the Radiology
Department, and two departments of the University of Massachusetts: the Computer
Science Department and Mathematics and Statistics Department. The long-term
goal of this project is to develop and study treatment protocols for ischemic stroke
patients. A stroke occurs when blood does not properly supply a region of the brain.
The result may be some degree of brain damage that is due to damaged or dead
cells. The damaged region is known as infarct, an abnormal brain region, or a lesion.

The general goal of the clinical study is to establish a working understanding
of the relationship between blood pressure treatment and patient outcome and our
specific goal is to develop semi-automated methods to quantitatively determine the
volume of abnormal brain regions and relate it to patient condition.

Our subgoals are to provide a simple user interface to facilitate interactive spec-
ification of initial lesion location, to allow the user to reshape the identified lesion,
and to automatically identify lesion extent in adjacent slices. From this, a lesion
will be automatically detected on every slice and its volume will be computed.

Many techniques have already been applied to medical imaging [1] but they have
not yet been integrated into a system for automatic volume determination.

One approach to lesion detection is based on image segmentation by using active
contour models [6, 11]. An active contour model, or “snake”, is defined by an energy
functional which is a weighted combination of internal and external energies. Snakes
dynamically alter their shape and position in order to seek a minimal energy state.
The initial snake contour will be defined by a human operator via a human interface
and the final shape of the snake will represent the edge of the lesion.

Another approach in lesion detection is statistical. We examine samples of inten-
sities in an image, and use them to determine a way to segment it into its ”lesion”
and "non-lesion” components. The results of the statistical segmentation can be
naturally integrated with the snake lesion representation by expressing the results
of the segmentation as a force applied to the snake. We will refine our segmentation
results by exploiting edge orientation information and generalizing our statistical
models, as described below. We will also integrate lesion segmentation results from
single slices into a full three dimensional representation by adding an orthogonal set
of snakes that extend two dimensional smoothness constraints to three dimensions.
These future efforts are also described below.



1 Motivation

1.1 What is a stroke lesion?

The human brain consists of more than 10 billion cells. These cells use a surprising
amount of energy in the form of oxygen and glucose. While the brain represents
only 2% of total body weight, it consumes up to 25% of the oxygen used by the
body.

A stroke occurs when an artery to the brain bursts or becomes clogged, thereby
stopping or interrupting the blood supply to the brain. Deprived of the blood’s
essential oxygen and nutrients, even for only a few minutes, the brain cells begin to
die. Dead cell regions are known as infarcts or lesions. Since dead brain cells do not
regenerate, damage from a stroke is often permanent. Depending on what portion
of the brain is affected by the stroke, the result may be some degree of brain damage
and loss of function affecting speech, vision, or memory. A stroke may also result in
paralysis, coma or death. Cells that are damaged but potentially viable are known
as penumbra.

If a stroke occurs, blood pressure is elevated at the time of admission to the
hospital (blood pressure greater than 140 mm Hg systolic and/or greater than 90
mm Hg diastolic).

1.2 Study of treatment

The long-term goal of this project is to provide an effective treatment to people suf-
fering acute strokes. Studying possible treatments involves the following questions:

e [s there improvement or worsening in outcome when blood pressure is treated
(scoring on neurological and functional scales) 7

e Should blood pressure treatment be vigorous, or minimal?

e [s there a change in the ischemic penumbra with treatment,and can doctors
predict the effectiveness of the treatment?

For the study, affected individuals will be divided into three ”treatment” arms:
e No treatment for blood pressure.

e Treatment of blood pressure until it is normal.

e Treatment of blood pressure until it is halfway to normal.



Each patient will have a quantitative neurological examination every day for
the five days they are in the hospital, and again 30 days following discharge. At
the time of admission another scaling measurement will be used to assess their
physical abilities (as opposed to neurological abnormalities). This measurement will
be repeated 30 days after discharge from the hospital. A scan of the brain will be
obtained just prior to discharge from the hospital (approximately day four or five)
and will be repeated on the 30 day follow—up visit.

Both the use of a tool that allows the physician to compute the change in volume
of the lesion between two scans and the study of the relationships between the
change in volume and the treatment can readily change treatment modalities. The
physicians plan to study the consequences of treating blood pressure as well as
the effect of ”cerebral protective” agents in acute stroke, including calcium channel
blocking drugs, NMDA channel blocking drugs, throbolytic agents (”clot busters”),
and a host of others.

1.3 Imaging the lesion

Magnetic Resonance (MR) Imaging is a technique that produces images of the body
using Nuclear Magnetic Resonance properties of tissues [10]. MR imaging does not
use ionizing radiation and can produce contrast between different tissues as white
matter, grey matter, infarct, etc, based on a variety of physical parameters as the
repetition time of a sequence of radio-frequency pulses (TR), spin-echo delay time
(TE) or the inversion time (TI). Therefore a great variety of information can be
obtained by appropriate selection of imaging criteria. The variations of these time
parameters change the type of MR images. For example, pilot images are obtained
with small time settings for fast acquisition of pilot scans, T1 images correspond to
a short TR and TE times and tend to contain little noise, T2 are acquired using long
TE and usually also long TR times. With these typical settings, water is imaged
light. Other usual time settings include PD that combines a relatively long TR with
a relatively short TE time and flair for which TE and TR are set as for T2, but
a nonzero TT is used. This can be used to selectively null out-tissue types with
certain properties. For instance, TT ~ 2000 ms will cause water (and thus CSF) to
be imaged dark [4, 7].
The data for our primary study include:

To cover the entire brain, we have three views for each patient: axial (from
bottom to top, the right half of the image corresponds to the left half of the patient’s
head), sagittal (from side to side) and coronal (from front to back). We have between
10 and 23 images taken in each direction that cover almost the entire brain. These
images are called slices because they look like the results of cutting the brain into



many slices, which offer a view into the brain’s interior. On our images each slice
usually represents a thickness of the brain of 5 millimeters with a gap of 2 millimeters
between two slices. These thicknesses are adjustable, and we have some data where
the gap is 0 and the thickness of the slice is 3 millimeters. Most of the brain’s scans
have been taken in the three modalities: T1, T2 and Flair. An example of each
type is shown Fig. 1 as an example of axial, sagittal and coronal views is shown in
Fig. 2.

Figure 1: Different protocols of MR images showing the same axial view of the brain.
From left to right: T1, T2 and Flair type.

Figure 2: Different views of MR images showing the same brain. From left to right: axial,
sagittal and coronal views. MR type is flair in all case.

From these images of the patient’s brain our goal is to provide to the physician
a tool that allows him to compute the change in volume of the lesion between two
sequences of MR images. Relevant questions include:



e Can we define the central core of brain death and separate it from surrounding
penumbra cells, which are areas that have a decreased blood supply but might
recover?

e Can we see a change in the ischemic penumbra with treatment that allows the
physician to predict the effectiveness of the treatment?

e Which kind of MR images can we use to detect the region that represents
the ”core” of cerebral death or infarction and the region that represents the
ischemic penumbra?

e Can we provide a three-dimensional representation of the lesion to help the
physician see where the changes occur?

2 Determination of lesion’s boundaries

The primary goal in our analysis of brain imagery is to segment the lesion, i.e.
classify the pixel of the brain image as lesion or non-lesion pixels. The shape of
the lesion is seldom spherical or elliptical. In fact, a lesion can have any shape,
size, or location in the brain, (however, the shape is usually relatively smooth) and
the edges of the lesion are often indistinct. Thus, finding a way to determine the
pixels representing an abnormality on a scan, and then computing the volume of
this abnormality, poses a significant problem. An example of a lesion in an axial
view of the brain is shown in Fig. 3 and the magnified lesion is shown in Fig. 4.

One of our first tasks was to study image examples of normal and lesion brain
regions. This required the manual indication of abnormal brain areas, which were
provided to us by Dr. Pleet. Our studies have indicated that contrast is most
pronounced in Flair and T2 biased imagery.

There are candidate approaches to the segmentation problem under considera-
tion. At this point we have tested two of them. One approach is based on adaptative
contour models and the other one is based on local statistical analysis around a le-
sion. Both of these methods and the results we have obtained for each will be
described further. Since the results we have obtained are encouraging, we are trying
to merge these two methods to improve the detection in some of the most difficult
cases.

2.1 Statistical study of the lesion

Our statistical segmentation approach involves studying statistical properties of the
imagery. We focus on T2 images since they exhibit the most contrast and Flair se-



Figure 3: This image shows an axial view of the brain. The lesion is circled in the middle.
The lesion is unusually clear.

Figure 4: Magnified image of the lesion circled in Fig. 3.



quences are not available for every patient.

If we look at the distribution of the intensity in the T2 axial view of the brain
in Fig. 3) containing an infarct as is shown on Fig. 5, we see that there are at least
two distinct peaks in the distribution. Unfortunately, neither of these two regions
represents pixels belonging to the lesion alone, and in fact, pixels corresponding to
the lesion are lost in the lower intensity peak. This implies that lesion detection
from a whole brain slice will be problematic.
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Figure 5: This figure shows the distribution of the intensity of the full brain image slice
in Fig. 3. There are two distinct regions but neither represents the intensity of the pixels
belonging to the lesion.

The graph in Fig. 6 represents the intensity distribution of two samples of pixels
in the magnified view of the lesion in Fig. 4. The left peak represents intensities
of a sample of pixels that are outside of but close to the lesion and the right peak
represents intensities of a sample of pixels that belong to the lesion. Notice that the
grey levels for the lesion data are much higher than for the non-lesion data.

The two peaks of this histogram can be smoothed into continuous density func-
tions using the theory of density estimation [3, 9]. Once these functions are obtained,
a maximum likelihood classification scheme is applied to each pixel: if the pixel’s
grey level is more likely to come from the “lesion” density than the "non-lesion,”
classify the pixel as ”lesion,” and otherwise, classify it as ”"non-lesion.”

Beyond this straightforward classical approach, a more complex, and accurate,
statistical model can be developed, by creating an appropriate simultaneous autore-
gressive model [2]. In order to do this, we must first determine a neighborhood



T 1
120 140

T
100
intensity

Qg Qo 08 0g or Qg

[}

Figure 6: Intensity distribution of the magnified view of the lesion in Fig. 4. The left
peak represents non-lesion pixel intensities while the right peak represents lesion pixel
intensities. Only a sample of pixels has been taken into account.



system and the amount of dependence between neighboring pixels. Such an investi-
gation is ongoing.

2.2 Active Contour Models — Snakes

Snakes can be thought of a special case of a more general technique of matching
a deformable model to an image by means of energy minimization. Snakes are
typically classified as active contour models because they dynamically alter their
shape and position while trying to seek a minimal energy state [6].

Snakes are generally represented by a set of control points that define their
contours. The actual definition of a snake comes as an energy functional, which is a
weighted combination of internal and external energies. The snake’s goal is to alter
its shape and position to minimize its total energy.

The total energy of a snake can be expressed as:

gsnake = Z ginternal + Z gexternal (1)

2.2.1 Internal Energy

Using a parametric definition of the snake contour, v(s) = (z(s), y(s)), the internal
energy of a snake is expressed as two terms:

2
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Y

dv d’v
d?s

7 (2)

ginternal =«

The two terms of the internal energy of a snake control it’s smoothness. The
effects of these terms are controlled by weights, o and . Specifically, a controls the
stretching or elasticity of the snake. Large values of « greatly increase the internal
energy of the snake as the snake stretches. Small values of «, on the other hand,
make the snake insensitive to the amount of stretching that the snake undergoes.

The second term of the snake internal energy represents the snake stiffness or
flexibility smoothness constraint. Large values of 3 greatly increase the internal
energy of the snake as it develops more curves. Small values of 3, on the other hand,
make the snake insensitive to curves in the snake contour. An extreme example exists
where [ is set to zero— the snake may then become second-order discontinuous and
develop a corner.

2.2.2 External Energy

The external energy of a snake guides the snake toward image features such as lines
and edges. The external energy can be defined as:
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ge:vternal = gedge + gextl +...+ ge:vtN (3)

The edge-based energy term causes the snake to be attracted to areas of the
image with large gradients:

gedge = - |Vf($, y)|2 (4)

Other external energy terms are also possible, and are usually defined with a
problem domain in mind.

2.2.3 Suitability of Snakes to Our Problem—Domain

Having explained the details of snakes, it is useful now to consider why we have
chosen this technique for our problem domain. The traditional weakness of snakes
has been the need for a good local initialization of the snake. In addition, snakes
are not normally suited to solving an entire segmentation problem autonomously.
Typically, they depend on mechanisms such as interaction with a user.

Both of these traditional weaknesses turn out to be strengths within our problem
domain. Firstly, the initialization of the snake fits in very well with the operation
protocol we have agreed on with our medical partners at Baystate. Specifically,
we have agreed that a physician/technician will draw at least one contour that
surrounds a region of interest (lesion) in a single slice within a patient image data
set. This initial contour will serve as the initialization for the first snake.

Related to user interaction with snakes is the inherent intuitive nature of snakes.
Most energies that are defined on a snake can be equated to real energies within
the physical world (i.e. spring energy). With this in mind, it becomes easier for a
user to understand the behavior of snakes as the image context and parameters are
varied.

Another feature of snakes is that the external energies, and forces derived from
them, are highly customizable. Clearly, this allows us to take advantage of the
properties of our imagery and other techniques that may contribute to improving
snake segmentation. Furthermore, these external forces are always held in check by
the snake’s internal smoothness constraints, thus always maintaining a snake with
a reasonable shape and size.

Finally, a property of snakes that is especially important to us deals with han-
dling image degradation. Image degradation is particularly evident around lesion
boundaries. Often these boundaries are not well defined and their contours are bro-
ken. Since the snake itself is a contour, it essentially “fills in” these breaks in lesion
boundaries during energy minimization.
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2.2.4 Summary of Overall Approach using Snakes

The overall approach to solving the 3—D lesion volume computation problem follows:

1. The user initializes the first snake in a single slice by manually drawing a
contour surrounding the lesion.

2. The snake seeks an optimal configuration representing the lesion boundary.

3. The final position of the snake in the initial slice serves as an initialization for
new snakes in adjacent slices.

4. These new snakes also seek optimal configuration and the process repeats from
step 2 until the lesion is identified in all slices.

5. This process is repeated for the other one or two orientations of MRI scans.
The final segmentation data in three dimensions is integrated to yield a lesion
volume.

2.3 Features for a graphical user interface

Lesion identification is greatly simplified, as described above, if a human operator
interacts with the process. Therefore, a user interface is required and must provide
a means for the user to:

e Load all the images in a sequence.
e Choose the image which contains the largest area of the lesion.
e Zoom in on the region of interest (including the lesion).

e Draw an approximate closed contour around the lesion (including some area
outside the lesion) to initialize the segmentation process.

e Monitor the results of lesion boundary detection on every slice of the sequence.

e Interact with the system to correct the boundaries in any of the image of the
sequence. (Note that we do not expect this to be necessary in the production
version of the system.)

e Examine a 3D visualization of the lesion.

e (Calculate the computed volume of the lesion.

12



3 Progress

In the first six months of the project (from the end of January 1998 to the end of
July 1998) we have implemented and tested promising segmentation techniques and
developed a graphical user interface.

3.1 Lesion detection

The two methods — statistical segmentation and snakes — have been tested on three
levels of difficulty presented in Fig. 7. The three images in Fig. 7 show how a lesion
can be tiny with sharp edges or very large with fuzzy edges.

Figure 7: Axial views of three different brains showing lesion. The two left images have
been taken in T2 modality and the right one has been taken in Flair modality. In each
image, the lesion has been marked and is demontrating how the shape of lesions varies.
The lesion in the left image is small and has well-defined edges. The lesion in the middle
image has a shape not well-defined and edges are not contrasted. The lesion in the right
image occupies a large part of the brain, but edges are not well-defined and their detection

is not simple.

The results of lesion detection of the three sample images in Fig. 7 are shown
in Fig. 8, 9 and 10 respectively. In each of these three figures, the left image corre-
sponds to a magnified view of the lesion, the middle image is the result of statistical
segmentation in which white pixels represent the lesion, and the right image is the
result of the snake algorithm. In the right image, the drawn contour represents
the final boundary of the lesion. These images show that the detection either by
statistical segmentation or by using snakes gives good results. In almost every case,
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we can detect pixels belonging to the lesion with both algorithms, and often there
is a reasonable segmentation of the full lesion.

However, these results must be improved. First, the statistical segmentation does
not detect fuzzy edges in Fig. 10, middle. In addition, the statistical segmentation
detects every region that has the intensity range of the pixels belonging to the lesion
as white regions appear around the central lesion in Fig. 8 and 9. This implies that
other regions outside the lesion are detected and would have to be removed by the
expert which is not acceptable. The snake algorithm we have tested is based only
on the computation of the local gradient of the image to constrain the snake and
the snake is not stable. Other forces have to be applied to keep the snake stable.
Also, the result depends on the initial contour drawn by the expert. If, as Fig. 8§,
right shows, the initial contour is too far away from the true contour of the lesion,
intermediate and final snakes will not be accurate. Thus, there is significant research
still to be carried out.

Figure 8: Detection of small lesion with sharp edges.

Left: Magnified image of the lesion.

Middle: Result of the statistical segmentation of the left image.

Right: Final snake outlining the lesion.

In this case the segmentation gives good results. One problem we notice is this technique
detects not only the lesion pattern but also other fragments outside of the lesion that
might or might not be lesion. In the case of the snake technique, the accuracy of the
result depends on the initial contour drawn by the expert. The right image demonstrates
that when the initial contour is too far away from the true contour as in the snake we
have tested, problems occur.
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Figure 9: Detection of lesion with not very well-defined edges.

Left: Magnified image of the lesion.

Middle: Result of the statistical segmentation of the left image.

Right: Final snake outlining the lesion.

The segmented image displays many other regions that are not part of the lesion, but still
find the shape of the lesion. The snake was well-initialized and gives a nice contour of the

lesion.

Figure 10: Detection of lesion with fuzzy edges.

Left: Magnified image of the lesion.

Middle: Result of the statistical segmentation of the left image.

Right: Final snake outlining the lesion.

In the segmented image, the detected shape does not match with the superimposed con-
tour, drawn from doctor’s indication. The snake fits the contour better than the segmented

image.
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3.2 Graphical User Interface (GUI)

The Java Image Prototype is being developed to provide a graphical interface as a
tool for researchers so that the semi-automated process of computing the lesion’s
volume can be achieved. When this study is completed the GUI will be modified
for more completely automated processing in a clinical production mode.

The Graphical Interface has been written in the Java 1.1.6 platform. This will
allow us to use it on any computer, especially on PCs running Windows95, but also
on any other computer running a graphical environment (such as XWindows). The
features of the GUI that have already been implemented are:

e A browser allowing the user to load all the images on the sequence in one view
(either axial or coronal or sagittal) from the number (or name) of the patient.
Each image has a reduced size of 100x100 pixels and is labeled. The number
of the patient and the number of the sequence appear on the top.

e From the browser or from the main menu the user can load an image of full
resolution on the main screen.

e The user can select a rectangular region of interest and zoom in on it. The
user is not allowed to zoom the whole image to avoid the limitation of small
computer screens.

e On the main frame or on the zoomed image, the user can draw a free-hand
contour, surrounding the lesion.

e From this contour, the user can select the detection of the lesion’s boundaries
on any or all images for a given patient.

e [f the user is not satisfied with the results of the edge detection, he can select
the images where he thinks the detection is correct.

e When the user is satisfied with the edge detection in every image of the se-
quence, he can compute the global volume of the lesion.

Other graphical features such as scaling the grey level intensity or applying a
color model to an image to enhance the contrast have also been implemented.

4 Current Study and Future Efforts

We are continuing to refine our segmentation techniques by exploiting edge orienta-
tion information. Evidence for potential lesion edges is increased if the edges have

16



consistent orientation. That is, if adjacent candidate edges have similar orientation,
the complete edge tends to be continuous and the edge components are consistent.
Conversely, if adjacent edge segments have significantly different orientations, the
resulting complete edge would tend to be fragmented, indicating that at least some
edge segments are false. This information can be used to increase the sensitiv-
ity of lesion contour detection (often required for ambiguous edge regions) without
significantly increasing false edge extraction.

Our work, to date, has focussed on lesion segmentation in single image slices.
Our plan is to extend single slice segmentation to adjacent slices to include the full
lesion extent. Our approach uses the segmentation results from the first slice to
initialize segmentation in adjacent slices. Therefore, the first result serves the same
role in adjacent slices as the human operator uses in the first slice. This process
continues until the lesion size falls below a minimum threshold.

We will use a set of snakes, oriented orthogonally to the set of individually
extracted lesion slices, to impose 3D smoothness on all snakes representing the
lesion. This will provide a full 3D representation of the extracted lesion and will
also provide global feedback forces to individual snakes that are not consistent with
a smooth 3D shape.

As time permits, we will also investigate other promising techniques, such as
scale-space decomposition using wavelets, which have recently been used for detec-
tion and 3D reconstruction/registration [5, 8]. Another area of investigation that
could improve the quality of MRI imagery is super-resolution processing. The cur-
rent imaging process results in non-isotropic imagery, where in-plane (the plane of
the slice) resolution is much higher than out-of-plane resolution. By registering and
integrating orthogonal views, it may be possible to generate composite imagery that
has optimum resolution in all directions simultaneously.

5 UMass/Baystate Meeting on July 28, 1998 —
Future Data

We had a major meeting on July 28, 1998 with Dr. Pleet and Dr. Hicks at the
Baystate Medical Center. The goal of this this meeting was to show our progress to
the doctors and discuss the recent upgrades to the MR equipment at Baystate.

The two doctors were very enthusiastic about the results we have obtained. We
estimate that we can improve our current results with better resolution data, that
is expected to be delivered in approximately one month. Dr. Hicks explained to
us that it is possible to have 3D data, using T1 protocol, and maybe T2 protocol.
This kind of acquisition gives a voxel equal to 1 x 1 x 1 mm in the case of the

17



T1 protocol. He will provide this kind of data from a volunteer patient because he
expects the patient to be in the MRI scanner for as much as two hours. He will
also provide the usual 3 views scans but with varying resolutions; in particular he
can reduce the thickness of the slices to 4 or 3 millimeters and reduce the gap to
1 or 0 millimeter. He will focus his attention on the part of the brain where the
lesion is and mark the lesion on separate hard copy film of the images. Increasing
the resolution will decrease the signal. Thus, from this set of data we will test how
the detection is resolution and signal dependent and choose the best balance.

Conclusion

This six-months work has shown that the techniques we are testing and adapting
in order to perform lesion detection could be useful for the physician to study the
effectiveness of treatment in ischemic stroke. This work has also shown that it will
be difficult to provide a completely—automated system to detect the lesion in the
patient brain. The idea is to detect the lesion from cues provided interactively by a
physician. From this starting point our current results indicate that we will be able
to detect the lesion in the brain and compute it’s volume.

Continuation funding for the next six months will allow us to develop and improve
3D detection of the lesion and to evaluate the accuracy and the robustness of the
methodology.
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Appendix A: Baystate/UMass CBR Program Con-
ference

On Friday, May 8, 1998, the Baystate/UMass Collaborative Biomedical Research
Program Oversight Committee hosted their annual half day conference. We pre-
sented our work there in a 20 minutes talk. Following are the slides shown during
this presentation.
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How effective is

the treatment of|

stroke lesions ?

* Graphical User Interface (GUI)

* Allow the doctor to circle the lesion
* Compute the change in volume of
the lesion at two different times




® 3 views of the brain

» around 20 slices a view

» lesion could be on only a few slices (3)
e lesions could be small

» contours of lesions are fuzzy

Our Approach

* Provide a GUI to the doctor : circle the lesion

* Lesion detection (from first contour)
— provide a semi-automated detection of the lesion
— Snake Segmentation
— Statistical Segmentation

* Volume computation
— Compute the volume from every slice of the brain
— Extension of two-dimensional methods to 3D




Talk Overview

* Provide a GUI to the doctor : circle the lesion

* Lesion detection (from first contour)
— provide a semi-automated detection of the lesion
- Snake Segmentation (K. Muhammad)
— Statistical Segmentation (B. Stein)

* Volume computation
— Compute the volume from every slice of the brain
— Extension of two-dimensional methods to 3D

— Problem of gap between slices to reconstruct without
errors

Snakes - Overview

e Active contour models

* Dynamically change shape
and position

* Defined as enérgy functional

Esnake = 2:Einternal + ZEexternal




Snakes - Definition

* Internal energy
— v(s) = (x(S), y(s)) where x(s), y(s) are
coordinates on snake contour
— Provides smoothness constraints
— Ejpterna = ¢ | dV/ds 12 + 3 | d?v/ds?|
- o, P are weights
» External Energy
— Guides snake towards image features
— Image gradient is often used

Snakes - Features

 Natural GUI implementation
— User input defines initial snake
— Interactive
— Intuitive |
* Deal well with image degradation
— Broken contoui’, etc.




Snakes - Features

+ External forces subject to smoothness
constraints

— External forces guide snake
— Internal forces keep it smooth

 Customized external forces for problem
domain

— Statistical segmentation output

Snakes - Current Approach

o User defines initial snake contour
— Contour includes lesion and is completely external to it

» Snake seeks optimal lesion contour
— Statistical segmentation output

* Final snake state represents lesion in current
slice -

* Use final snake state in initial slice to initialize
snakes in adjacent slices




Snakes - Results

Initial Snake Intermediate Snake Final Snake




Statistical Segmentation

Given a user-defined region that
contains the lesion, break it up into
lesion and non-lesion regions

Zoom




Strategy

» Sample pixel intensities from inside
and outside lesion

* Use histograms, Q-Q plots, etc. to
model the distributions

lesion I
0 === —I

160 180 200 220

non-lesion

[N W

50 60 70 80 90




Analyses =» GAUSSIAN distributions

non-lesion lesion

Classification

* Estimate means and
standard deviations

* Determine distributions
f(x) and £(x)

L f

< 1, lesion

£(x)

non-lesion| lesion

otherwise, non-lesion




zoom segmented

detection

zoom segmented

‘--'l ¥ :
edge
detection
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Conclusion

* Promising results

 Possible improvement: non-parametric
approach

 Will integrate statistical with snake
segmentation
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