Architectural Considerations
for Next Generation File Systems

Prashant SHENOY, Pawan GOYAL
and Harrick M. VIN

CMPSCI Technical Report 98-48
October 1998



Architectural Considerations for Next Generation File Systems

Prashant Shenoy, Pawan Goyalf and Harrick M. Vin}

Department of Computer Science, TAT&T Research {Department of Computer Sciences,
University of Massachusetts 180 Park Avenue University of Texas
Ambherst, MA 01003 Florham Park, NJ 07932 Austin, TX 78712
shenoy @cs.umass.edu goyal @research.att.com vin@cs.utexas.edu
Abstract

Integration—supporting multiple application classes with heterogeneous requirements—is an emerg-
ing trend in networks, file systems, and operating systems. In this paper, we evaluate two architectural
alternatives—partitioned and integrated—for designing next generation file systems. Whereas a parti-
tioned server employs a separate component file system for each application class, an integrated file
server shares its resources across all application classes. We evaluate the performance of these two
architectures with respect to sharing of disk bandwidth. We show that although the problem of shar-
ing disk bandwidth in integrated file systems is conceptually similar to that of sharing network link
bandwidth in integrated services networks, the arguments that demonstrate the superiority of integrated
services networks are not applicable to file systems. We experimentally evaluate the efficacy of sharing
disk bandwidth and show that: (i) an integrated server outperforms the partitioned server in a large
operating region and has slightly worse performance in the remaining region, (ii) the capacity of an
integrated server is larger than that of the partitioned server, and (iii) an integrated server outperforms
the partitioned server by up to a factor of 6 in the presence of bursty workloads.

1 Introduction

1.1 Motivation

The current euphoria over the World Wide Web does not do full justice to the potential of the Internet; with the
manifold increases in CPU processing power and network bandwidth, it is inevitable that the Internet will support
distributed applications that process massive amounts of data for visualization and support real-time interactivity.
For instance, a digital library of satellite imagery might be processed for feature extraction or visualization; a vir-
tual environment for training fire fighters will involve distributed simulations and real-time user interactivity. These
applications differ from conventional applications in at least two ways. First, they involve storing, transporting,
and processing heterogeneous data types (e.g., images, audio, video, text, etc.). Second, they impose diverse per-
formance requirements (e.g., with respect to timeliness) on networks and operating systems. Traditionally, such
heterogeneous applications have been supported in isolated and dedicated environments. Recently, triggered by
the technological advances and the proliferation of the Internet, the problem of supporting these applications in
general-purpose computing, communication, and storage environments—where resources are shared among sev-
eral, potentially conflicting, applications—is receiving much attention.



Applications

Applications
[ intearation tayer_ Havethied
4 y vV y
Buffers| | | [Buffers S
| aooog
88| 8 B |
Disks Disks Disks
Video Text
Server Server Integrated server
(a) Partitioned file server (b) Integrated file server

Figure 1: Partitioned and integrated file servers supporting text and video applications. The partitioned architecture
divides the server resources among multiple component file systems, and employs an integration layer that provides
a uniform mechanism to access files. The integrated architecture employs a single server that multiplexes all the
resources among multiple application classes.

In this paper, we focus on the design of next-generation file systems that, unlike conventional file systems, export
multiple service classes and simultaneously support heterogeneous data types and applications [16, 19]. We consider
two architectural alternatives for designing such file systems (see Figure 1):

e A partitioned architecture that: (1) divides the server resources among multiple component file systems, each
optimized for a particular application class or data type, and (2) employs an integration layer that provides a
uniform mechanism to access files managed by separate file systems.

e An integrated architecture that multiplexes all the resources available at a server—the storage space, the disk

bandwidth, and the buffer cache—among multiple application classes and data types.

Since techniques for designing file systems that are optimized for a single application class are well-understood
[13, 9, 22, 23], partitioned file systems are easy to design and implement. The design of integrated file systems, on
the other hand, is challenging due to the heterogeneous performance requirements of data types and applications.
However, since such file systems share all resources among all application classes, they can potentially provide
better performance to applications as compared to a partitioned system. This hypothesis has been the basis for the
design of several integrated file systems [1, 12, 19]. Most papers on the design of integrated file systems implicitly
assume that such an architecture is, in fact, necessary and give little justification for the basic approach; instead
these papers focus on the design and analysis of novel techniques for managing resources in integrated servers.
In this paper, we do not add to the body of knowledge on resource management techniques; instead we focus on
evaluating the tradeoffs between the two architectural alternatives for designing next-generation file systems. Rather
than advocating a particular design alternative, our goal here is to provide a comparative evaluation—with respect to
application performance—of the two architectural choices. Surprisingly, this issue has received rather little explicit

attention in the literature.



16 disks, 50 video clients

Integrated, round robin —~—
70¢ Partitioned, SCAN ~-- 1

60 |

40

Response time (ms)
8

20 e

wofp —T

1] 20 40 60 80 100
Number of text clients

Figure 2: Limitation of fair scheduling algorithms for integrated file servers. Use of a round-robin scheduling
algorithm to service text and video requests in integrated file system causes the disk to incur a large seek and
rotational latency overhead when switching between requests. Hence, the response time is significantly worse than
a partitioned system that employs separate servers for text and video.

1.2 Problem Formulation

A file system manages several resources such as disk bandwidth, storage space, and buffer cache. An integrated file
system can benefit from dynamic multiplexing of each of these resources. Since application performance is most
affected by the availability of disk bandwidth, in this paper, we restrict our evaluation to the potential performance
gains that can be achieved by sharing disk bandwidth.

The issues that arise in sharing of disk bandwidth in an integrated file system are conceptually similar to those that
arise in multiplexing link bandwidth in integrated services networks. An integrated services network in addition to
providing efficiency and economy to network providers and convenience to users, also provides better performance
to various application classes that use it (for example, audio, video, and data). To illustrate, consider an environment
with two separate networks—each with capacity C—serving different application classes, and an integrated services
network with capacity 2C. If we assume that both networks carry packets of the same size then the integrated services
network can provide to applications no worse, and often significantly better, performance than the separate networks
by simply employing a round-robin scheduler for packets belonging to the two application classes (see [2] for an
example of an algorithm when packets are of unequal size). This is because, when both the application classes have
packets to transmit, they each receive C units of bandwidth—similar to the separate network scenario; but when
one of the application classes does not utilize its fair share, the idle network bandwidth is used to provide better
performance to the other application class. The increased efficiency due to statistical sharing of network bandwidth
is the central design principle of integrated services networks. In fact, it has been argued that the least efficient
network design is the one that uses separate networks, each optimized for a different application class [17).

This leads to the following fundamental question: are the arguments that demonstrate the superiority of an inte-
grated services network over separate networks also applicable when comparing the performance of partitioned and
integrated file servers? Surprisingly, the answer to this question is not straightforward. This is because:

1. There is a subtle difference in the characteristics of network links and disks: network link throughput is
unaffected by the relative order of servicing requests; but for disks, the relative order of servicing requests
governs the overall disk throughput. Round-robin and fair scheduling algorithms (e.g., WFQ [6], WF2Q [2])

3



140 16 disks, 80 text clients 16 disks, 80 video clients

0.07 v T r T v v
Partitioned, SCAN-EDF —~—
120 | Integrated, SCAN —— 0.06 | Integrated, SCAN ~-— H
Partitioned, SCAN ——- 3 /
Z 100} T 005} / l
e S
E 80 | g 004 b
® £ {
2 eof 2 003} o
% 3
4} s 002}
« R
20 fomem 001 |
ol . .. oo e
0 10 20 30 40 50 60 70 80 90 100 0 20 40 60 80 100 120 140 160 180 200
Number of video clients Number of text clients
(a) Text response time (b) Percentage of deadline violations for video

Figure 3: Limitation of SCAN disk scheduling algorithm for integrated file systems. Figure (a) shows that, the
presence of video requests interferes with text requests in the integrated server and degrades text response time.
Figure (b) shows that text requests interfere with video requests and cause deadlines of the latter to be violated.
Text and video requests access mutually exclusive set of disks in the partitioned server; hence, the presence of video
requests has no effect on text requests and vice versa.

determine the order for servicing requests solely on the basis of the fairness criterion; they. ignore the seek
time and rotational latency incurred while servicing each disk access request. Consequently, using them to
arbitrate access to disk bandwidth yields poor performance. In fact, the overhead incurred by such algorithms
may more than offset the statistical multiplexing gains obtained by the integrated architecture (see Figure 2).

2. Conventional disk scheduling algorithms such as SCAN and SATF (Shortest Access Time First) (3, 4, 7, 8,
10, 21, 25, 26] determine the order of servicing disk requests solely on the basis of the relative positions of
the blocks to be accessed on disk, and hence minimize the seek time and rotational latency overhead incurred
while servicing requests. However, they do not provide any isolation across classes: a burst of request arrival
for best-effort application may violate the deadlines of requests from real-time applications, and the arrival
of a large number of real-time requests can cause response times for best-effort applications to degrade (see

Figure 3).

To realize the benefits of statistical multiplexing when applications have diverse requirements, it has been argued
that a disk scheduling algorithm should: (1) align the service it provides with the application needs, (2) protect
application classes from one another, (3) be work-conserving and adapt to changes in work-load, (4) minimize the
seek time and rotational latency overhead incurred during access, and (5) be computationally efficient. In the recent
past, several algorithms have been proposed to address these issues [14, 18, 24]. These algorithms are heuristics
for meeting these requirements and unlike packet scheduling algorithms do not formally guarantee these propérties.
Hence, unlike integrated services networks, the superiority of integrated file servers from the perspective of applica-
tion performance can not be theoretically argued and formally demonstrated. Therefore, we experimentally answer
the following question: given an appropriate disk scheduling algorithm, can an integrated file server achieve statis-
tical multiplexing gains similar to those in integrated services networks? To formulate the problem more precisely,
consider the following special case of this general question. ‘



(D14D2)V
D2 Integrated server s
Partitioned server =memes

Number of video clients

Number of text clients D1

Figure 4: Boundaries of operation for a partitioned and an ideal integrated file server. A partitioned file server that
partitions resources among a text and a video server can support up to T text and V video clients. An ideal integrated

file server with an identical configuration can support up to 21422 « V video and 23422 « T text clients. Moreover,

it provides comparable or better performance in the shaded region when the number c;f text and video clients is less
thanT and V.

Consider a file system that is required to support zext and video applications. Let the file system be required to
support T text and V' video clients simultaneously. For the partitioned architecture, let Dy and D5, respectively,
denote the number of disks required for the text and the video servers to meet this requirement. Now, consider an
integrated server that multiplexes (D, + D2) disks among both application classes. In the ideal scenario (i.e., similar
to the integrated services networks), we would expect the integrated server to provide no worse and often better
performance when the number of text and video clients is less than T and V, respectively. Furthermore, we would
expect it to support: (1) at least T" text and V' video clients simultaneously; (2) Q’-D%Dl * V video clients when there
are no text clients; and (3) Q:.-B-I_Dz * T text clients in the absence of any video clients. Finally, the capacity of the

server should scale linearly between these two extremes. Figure 4 depicts this ideal behavior. In this scenario, we
are interested in answering two questions:

1. Does the integrated architecture yield better performance in the shaded region in Figure 4 as is expected in an
ideal server? If so, how much is the gain?

2. Is it possible to achieve the ideal behavior in the non-shaded region in Figure 4? That is, can the capacity of
the integrated server scale linearly between 21302 x V video and 2422 « T text clients?

1.3 Research Contributions of This Paper

In this paper, we evaluate the performance of the integrated and partitioned servers for text and video applications.
Whereas text applications desire low average response time, video applications require that their deadlines be met.
For these application classes, we show that an integrated server: (i) yields better performance than its counterpart
over a large operating region but has slightly worse performance in the remaining region, (ii) has a larger capacity
since it can support a larger number of clients from a class when the other class does not use its fair share, and (jii)
is self-adapting since larger capacity and sharing of disk bandwidth enable it to better handle bursty loads that cause
transient overloads.

We first compare the performance of the two architectures when the load is less than the maximum that can be
supported by the partitioned system (the shaded region in Figure 4). Our experiments demonstrate that the integrated

5



server outperforms the partitioned server by a significant amount in a majority of this region. Unlike an integrated
services network, however, the integrated server yields slightly worse performance than its counterpart in a small
region. Specifically, text requests see a worse response time at low text and heavy video loads (upper left hand corner
of the region), whereas video request see a larger number of deadline violations at heavy text and video loads (upper
right hand comner of the region). Using load distributions derived from file access traces, we demonstrate that, on
an average, the integrated server yields a 25%-40% improvement in response time over its counterpart. For video
clients, we show that, in spite of the potential interference from text requests, the integrated server is able to provide
matching performance to video requests (by meeting a comparable number of request deadlines).

Next, we determine if the capacity of an integrated server scales up to 2102 « V video and 2302 « T text
clients. We demonstrate that the capacity curve of an integrated server is indeed similar to that of the ideal scenario;
hence an integrated server can support a larger number of clients from an application class when the other class does
not use its fair share. However, due to load imbalances in the system and the idiosyncrasies of the disk scheduling
algorithm, there is a small (about 5%) degradation in the number of text and video clients supported as compared to
the ideal server.

Finally, we demonstrate that the ability of an integrated server to support a larger number of clients enable it to
adapt to bursty workloads that can cause transient overloads. Specifically, we show that, when the server is operating
at 50% utilization, in the presence of bursty text loads, the average response time yielded by the integrated server is
smalier by a factor of 6 as compared to the partitioned server. Moreover such bursty loads have little or no effect on
the performance of video clients.

The rest of the paper is organized as follows. Section 2 describes our experimental methodology for comparing the
partitioned and integrated architectures. Section 3 discusses our experimental results. Finally, Section 4 summarizes
our results and highlights our key observations.

2 Experimental Methodology

To evaluate the tradeoffs between the two architectural alternatives for designing next-generation file systems, we
conducted extensive simulations. In what follows, we describe our simulation environment, the metrics for our
evaluation, and the workload generator.

2.1 Simulation Environment

We have implemented an event-based simulator to evaluate the relative performance of the partitioned and the inte-
grated architectures. In this paper, we report the results obtained from the evaluation of partitioned and integrated
servers that (1) support storage and retrieval of two data types—text and video, and (2) support two service classes—
interactive best-effort and real-time.

To support the two application classes, the partitioned file system employs a text server and a video server. Each
server manages a mutually exclusive set of disks; let D; and D,, respectively, denote the number of disks managed
by the text and the video server. Each file is striped across all the disks within a server. The text and video servers,
respectively, provide interactive best-effort and real-time service to applications. The text server uses the SCAN
disk scheduling algorithm [21] to service requests, while the video server uses SCAN-EDF [15]. Whereas SCAN

6



Table 1: Disk parameters of Seagate Elite3 disk

Disk capacity 2 GBytes || Minimum seek time 1.7 ms

Bytes per sector 512KB [ Maximum seek time 22.5ms
Sector per track 99 Maximum rotational latency | 11.1 ms
Tracks per cylinder 21 Average seek time 11.0
Cylinders per disk 2627 Average Transfer rate 4.6 MB/s

services requests in the increasing order of cylinder numbers so as to reduce the seek time overheads, SCAN-EDF
services requests in the increasing order of deadlines; requests with identical deadlines are serviced in SCAN order.

The integrated server multiplexes (D, +D3) disks among the two data types and application classes. Conventional
scheduling algorithms such as SCAN are inadequate for such servers; recently, several disk scheduling algorithms
that can support diverse application classes have been proposed [14, 18, 24]. Our simulator for the integrated server
employs one such disk scheduling algorithm, namely Cello [18]. Cello allocates disk bandwidth to application
classes at two time-scales. At a coarse time-scale, it determines the number of requests from each application class
to be serviced, and at a fine time-scale, it determines the order for servicing the set of selected requests. Whereas
the former enables Cello to protect application classes from one another and to adapt disk bandwidth allocation
with changing work-load, the latter enables it to align the service provided with the application requirements while
minimizing the seek time and rotational latency overhead. Additionally, Cello exploits characteristics of requests
to align the service provided with application needs. For the two application classes under consideration, Cello
delays real-time requests until their deadlines and uses the available slack to service interactive best-effort requests;
this enables it to provide low average response times to the interactive best-effort applications without violating
the deadlines of the real-time applications. Furthermore, it assigns weights to each application class and allocates
bandwidth to classes in proportion to their weight; bandwidth unused by a class is reassigned to other classes with
pending requests [18].

To derive the results presented in this paper, we configured the text and the video servers in the partitioned
architecture with 8 disks each (i.e., D; = Dy = 8), and the integrated server with 16 disks. Stripe unit sizes of 8KB
and 64KB, respectively, are used to stripe text and video files on the disk arrays. The text server employs a 64MB
LRU buffer cache; the video server does not use caching. The integrated server also uses a 64MB LRU buffer cache
for text requests. To ensure that the integrated server allocates equal bandwidth to each application class (and thereby
mimic D, = Dy = 8 in the partitioned architecture), we assigned equal weights to the two application classes in
the Cello scheduler (i.e., w; : wo = 1 : 1) [18]). We parameterized the disk simulator with the characteristics of
the Seagate Elite3 disk (see Table 1). The seek time, rotational latency, and transfer times are computed using an
empirically derived disk model [11]. The disk model in our simulator was validated using a real disk for the SCAN
disk scheduling algorithm (since algorithms such as Cello and SCAN-EDF haven’t been deployed in real systems,
we were unable to validate the simulator for these algorithms).



300 3000

250 F 1 2500 |

200 ‘ 2000 WW«/\V\J\WW
2] 0
e 150 | 1 @ 1500 | 1

100 1 1000 |

50 | 1 500 |

0 N 0 e
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Time (s) Time (s)

Figure 5: Variation in bit rates of video clients: (a) variation in the average bit rate of the Frasier MPEG-1 trace over
one second intervals. (b) variation in the aggregate bit rate of 10 MPEG-1 clients.

2.2 Performance Metrics

Text applications are interactive best-effort in nature, and desire low average response times. Video applications, on
the other hand, require request deadlines to be met. Consequently, to compare the performance of partitioned and
integrated servers, we choose the average response time of text retrieval requests as the metric for text applications,
and the percentage of deadline violations as the metric for video applications. We measure the capacities of the two
architectures in terms of the maximum number of text and video clients that can be supported such that the average
response times and the percentage of deadline violations are smaller than thresholds 7; and T, respectively.

2.3 Workload Generation

To compare the performance of the partitioned and integrated servers, we need to evaluate their performance at
different operating points (i.e., text and video loads). Since most available file system traces contain various parts
of the operating region (these regions are not clearly identifiable in the trace), it becomes difficult to employ them
for studying performance at any particular operating point. Hence, we chose to systematically explore the complete
space by using a synthetic load generator.

Our synthetic workload generator selects an operating point by fixing the number of text and video clients ac-
cessing the file system. Let ¢t (0 < ¢t < T) and v (0 < v < V), respectively, denote the number of text and video
clients. Each text client accesses a randomly selected file; the inter-arrival time between successive requests issued
by each client is exponentially distributed, and the amount of data retrieved by each request is normally distributed.
We varied both the mean inter-arrival time and the mean request size in our experiments; due to space constraints,
we only present simulation results for a mean request size of 32KB and a mean inter-arrival time of 1s.

Each video client randomly selects a video file and then initiates retrieval from a random point in that file. Due
to the periodicity and sequentiality of access, the video server services requests from the clients by proceeding in
terms of periodic rounds, accessing f frames for each client during each round [20]. For the simulations, we use
f = 30 and the round duration of 1 second. For variable bit rate (VBR) encoded video streams, the size of f frames
may vary from one round to another (see Figure 5). The workload generator models this behavior by determining
the amount of video data accessed during each round using VBR encoded MPEG-1 traces (see Table 2).



Table 2: Characteristics of MPEG-1 traces

MPEG Encoding Length | Bitrate
File Pattern (frames) | Mb/s
Frasier | I(BBP)>’BB | 5960 1.49
Newscast | I(BBP)°BB | 9000 2.33
Flintstones | I(BBP)*’BB | 9000 1.67
Olympics | I(BBPY°BB | 9000 | 1.49

Table 3: Characteristics of the Auspex NFS trace

Number of read/write operations 218724
Average bit rate (original) 218.64 KB/s
Average bit rate (with 64MB cache) 83.91 KB/s
Average inter-arrival (original) 9.14 ms
Average inter-arrival (with 64MB cache) 22.53 ms
Average request size 2048.22 bytes
Peak to average bit rate (1s intervals) 12.51

This workload model enables us to compare the performance of the partitioned and integrated servers at various
operating points (¢,v). To derive the expected difference in performance of the two architectures, we need to
compute the probability of the server being at operating point (£, v). To do so, we need to characterize the variability
in the load imposed by the text and video applications. Unfortunately, since very few, if any, file systems that
simultaneously support video and text applications have been deployed, there are no publicly available traces that
can be analyzed to derive the load variability. Hence, we derived the variability in load as follows.

1. We analyzed a portion of the NFS traces gathered from an Auspex file server at Berkeley [5]; the characteristics
of the trace are shown in Table 3. To extract the load distribution from this trace, we followed two steps. First,
we determined the disk accesses that cannot be absorbed by a 64MB LRU buffer cache, and used these disk
access requests to derive the distribution of the amount of data accessed from disks with an averaging interval
of 1 second. Second, we normalized this distribution function by choosing the maximum value to be 1 (see
Figure 6).

2. We mapped the [0, 1} range of the normalized load distribution function to the [0,7’] and [0, V] ranges of
text and video loads, and then determined the probability that the file server is simultaneously servicing ¢
(0 <t<T)textand v (0 < v < V) video clients by assuming that text and video loads are independent.

By combining: (1) the difference in the performance of the partitioned and the integrated architectures for each
combinations of (Z,v), and (2) and the probability of being at that operating point, we can derive the expected
difference in the performance of the two architectures.



B AN /e BN

30406 T v v T T T r 0.07

2.50406 | ] 0.06 }
2 | 0.05
© 2
2 & oo0a}
§1.59+06 %
@ 0.03 |
o
1e+06 | 1
: 0.02
500000 A ‘ 1 0.01
'l ' T T ’
0 by Ak o+ h 2 0 N v Al -—as N N N
0 250 S00 750 1000 1250 1500 1750 2000 0 01 02 03 04 05 06 0.7 08 09 1
Time (s) Normalized load
(a) ®

Figure 6: Characteristics of the NFS traces: (a) average bit rate of NFS traces over one second intervals; this
demonstrates the bursty nature of the trace. (b) the normalized load distribution function.

3 Experimental Evaluation

The objective of this section is to answer two questions:

e Does the integrated architecture yield better performance in the shaded region in Figure 4? If so, how much is
the gain?

o How does the capacity of an integrated server compare to that of an ideal integrated server depicted in Figure 4?

We present answers to the above questions in Sections 3.1 and 3.2, respectively. We then compare the performance
of two architectures using bursty loads in Section 3.3. Finally, we evaluate the sensitivity of our results to the
particular choice of experimental parameters.

3.1 Comparison of Partitioned and Integrated Systems

To compare the performance of the partitioned and the integrated systems in the shaded region in Figure 4, let us
first define the region by determining the values of T and V/, which, respectively, denote the maximum number of
text and video clients supported by the partitioned server. To determine T', we increased the text workload until the
average response time of a request yielded by the text server in the partitioned architecture exceeded a threshold 7;.
For 7; = 100ms, we obtained T' = 200. To determine V, we increased the video workload until the percentage of
request deadlines violations yielded by the video server in the partitioned architecture exceeded a threshold 7. For
T» = 1%, we obtained V' = 102.

Given the values of T and V, we varied the text and video loads in the ranges [0, T] and [0, V], respectively, in
increments of 10; and for each combination (¢, v), we measured the average response time of text requests and the
percentage of deadlines violations for video requests in both partitioned an integrated servers. The results of these
231 experiments are summarized in Figures 7 and 8. The X and Y axes plot normalized values of text and video
workloads; a normalized load of 1 corresponds to T text clients and V' video clients. The non-shaded regions in
Figure 7 indicate workloads at which the integrated server either yields comparable performance or outperforms the
partitioned server. The figure demonstrates that sharing of disk bandwidth enables the integrated server to provide

10



16 disks, text server=video server= 8 disks 16 disks, text server=video server= 8 disks

1.0 py 1.0
i / - orse
-§ 075 % s g ors b performance
. s
=] =
= 5
E 05 K Better performance E 05 bgz:_p:::}zmu
] % «
E g
Z 925 Z o5k
0] 9 3 0 1 2 3
() 0.25 05 075 19 0 0.25 0.5 075 1.0
Normalized text load Normalized text load
(a) Response time (b) Percentage of deadlines violated

Figure 7: Performance under different workload mixes. The integrated server yields worse performance in the
shaded areas.

comparable or better performance over a large operating region. In what follows, we discuss in detail the results of
our experiments; first for text clients and then for video clients.

3.1.1 Performance of Text Clients

Figure 9 plots the variation in average response time of text clients for different video loads and a fixed text load.
Since text and video requests access mutually exclusive set of disks, the response time of text requests in the parti-
tioned server is independent of the video load. On the other hand, even though the integrated server uses the Cello
disk scheduling algorithm to isolate text requests from video requests, the isolation is not total. Hence, the response
time of text requests increases slowly with increase in video load. This increase can be attributed to two factors.
First, increasing the video load increases the probability of a text request arriving when a video request is being
serviced by the disk. Since requests in service cannot be preempted, the text request must wait until that request
has been serviced. Second, increasing the video load also reduces the slack available to service text requests. Cello
schedules a text requests prior to a video request only if the request can be serviced without violating deadlines of
any of the video request; hence, reduction in slack yields an increase in the quening delays and the response times
observed by text requests.

Figure 10 compares the response time observed of text clients in the partitioned and the integrated architectures
for different text loads and a fixed video load. As expected, increasing the text load causes the response time of text
requests to increase in both servers, albeit the increase is larger in the partitioned server. To understand this behavior,
consider the two factors that contribute to the response time of a request—service time and queuing delay. The
service time of a request—defined as the summation of the seek time, rotational latency and transfer time incurred in
servicing a request—in the average case depends on the physical characteristics of the disk and the amount of data
being retrieved from disk. Hence, the service time of a request is largely independent of the load (see Figure 11(a)).
In contrast, the queuing delay incurred by a request is completely governed by the load (see Figure 11(b)). Since
text files are striped across a larger number of disks in the integrated architecture, the number of disks servicing text

11



Z axis=(response time in partitioned - response time In integrated)

88883338

P
QOO

(a) Response time

2 axis={%dead!ines violated in pastitionod - integrated)

0.8
rv; Fiprmalizod vidoo load
Nomalized toftfoad 0.8

(b) Percentage of deadlines violated

Figure 8: Performance under different workloads. The figure quantifies the difference in response times and per-
centage of deadlines violated in integrated and partitioned servers. The figure shows that the integrated server
outperforms the partitioned server by a significant amount in many regions, while it under-performs its counterpart

in other regions by only a small amount.

16 disks, wi:w2 = 1:1

100 ———e—————
Integrated, 50 text clients ——
Partitioned, 50 text clients -~
80 | 1
£
g eor
-
g
S. 40
]
(4
20 | e
,‘—4-—-*'—
0 10 20 30 40 50 60 70 80 90 100
Number of video clients
(@
16 disks, wiw2 = 1:1
100 ——
Integrated, 150 text clients ——
Partitioned, 150 text clients ——-
80 s p
€
-
@
g 40 1
Q
2
[ <
20 / 4

Number of video clients

©)

0 10 20 30 40 S50 60 70 80 90 100

Response time (ms)

Response tims (ms)

16 disks, wi:w2 = 1:1

100 - —
Integrated, 100 text clients ——
Partitioned, 100 text clients —--

80 | J

60

40 L

B0 [ —

0

0 10 20 30 40 50 60 70 80 90 100
Number of video clients

(b)

16 disks, wiw2 = 1:1

100
lnte%rated. 200 text clients ——
Partitioned, 200 toxt clients ——
80 | J
60 3
40 ¢ 1
. 20 /// .

0 10 20 30 40 50 60 70 80 90 100
Number of video clients

@

Figure 9: Response time of interactive text requests in partitioned and integrated servers. Figures (a) through (d)
plot the variation in response times for different video workloads and a text load of 50, 100, 150 and 200 clients,

respectively.



wiw2=1:1

100 v -
Integrated, 20 video clients ~— /
Integrated, 50 video clients - /
80 I Integrated, 70 video clients ~o-- 1
‘uE? Integrated, 90 video clients —»—- /
= Partitioned -+
g 60 |
g
3
(i
20t
o " A
0 50 100 150 200
Number of text clients

Figure 10: Response time of interactive text requests in partitioned and integrated servers. The figure plots the
variation in response times for different text workloads.

16 disks, wiw2 = 1:1 16 disks, wi:w2 = 1:1
20 - — v 100 v v T
Integrated, 20 video clients —— i i —
Integrated, 50 video clients —-- Intogratod: 50 vides dlonts /
15 :n:egra:g. 57,8 v!geo g;em; 2 80 I Integrated, 70 video clients -o--- a
I ntegrated, 90 video clients —=— 1 P h .
2 Partitioned -+ g integratod, 80 wg:nomglmienm co—
' g %
E 10} e 3
3 4
T 5 4
2 1
« 5} o
20 |
0 . 0 : -
0 50 100 150 200 0 50 100 150 200
Number of text clients Number of text clients
(a) Service time (b) Queuing delay

Figure 11: Various components of the text response time. Figures (a) and (b) show the service time and the queuing
delay incurred by a request for different workloads. The figures show that the service time of a request is largely
independent of the workload, whereas the queuing delay depends on the load.

requests is larger than that in the partitioned system. This results in a smaller number of text requests per disk, and
hence, shorter queues at each disk. Since requests incur a smaller queuing delay in integrated server, it yields better
response times over a range of video loads. In fact, at heavy text loads, the queuing delay dominates the response
time, causing the integrated server to outperform its counterpart regardless of the video load (see Figure 9(c) and
(@)).

The experiments presented so far quantify the performance of partitioned and integrated systems at specific op-
erating points (i.e., ¢ text and v video clients). In practice, since the text and video loads vary over time, a natural
question is: what is the expected performance of the two architectures in the presence of varying loads? To answer
this question, let us assume that the probability of ¢ text and v video clients simultaneously accessing the server is
denoted by p(%,v). Let pqrt(t) and ring (2, v), respectively, denote the response times for text requests yielded by the
partitioned and integrated servers when the load consists of ¢ text and v video clients, and let d(¢, v), the difference
in response times yielded by the two servers, be computed as

d(t,v) = Tpart(t) — Tint(t,v) (1)

13



R Rt et St

Note that d(¢,v) > 0 indicates that the response time yielded by the partitioned server is higher than the integrated
server, and vice versa. Figure 8(a) plots d(¢,v) for different text and video loads. The expected improvement in
response time of the integrated server is then

E(I) =) plt,v)-d(t,v) )
t v

Given the expected improvement in performance, the percentage improvement in response time can be derived as
ﬁ%% * 100, where E(rpqrt) denotes the expected response time yielded by the partitioned server and is computed
as E(rpart) = 3¢ Tpart(t) - p(t)-

Thus, given d(t,v), determination of the expected improvement in response time yielded by the integrated server
requires the values of p(t,v) (0 < t < T,0 < v < V). Unfortunately, since very few, if any, file systems that
simultaneously support video and text applications have been deployed, such probability distributions are unavail-
able, Consequently, we make three simplifying assumptions and derive p(t, v) using load distributions from existing
textual file systems. First, we assume that load distributions for textual file systems are representative of integrated
systems as well. Second, we assume that the text and video loads accessing a server are independent of each other.
Hence, p(t,v) = p(t) - p(v) where p(t) and p(v), respectively, denote the probability of ¢ text and v video clients
accessing the server. Finally, we assume that probability distribution functions for a normalized video load is iden-
tical to that of a normalized text load. Thus, given p(t) obtained from traces of textual file systems, we can derive
p(t,v). Figure 12(a) depicts the distributions for p(t, v) derived using the distribution for p(t) shown in Figure 6(b).

Note that the distribution for p(t) shown in Figure 6(b) represents the scenario where the average normalized
load (i.e., the ratio of average load to the peak load) is 0.08. To evaluate the effect of different average normalized
ratios on the expected gain, we constructed several distribution functions using the trace by following three steps:
(1) select a percentile of the distribution function of the NFS load, (ii) clip the distribution at that percentile, and (iii)
re-normalize all the probabilities. This process yields distribution functions with different average normalized load;
the smaller the percentile value, the greater is the average normalized load of the resulting distribution. Figure 12(b)
shows the distributions for p(t) derived using the 95t#, 80, and 70** percentile of the original NFS trace; the
resulting distributions have average normalized loads of 0.29, 0.43, and 0.48, respectively.

Figure 13 plots the expected improvement in response time E(I) and the percentage improvement in response
time for these distribution functions. Since the difference in response time d(¢,v) is larger at higher loads (Fig-
ure 8(a)), E(I) is higher for distributions with larger average normalized load (i.e., larger average to peak load
ratio). Figure 13 also shows that the expected gain is always positive, and for the distributions considered the
percentage improvement ranges from 25%-40%.

3.1.2 Performance of Video Clients

Figure 14 plots the percentage of deadlines violated for video requests for different values of text load with varying
number of video clients. As shown in the figure, at light and moderate video loads, both servers meet deadlines of
all real-time requests regardless of the text load. At heavy video load and light text load, the percentage of deadline
violations is comparable in both the servers. However, at heavy video and text load, the integrated server has slightly
higher deadline violations than the partitioned server. This is due to two reasons:

14



0.4
Nommalized (e)g’?oed 0.8

(a)

E() (me)

0
025 03 035 04 045
Average load (nomatzod)

(a)

0s

% Improvement

0.2

018}
016 |
014 |
012} |
o} |
008} |
006 |
004 | °
0.02 |

Probability

70th percentile, avg load= 0.48 —— |
80th percentile, avg load= 0.43 ~~--
95th percentile, avg load= 0.29 o 4

Probability

03 035 04 0.45 05
Averzge lood (normakzod)

()

Normalized text load

(b)
Figure 12: (a) p(t, v) derived from the NFS trace. (b) Load distributions with different average normalized loads.

DI of gain for 95th (avg load=0.29)
008 —
005
004 |
003
002
001
o L_ﬂ aa
410 0O 10 20 30 40 50 6 70 8
Improvement in rosponse Sme (ms)
©

Figure 13: Improvement in response time in the integrated server. Figures (a) and (b) show the expected improve-
ment and the percentage improvement in response time for different percentiles. Figure (c) shows the distribution of
the improvement for a particular percentile.

% of deadiines violated

15|

0.5

wiw2=1:1

Integrated, 50 text ——
Integrated, 100 toxt ~— ]
Integrated, 150 text o~
Integrated, 200 text -~—

Partitioned, SCAN-EDF ——, [

20

40 60 100
Number of video clients

Figure 14: Percentage of deadlines violated for video requests in partitioned and integrated servers.

15



1. The Cello disk scheduling algorithm employed by the integrated server incurs higher seek and rotational
latency overheads than the SCAN disk scheduling algorithm employed by the partitioned server.

2. It has been shown in [20] that, for a fixed number of video clients, increasing the number of disks in the server
increases the load imbalance across the disks, leading to a higher percentage of deadline violations. Since the
integrated server uses twice the number of disks as compared to the partitioned server to service video clients,
at high levels of text loads, it yields higher percentage of deadline violations. At light text loads, however, the
effect of increased load imbalance is offset by the available unused bandwidth.

3.1.3 Summary
To summarize, as shown in Figure 7 through 14, our experiments reveal that:

e At light video loads, by utilizing the disk bandwidth unused by video requests to service text requests, the
integrated server yields better response time than the partitioned server (see Figure 9(a)).

e Atheavy video loads and light text loads, the integrated server yields worse response time than its counterpart
(see Figure 9(a)). This is because, a heavy video load: (i) increases the probability that the disk is busy
servicing a video request when a text request arrives, and (ii) reduces the amount of slack available to service
text requests. In either case, text requests must wait, resulting in an increase in the queuing delay and response
time.

e At heavy video and text loads, the integrated server outperforms the partitioned server. This is because, at
these loads, queuing delays dominate the response times seen by text requests; and due to the presence of a
larger number of disks, requests incur a smaller queuing delay in the integrated server (see Figures 9(c), (d)
and 10).

e At light to moderate text and video loads, both architecture meet deadlines of all video requests. At heavy
video and light text loads, since unused text bandwidth can be used to service video requests, the integrated
server yields smaller percentage of deadline violations than the partitioned server. At heavy video and text
loads, the integrated server yields marginally higher percentage of deadline violations. See Figure 14.

Observe that, in the operating region (namely, 0 < ¢ < T'and 0 < V' < V), the integrated server yields higher
performance improvement for text clients than video clients. This is because, an integrated server utilizes any unused
disk bandwidth allocated to video clients to reduce the average response time for text requests. For video requests,
on the other hand, since the value of V' is chosen such that the percentage of deadlines violations in the partitioned
server does not exceed t, = 1%, there is little room for achieving significant reduction in the percentage of deadline
violations. Hence, for the entire operating region, the difference in the percentage of deadline violations in the
integrated and partitioned architecture is marginal. In the next section, we will demonstrate that both the classes
benefit from increased capacity yielded by the integrated architecture.

16



16 disks, wi:w2=1:1 16 disks, wiw2=1:1
140 v r — v

. v . 2 v .
. Integrated, 20 text clienfs +—
Integrated, O video clients -~ 18} !me?rated,wmext ik 1 DO
120 | Integrated, 40 video clients —- 1 Integrated 150 text dlie iuh_
Integrated, 90 video clients; o 1.8 [ ntegrated, 200 toxt clierfts 1-+—
T 100 Pattitioned ~— - 3 | """ Partitiongg |-~
g ; ] 3 4 ¢ f'
° i K-} i :
€ sl / g 12 i
3 g N e Tirr
2 3 o8} L
g : | b
@ ® . i
04}
02}t 3
0 . . . . R R R 0 . i R
0 50 100 150 200 250 300 350 400 0 20 40 60 80 100 120 140 160 180
Number of text clients Number of video clients
(@ (b)

Figure 15: Capacity of the integrated server: (a) text capacity, and (b) video capacity

16 disks, wi:w2=1:1

250 v T -

Integrated, ideal —
Integrated, actual ----

@ 200 Partitioned - 4

3

B

g 150

k=4 S

E ..

o

= 100

2 \

5 50 \\

\\\
\.\

0 R R R R N .
0 50 100 150 200 250 300 350 400
Number of text clients

Figure 16: Capacity comparison of the partitioned, the ideal integrated, and the ideal integrated server architectures

3.2 Capacity of an Integrated Server

As explained in Figure 4, an integrated server can operate in regions beyond the shaded area, whereas a partitioned
server saturates at such workloads. In the previous section, we determined the performance of an integrated server
in the shaded region and compared it to that of a partitioned server. In this section, we determine how the capacity
of an integrated server compares with that of the ideal.

An integrated server can support ¢ text and v video clients simultaneously if the response time of text clients at that
load is less than threshold 7; = 100ms and the percentage of deadlines violated of video clients is less than threshold
Ty = 1%. We first determined the number of text clients that could be supported at various video loads. To do so,
we varied the text load until the threshold 7; was reached. Figure 15(a) plots the variation in response time for text
clients for different video loads. Next, we determined the number of video clients that could be supported at various
text loads. To do so, we increased the video load until the percentage of deadlines violated exceeded threshold 7.
Figure 15(b) plots the percentage of request deadlines violated for different text load. Figure 16 combines the results
of these experiments and plots the number of video and text clients that can be supported simultaneously by an
integrated server.

Recall that, for 7; = 100ms and 7, = 1%, the partitioned server can support 7' = 200 text and V = 102 video
clients. Since the integrated server, in our experiments, utilizes twice as many disks as the text and the video servers

17



in the partitioned architecture, ideally, the integrated server should be able to support up to 400 text clients when
there is no video load, and 204 video clients when there are no text clients. Furthermore, the performance of the ideal
integrated server will scale linearly between these two extremes. Figure 16 compares the capacity of a partitioned,
an ideal integrated, and an integrated servers. The figure shows that:

e The capacity curve of the integrated server is indeed similar to that of the the ideal integrated server; hence
an integrated server can support approximately twice the number of clients from an application class when
the other class does not use its fair share. However, there is a small degradation (about 5%) in capacity as
compared to the ideal scenario.

e The partitioned server can support 200 text and 102 video clients simultaneously, whereas the integrated server
can support 192 text and 97 video clients simultaneously. Thus, there is about 4.3% percentage degradation
in the capacity of the integrated system as compared to the partitioned system.

The decrease in capacity of the integrated servers vis-a-vis partitioned and ideal integrated servers is due to the
following reasons:

o Effect of video clients on text requests: The presence of video clients reduces the slack available to service text
clients as well as increases the probability of a disk being busy when a text request arrives. Both factors require
a text request to wait before being serviced. The resulting increase in response time causes the threshold 7; to
be reached at a smaller load, resulting in a reduction in capacity.

o Increased load imbalance: Since the integrated server uses (D; + D-) disks to service text and video clients,
it has a higher load imbalance as compared to a partitioned server that uses D, and D» disks each to service
text and video requests, respectively [20]. An increased load imbalance results in an increase in queuing
delay and response time for text requests, which in turn reduces capacity. It also causes the most heavily
loaded disk to reach saturation at a lighter video load. Since number of video clients supported by a server
reaches its capacity when the most heavily loaded disk in the array reaches saturation (increasing the video
load beyond this point results in an increasing number of request deadline violations), this results in a reduced
video capacity [20].

e Idiosyncrasies of the scheduling algorithm: Since the Cello disk scheduling algorithm employed by the inte-
grated server must switch between various classes, it incurs higher seek and rotational latency overheads than
a partitioned system. This results is a reduction in throughput, and hence, capacity.

3.3 Performance for Bursty Workloads

So far, we have: (1) compared the performance of the integrated and partitioned servers in the operating region
defined by the ranges [0, T'] and [0, V] (see Section 3.1); and (2) compared the performance of the integrated server
with the ideal (see Section 3.2). For both scenarios, to determine the system behavior at different operating points,
we used synthetic workloads for text clients that were non-bursty in nature. However, real-life workloads exhibit
substantial burstiness at multiple time scales [5]. Even when the average load is substantially smaller than capacity,

18



16 disks, wiw2=1:1 16 disks, wh:w2 = 1:1

120 v 7 1 v v v v
o e = s s B
100 | 1 earatad. 70 video cinls = 08| Integrated, text- 2438 KE/s -s- |
% Integrated, 90 video clients -« _3; artitioned, SCAN-EDF -w—
E 80 Partitioned -+—- / s
2 / > 06}
£ ]
g / g
c E 04}
% 40 g
o
g ®* s
20 | 0.2
0 0 . + -

0 500 1000 1500 2000 2500 3000 0

20 40 60
Text workload (KB/s) Number of video clients
(@ (b)

Figure 17: Performance using bursty workloads.

such workloads can contain periods of intense bursts causing transient overloads in the system (since this causes the
server to temporarily operate beyond the region defined by the ranges [0, 7] and [0, V] or even beyond the capacity of
the ideal integrated server). In this section, we compare the behavior of the two servers using such bursty workloads.
We use the NFS trace described in Section 2.3 for our experiment. To generate different workloads using the same
trace, we scale the timestamp associated with each request by a factor S. Such scaling of timestamps changes the
inter-arrival times between requests; S > 1 increases the average inter-arrival time, while S < 1 decreases it.

To determine the performance of text clients, we keep the video load fixed and measure the response time for
varying text loads. Note that, the text loads used for our experiments were such that the average load was always
smaller than capacity (i.e., was within the shaded region). Since the NFS trace has a peak to average ratio of 12.5 (see
Table 3), this caused the server to temporarily saturate during periods of intense bursts. Figure 17(a) compares the
response times of the two servers. The figure shows that transient overloads cause the average response time yielded
by the partitioned system to be much higher than the integrated server. This is because, as shown in Section 3.2,
sharing disk bandwidth enables the integrated server to handle up to twice the number of clients from a particular
application class if other class is not using up its share of the disk bandwidth. Consequently, the integrated server can
adapt to changing load conditions and handle transient overloads that saturate the partitioned system. This results
in average response times that are substantially smaller than that in the partitioned system (for instance, at a load of
3000KB/s, which corresponds to a utilization level of 50%, the response time is smaller by a factor of 6).

Since video requests impose real-time constraints on the server, most file systems employ admission control
algorithms to ensure that the load imposed by video clients is less than capacity. Hence, we expect the video
load to be always less than V clients for the partitioned system and less than 2V clients for the integrated system.
Consequently, it is not meaningful to study the effect of bursty video loads with high peak to average ratios on
the performance of the two systems (since the admission control algorithm will limit the load to capacity). Instead
we study whether a bursty text load that can cause transient overloads affects the performance of video clients in
the integrated server. Figure 17(b) shows the percentage of request deadlines violated for different video loads and
a fixed background text load. The figure shows that both servers are able to meet all request deadlines at low to
moderate loads. A small number of requests deadlines get violated at high levels of utilization in both servers.
The figure also shows that the disk scheduling algorithm employed by the integrated server is able to isolate video

19



18 disks, text server=4, wi:w2 = 4:12 16 disks, text server=8, wi:w2 = 8:8 16 disks, text server=10, wi-w2 = 10:6

tntegrated, 20 vidoo clients —— integrated, 20 video cllents —— , -
100 Intograted, 50 vidoo cients 100 tograted. 20 video clanty. 100 Intogratod. 29 vidas clionts, 27
Partitoned " Partitioned -o - Partitioned /o -
7 w0 4 7 s / z 80 /
o ~ -
§ 60 1 E 60 , § 0
e g 7 2
2 40t e § 40 ,»"/ a 40
— : - A
20} "_,,./-"" 20 e 3 e
0
0 02 0.4 0.6 0.8 1 0 01 02 03 04 05 06 07 08 09 1 %0 0102 03 0.4 05 06 07 05 08 1
Text load (normalized) Text load (normalized) Text load {normalized)
(a) text = 4 disks (b) text = 8 disks (c) text = 10 disks
video = 12 disks video = 8 disks video = 6 disks

Figure 18: Effect of varying the number of disks assigned to the text and video classes on the response time.

requests from bursty text loads, and thereby provide performance that is comparable to or better than the partitioned
server. '

3.4 Effect of Partition Size

Our experiments so far have assumed that the disks in a partitioned system are equally partitioned among the text
and video servers. Figure 18 plots the response time of text requests for different partition sizes (the bandwidth
assigned to the two application classes in the integrated server correspond to the fraction of the total number of disks
assigned to the two servers in the partitioned system). The figure demonstrates that, even when the partition size is
varied, the behavior of the response time graphs yielded by the two architectures remains similar. This implies that,
regardless of the partition size, the expected response time of the integrated server continues to be smaller than that
of its counterpart. Hence, the expected improvement E(I) is always positive. We are in the process of determining
the expected improvement in response times for the different partition sizes and will include these results in the final
version of the paper. Our results indicate that a similar observation holds for video clients.

4 Concluding Remarks

Integration—supporting multiple application classes with heterogeneous requirements—is an emerging trend in net-
works, file systems, and operating systems. In this paper, we evaluated two architectural alternatives—partitioned
and integrated—for designing next generation file systems. Whereas a partitioned server employs a separate compo-
nent file system for each application class, an integrated file server shares its resources across all application classes.
We evaluated the performance gains achieved by the integrated architecture as a result of sharing disk bandwidth
between application classes. We demonstrated that though the problem of sharing disk bandwidth is conceptually
similar to that of sharing network link bandwidth in integrated services networks, the arguments that demonstrate the
superiority of integrated services networks are not applicable to file systems. To experimentally evaluate the efficacy
of sharing disk bandwidth, we considered two application classes, text and video, and for these application classes,
showed that an integrated server: (i) yields better performance than its counterpart over a large operating region but
has slightly worse performance in a small region, (ii) has a larger capacity since it can support a larger number of

20



clients from a class when the other class does not use its fair share, and (iii) is self-adapting since larger capacity
and sharing of disk bandwidth enable it to better handle bursty loads that cause transient overloads.

To derive these results, we first compared the performance of the two architectures when the load is less than
the maximum that can be supported by the partitioned system (the shaded region in Figure 4). Our experiments
demonstrated that the integrated server outperforms the partitioned server by a significant amount in a majority of
this region and yields slightly worse performance than its counterpart in small region. Specifically, text requests
see a worse response time under low text and heavy video loads (upper left hand comer of the region), whereas
video request see a larger number of deadline violations under heavy text and video loads (upper right hand comner
of the region). Using load distributions derived from file access traces, we demonstrated that, on an average, the
integrated server yields a 25%-40% improvement in response time over the partitioned server. For video clients, we
showed that, in spite of the potential interference from text requests, the integrated server is able to provide matching
performance to video requests (by meeting a comparable number of request deadlines).

Next, we determined if the capacity of an integrated server scales up to 2D+_2Dz *V video and Qll%Ql*T text clients.
We demonstrated that the capacity curve of an integrated server is indeed similar to that of the the ideal scenario; an
integrated server can support a larger number of clients from an application class when the other class does not use
its fair share. However, due to load imbalances in the system and the idiosyncrasies of the disk scheduling algorithm,
there is a small (about 5%) degradation in the number of text and video clients supported as compared to the ideal
server.

Finally, we demonstrated that the ability of an integrated server to support a larger number of clients enable it
to adapt to bursty workloads that can cause transient overloads. Specifically, we showed that, when the server is
operating at 50% utilization, in the presence of bursty text loads, the average response time yielded by the integrated
server is smaller by a factor of 6 as compared to the partitioned server. Moreover such bursty loads have little or no
effect on the performance of video clients.

In this paper, we evaluated the two architectures with respect to their performance. However, factors other than
resource utilization and performance may also influence the choice of a particular architecture. For instance, par-
titioned file systems are easy to design and implement, since techniques for designing file systems optimized for
a single application class are well understood. Furthermore, the presence of legacy file systems or specialized ap-
plications that need custom hardware and software may dictate the use of partitioned or even separate servers. In
contrast, system administration costs may favor the use of integrated servers over partitioned or multiple disparate
servers. Although the need for supporting multiple application classes within an integrated server increases file
system complexity and development costs, such file systems generally facilitate easy integration of new application
classes; allowing the development cost to be amortized over time as new application classes are added. Adding a
new application class in the partitioned system, on the other hand, requires the development of a new component file
system. Thus, in summary, the choice between the partitioned and integrated architectures is dependent on the needs
of a particular environment, which govern the balance between these tradeoffs.

References

(1] P. Barham. A Fresh Approach to File System Quality of Service. In Proceedings of NOSSDAV’97, St. Louis, Missouri,
pages 119-128, May 1997.

21



[2] I.C.R. Bennett and H. Zhang. Hierarchical Packet Fair Queuing Algorithms. In Proceedings of SIGCOMM’96, pages
143-156, August 1996.

[3] E G. Coffman and M. Hofri. On the Expected Performance of Scanning Disks. SIAM Journal of Computing, 10(1):60-70,
February 1982.

[4] E G. Coffman, L A. Klimko, and B. Ryan. Analysis of Scanning Policies for Reducing Disk Seek Times. SIAM Journal
of Computing, 1(3):269-279, September 1972.

[5] M. Dahlin, C. Mather, R. Wang, T. Anderson, and D. Patterson. A Quantitative Analysis of Cache Policies for Scalable
Network File Systems. In Proceedings of ACM SIGMETRICS'94, May 1994.

[6] A.Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queueing Algorithm. In Proceedings of ACM
SIGCOMM, pages 1-12, September 1989.

[7] P J. Denning. Effects of Scheduling on File Memory Operations. In Proceedings of AFIPS SJCC, pages 9-21, 1967.

[8] R. Geistand S. Daniel. A Continuum of Disk Scheduling Algorithms. ACM Transactions on Computer Systems, 5(1):77-
92, February 1987.

[9] L. Golubchik, J. C. S. Lui, and R. R. Muntz. Reducing I/O Demand in Video-On-Demand Storage Servers. In Proceedings
of SIGMETRICS '95, Ottawa, Canada, May 1995.

[10] M. Hofri. Disk Scheduling: FCFES vs. SSTF Revisited. Communications of the ACM, 23(11):645-653, November 1980.

[11] E.K. Lee and R.H. Katz. An Analytic Performance Model for Disk Arrays. In Proceedings of the 1993 ACM SIGMET-
RICS, pages 98-109, May 1993.

[12] C. Martin, P. S. Narayan, B. Ozden, R. Rastogi, and A. Silberschatz. The Fellini Multimedia Storage Server. Multimedia
Information Storage and Management , Editor S. M. Chung, Kluwer Academic Publishers, 1996.

[13] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A Fast File System for UNIX. ACM Transactions on Computer
Systems, 2(3):181-197, August 1984.

[14] G. Nerjes, P. Muth, M. Paterakis, Y. Romboyannakis, P. Triantafillou, and G. Weikum. Scheduling Strategies for Mixed
Workloads in Multimedia Information Servers. In Proceedings of the 8th International Workshop on Research Issues in
Data Engineering (RIDE’98), Orlando, Florida, February 1998.

[15] A.L.Narasimha Reddy and J. Wyllie. Disk Scheduling in Multimedia /O System. In Proceedings of ACM Multimedia’93,
Anaheim, CA, pages 225-234, August 1993.

[16] Timothy Roscoe. The Structure of a Multi-Service Operating System. PhD thesis, University of Cambridge Computer
Laboratory, April 1995. Available as Technical Report No. 376.

[17] S. Shenker. Fundamental Design Issues for the Future Internet. [EEE Journal of Selected Areas in Communications,
13:1176-1188, September 1995.

[18] P Shenoy and H M. Vin. Cello: A Disk Scheduling Framework for Next Generation Operating Systems. In Proceedings
of ACM SIGMETRICS Conference, Madison, WI, pages 44-55, June 1998.

[19] PI. Shenoy, P. Goyal, S S. Rao, and H M. Vin. Symphony: An Integrated Multimedia File System. In Proceedings of the
SPIE/ACM Conference on Multimedia Computing and Networking (MMCN’98), San Jose, CA, pages 124—138, January
1998.

[20] P J. Shenoy and H M. Vin. Efficient Striping Techniques for Multimedia File Servers. In Proceedings of the Seventh
International Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV’97), St.
Loius, MO, pages 25-36, May 1997.

[21] T. Teorey and T. B. Pinkerton. A Comparative Analysis of Disk Scheduling Policies. Communications of the ACM,
15(3):177-184, March 1972.

[22] F A. Tobagi, J Pang, R Baird, and M Gang. Streaming RAID — A Disk Array Management System For Video Files. In
Proceedings of ACM Multimedia '93, Anaheim, CA, pages 393—400, 1993.

22



[23] A. K. Tsiolis and M. Vernon. Group Guaranteed Channel Capacity in Multimedia Storage Servers. In Proc. ACM
Sigmetrics '97, Seattle, pages 285-297, June 1997.

[24] R. Wijayaratne and A. L. N. Reddy. Providing QoS Guarantees for Disk I/O. Technical Report TAMU-ECE97-02,
Department of Electrical Engineering, Texas A&M University, 1997.

[25] N.C. Wilhelm. An Anomaly in Disk Scheduling: A Comparison of FCFS and SSTF Seek Scheduling using and Empirical
Model for Disk Access. Communications of the ACM, 19(1):13-17, January 1976.

[26] B L. Worthington, G R. Ganger, and Y N. Patt. Scheduling Algorithms for Modern Disk Drives. In Proceedings of ACM
SIGMETRICS’94, pages 241-251, May 1994.

23



