

Modeling Uncertainty and its Implications to Design-to-Criteria
Scheduling

Thomas A. Wagner Anita Raja
Department of Computer Science

University of Massachusetts at Amherst
wagner@cs.umass.edu

UMass Computer Science Technical Report 1998-51

Victor R. Lesser

January 19, 1999

Abstract

Design-to-Criteria scheduling is the soft real-time process of custom building a schedule to meet dynamic client
goal criteria (including real-time deadlines), using a task model that describes alternate ways to achieve tasks and
subtasks. Design-to-Criteria is related to Design-to-Time and flexible computation methodologies. Recent advances
in Design-to-Criteria include the addition of uncertainty to the TÆMS computational task models analyzed by the
scheduler and the incorporation of uncertainty in the scheduling process. This has greatly improved four aspects of
the scheduling process: modeling of tasks and task interactions, evaluation of schedules and schedule approximations,
focusing of scheduling activities on more certain schedules when uncertainty reduction is important to the client, and
construction of schedules that have more certainty and perhaps employ multiple ways to achieve a particular task to
improve certainty. The addition of uncertainty has also spawned a post-scheduling contingency analysis step that can
be employed in deadline critical situations where the added computational cost is worth the expense. We describe
the uncertainty representation and how it improves task models and the scheduling process, and provide empirical
examples of uncertainty reduction in action.

1 Introduction
Design-to-Criteria (DTC) scheduling is the soft real-time process of finding an execution path through a hierarchical
task network such that the resultant schedule meets certain design criteria, such as real-time deadlines, cost limits,
and quality preferences. Casting the language into an action-selecting-sequencing problem, the process is to select a
subset of primitive actions from a set of candidate actions, and sequence them, so that the end result is an end-to-end
schedule of an agent’s activities that meets situation specific design criteria. The scheduling problem is exponential
and complicated by the existence of task interactions, i.e., primitive actions may not be independent, and by the exis-
tence of individual constraints on the primitive actions, e.g., individual deadlines, cost limits, earliest start times, and
quality requirements. The combinatorics of the scheduling problem are controlled through the use of approximation,
satisficing, goal-directed problem solving, and heuristics for action ordering, as discussed in [30]. We return to the
issue of combinatorics in Section 3.

A version of this paper is under review for a special issue of the AI Journal.
Effort sponsored by the Defense Advanced Research Projects Agency (DARPA) and Air Force Research Laboratory Air Force Materiel Com-

mand, USAF, under agreement number F30602-97-1-0249 and by the National Science Foundation under Grant number IIS-9812755 and number
IRI-9523419. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the Defense Advanced Research Projects Agency (DARPA), Air
Force Research Laboratory, National Science Foundation, or the U.S. Government.

1

Money
Resource

Build PC Product
Objects

Get Basic Product
Information

Query & Extract
Vendor m

Query & Extract
Possible Maker n

Gather Reviews

Search & Process
ZDnet Reviews

Search & Process
PC World

Query & Process
Consumers Reports

q_seq_sum()

q_sum()
q_sum()

q = 7.65
c = $0
d = 2.85min

q = 8
c = $0
d = 1.5min

Query & Extract
PC Connection

Query& Extract
PC Mall

q = 22.5
c = $2
d = 3.2min

q = 18
c = $0
d = 4.1min

q(..), c(..), d(..)
q(..), d(..), c(..)

consumes $2

limits
q multiplier (100% 0)
c multiplier (x)
d multiplier (x)

q(..), c(..), d(..)

Task

Method

Resource nle

Task nle

Subtask Relation

Key

enables

Figure 1: Simplified Subset of an Information Gathering Task Structure

The Design-to-Criteria scheduling problem is framed in terms of a TÆMS [9, 32] task network, which imposes
structure on the primitive actions and defines how they are related. The most notable features of TÆMS are its
domain independence, the explicit modeling of alternative ways to perform tasks, the explicit and quantified modeling
of interactions between tasks, and the characterization of primitive actions in terms of quality, cost, and duration.
We describe TÆMS in greater detail in Section 2, however, to ground further discussion consider the TÆMS task
structure shown in Figure 1. The task structure is a conceptual, simplified sub-graph of a task structure emitted by the
BIG [21] information gathering agent; it describes a portion of the information gathering process. The top-level task
is to construct product models of retail PC systems. It has two subtasks, Get-Basic and Gather-Reviews, both of which
are decomposed into primitive actions, called methods, that are described in terms of their expected quality, cost, and
duration. The enables arc between Get-Basic and Gather is a non-local-effect (nle) or task interaction; it models the
fact that the review gathering methods need the names of products in order to gather reviews for them. Get-Basic has
two methods, joined under the sum() quality-accumulation-function (qaf), which defines how performing the subtasks
relate to performing the parent task. In this case, either method or both may be employed to achieve Get-Basic. The
same is true for Gather-Reviews. The qaf for Build-PC-Product-Objects is a seq sum() which indicates that the two
subtasks must be performed, in order, and that their resultant qualities are summed to determine the quality of the
parent task; thus there are nine alternative ways to achieve the top-level goal in this particular sub-structure.

Schedule C

Expected Quality: 26.00
Expected Cost: 0.00
Expected Finish Time: 5.60

PC-Connection ZDnet
Schedule B

Expected Quality: 33.65
Expected Cost: 0.00
Expected Finish Time: 8.45

PC-Mall ZDnetPC-Connection
Schedule A

Expected Quality: 30.50
Expected Cost: 2.00
Expected Finish Time: 4.70

PC-Connection Consumers-Reports

Figure 2: Different Schedules Produced for Different Design Criteria

Three different schedules for achieving the top-level goal of the task structure, produced for three different sets
of design criteria, are shown in Figure 2. Schedule A is constructed for a client who needs a high quality solution,
requires the solution in seven minutes or less, and who is willing to pay for it. Schedule B is constructed to suit
the needs of a client who has plenty of time and is willing to wait for a high quality solution, but who also has no
money. Schedule C is constructed for a client who has neither time nor money. Even this example illustrates the
notion of quantified choice in TÆMS and how the Design-to-Criteria methodology leverages the quantification to
build different schedules for different contexts. However, this simple example also illustrates a weakness in TÆMS as
presented in Figure 1 – a weakness that is carried forward to the scheduling process and consequently to the schedules
returned to the client. The initial design of TÆMS included only expected value modeling of primitive actions and
task interactions. Subsequently, we have come to understand the strength of explicit modeling of uncertainty and the
implications of these new models to the Design-to-Criteria scheduling process.

Prior to delving into an intellectual discussion of the role of uncertainty, consider the simplified task structure

2

revised to include uncertainty, Figure 3, in the characterizations of the primitive actions. In the enhanced task structure,
primitive actions are characterized statistically via discrete probability distributions rather than expected quality values.
The quality distributions model the probability of obtaining different quality results and the possibility of failure
(indicated by a zero quality result). Note that the expected values of these distributions are the same as those in
the previous expected-value model, thus the structures are directly comparable. The cost and duration distributions
represent the different possible costs and durations of the actions. This level of detail can be very important when
reasoning about the gathering process. For example, in the enhanced model, it is clear that the method for querying
and extracting text obtained from the PC-Connection site has a higher probability of failure than the method for
querying and extracting text obtained from the PC-Mall site. In the original model, the detail is lacking and it is
impossible to ascertain which method is more likely to fail.

The schedules shown in Figure 4 illustrate the value of uncertainty in this model from a scheduling perspective.
Schedule A is identical to Schedule A from the expected value case (Figures 1 and 2), however, with the addition
of uncertainty to the model, the scheduler can propagate uncertainty and create better estimates for the performance
characteristics of the schedules. Note that the quality distribution for Schedule A includes a 20% chance of failure. In
fact, with the addition of uncertainty to the model, analysis shows that Schedule A is no longer the optimal schedule
for the client (who needs a result in 7 minutes or less and is willing to pay for it). Instead Schedule O (Figure 4) is the
optimal choice. Even though the PC-Connection method has a higher expected value, the PC-Mall method has a lower
probability of failure. Since a failure in one of these methods precludes the execution of Query-Consumers-Reports
(via the task interaction), the issue of failure is not local to the methods but instead impacts the schedule as a whole.
Thus, when uncertainty is modeled and propagated during the scheduling process, Schedule O is the optimal schedule
as it has the highest net expected quality value and it still meets the client’s deadline constraint.

Money
Resource

Build PC Product
Objects

Get Basic Product
Information

Query & Extract
Vendor m

Query & Extract
Possible Maker n

Gather Reviews

Search & Process
ZDnet Reviews

Search & Process
PC World

Query & Process
Consumers Reports

q_seq_sum()

q_sum()
q_sum()

q (10% 0)(90% 8.5)
c (100% 0)
d (10% 2min)(10% 2.5min)(80% 3min)

q (20% 0)(80% 10)
c (100% 0)
d (50% 1min)(50% 2min)

Query & Extract
PC Connection

Query& Extract
PC Mall

q (25% 0)(75% 30)
c (100% $2)
d (90% 3)(10% 5)

q (10% 0)(90% 20)
c (100% 0)
d (30% 3min)
 (30% 4min)
 (40% 5min)

q(..), c(..), d(..)
q(..), d(..), c(..)

consumes $2

limits
q multiplier (100% 0)
c multiplier (x)
d multiplier (x)

q(..), c(..), d(..)

Task

Method

Resource nle

Task nle

Subtask Relation

Key

enables

Figure 3: Simplified Subset of an Information Gathering Task Structure

Schedule A!
PC-Connection Consumers-Reports

Quality distribution (sum of TGs): (0.20 0.0)(0.20 10.0)(0.60 40.0)
 Expected value: 26.00
 Probability q or greater: 0.60
Cost distribution (sum of methods costs): (1.00 2.0)
 Expected value: 2.00
 Probability c or lower: 1.00
Finish time distribution (finish time of last method): (0.45 4.0)(0.45 5.0)(0.05 6.0)(0.05 7.0)
 Expected value: 4.70
 Probability d or lower: 0.45

Schedule O - Optimal Schedule
PC-Mall Consumers-Reports

Quality distribution (sum of TGs): (0.10 0.0)(0.22 8.5)(0.67 38.5)
 Expected value: 27.90
 Probability q or greater: 0.67
Cost distribution (sum of methods costs): (1.00 2.0)
 Expected value: 2.00
 Probability c or lower: 1.00
Finish time distribution (finish time of last method): (0.09 5.0)(0.09 5.5)(0.72 6.0)
 (0.01 7.0)(0.01 7.5)(0.08 8.0)
 Expected value: 6.05
 Probability d or lower: 0.90

Figure 4: Uncertainty Representation Changes Optimal Schedule

This example conceptually illustrates one aspect of the value of uncertainty in the task models and in the scheduling
process – better models lead to better schedules. We believe that representing and reasoning about uncertainty is one
of the keys to scheduling computational structures in uncertain environments. This is particularly true when quality

3

requirements and time and cost constraints are present. Additionally, with the inclusion of uncertainty modeling and
propagation it is clear that there are many different dimensions and aspects of utility that can be used to evaluate the
appropriateness of schedules. Consider the task of gathering information via the highly uncertain WWW to support a
decision about the purchase of a new automobile. Certain clients may prefer a risky information gathering plan that
has a potentially high pay-off in terms of information gathered, but also has a high probability of failure. Other, more
risk averse clients might prefer a course of action that results in a lower pay-off in exchange for more certainty about
the pay-off and a lower probability of failure. Integrating notions of uncertainty in to the schedule evaluation process
is one aspect of this work.

Based on the observation that models containing uncertainty lead to more accurate representations and facilitate
deeper analysis, the TÆMS task modeling framework was enhanced to model uncertainty about the quality, cost, and
duration characteristics of tasks using discrete probability distributions. The modeling framework was also extended
so that nles (task interactions) are also quantified and characterized using the describe probability distributions. We
have augmented and extended the Design-to-Criteria scheduling system to leverage this new explicit representation
of uncertainty to build better custom schedules. We have also constructed a secondary contingency-based schedule
modification and selection algorithm that may be used in certain situations to ensure that recovery options exist if the
chosen schedule fails. Uncertainty plays several roles in the scheduling process:

Accuracy Uncertainty modeling enables the scheduler to represent and propagate uncertainty about tasks and their
outcomes. This results in more accurate models of individual tasks, and more importantly, more accurate models
of task sequences and task interactions. In contrast to reasoning from a single expected value, this enhancement
supports notions like “30% of the time Task A will fail and 70% of the time it will generate high-quality results.”
Because the models of tasks, task interactions, and sequences of tasks are more accurate, the scheduler builds
better schedules, as illustrated by Figures 3 and 4.

Focusing Uncertainty’s second role is in focusing; the scheduler uses the client’s design criteria throughout the
scheduling process to focus efforts on building schedules and partial schedules that best satisfice, from a ra-
tional perspective [25, 26], to meet the criteria. This focusing behavior is what enables the scheduler to cope
with the exponential combinators and produce results in soft real-time. When uncertainty reduction is impor-
tant, the scheduler may select tasks that have a high degree of certainty about the specified dimension(s) and
trade-off utility in other dimensions as specified by the client’s criteria. For example, if certainty in the quality
dimension is important to the client relative to raw quality goodness, the scheduler may trade-off high quality
for more certainty about quality when building schedules, resulting in schedules with lower overall quality but
higher quality certainty. In situations where a deadline must be met, the scheduler may elect to trade-off quality
or even short duration, possibly in exchange for certainty about duration, producing schedules whose durations
are not as short as possible, but whose durations are more certain than the schedules that have the shortest
durations. These simple examples are members of a large class of multi-dimensional attribute trade-offs that
Design-to-Criteria considers when building schedules [29, 30].

Construction The third use of uncertainty in the scheduling process is in construction; when uncertainty is important
to the client, the scheduler may take a more active approach to uncertainty reduction and elect to use more than
one way of achieving various tasks in order to increase the certainty of results in desired dimension(s).

Evaluation The fourth role of uncertainty is in evaluation; it enables the scheduler to evaluate quality, cost, duration,
and uncertainty trade-offs when building custom schedules to meet a particular client’s needs. The addition of
uncertainty to both the task model and the goal/design criteria allows clients to specify how important, if at all,
uncertainty reduction is relative to other schedule features like raw-goodness and threshold/limit specifications
in each of the three modeled dimensions: quality, cost, and duration.

Contingency Analysis The fifth use of uncertainty is in the support of secondary contingency analysis. The general
Design-to-Criteria scheduling process is designed to cope with exponential combinatorics and to produce results
in soft real-time. However, its somewhat myopic approximation and localization methodologies do not consider
the existence of recovery options or their value to the client. In the general case, explicit contingency analysis is
not required. In the event of a failure, the scheduler is reinvoked and it plans a new course of action based on the

4

current context (taking into consideration the successes as well as the failures, considering the value of results
that been produced to the particular point). In hard deadline situations, however, the scheduler may not be able to
recover and employ an alternative solution path because valuable time has been spent traversing a solution path
that cannot lead to a final solution. Our uncertainty based contingency analysis tools can help in this situation
by pre-evaluating the likelihood of recovery from a particular path and factoring that into the utility associated
with a particular schedule. The improved estimates (based on the possibility of recovery options) can result in
the selection of a different schedule, possibly one that leads to higher quality results with greater frequency. We
return to contingency analysis in Section 4.

In general, the different implications of uncertainty to the scheduling process manifest themselves in two primary
ways. One is with respect to the general scheduling process. By integrating and leveraging uncertainty within the
framework of coping with combinatorics and generating custom schedules, we can produce better schedules in sit-
uations where certainty is important. Notions of redundancy, reducing uncertainty at schedule time, and focusing
schedule generation on producing certain solutions are aspects of this facet. In contrast, the other use of uncertainty in
our work is to step outside of the soft real-time schedule generation context and to focus instead on detailed analysis
that considers schedule recovery options and revises schedule expectations to reflect this more detailed analysis. One
one hand there is the utilization of uncertainty in the approximate, satisficing, soft real-time computational Design-to-
Criteria framework, and on the other hand there is an added expense, but a more thorough, detailed analysis that pays
real dividends in hard-deadline situations that are accompanied by up front time for the extra analysis. This second
approach can also be used for a priori off-line production of highly certain real-time schedules.

Design-to-Criteria [30, 29] traces its ancestry to the ideas of Design-to-Time [13, 14, 12] scheduling and to research
in flexible computation [16] and anytime algorithms [6, 24, 33, 35]. Design-to-Criteria is related to Design-to-Time
in that both scheduling methodologies are domain independent, operating on an abstract model of a particular prob-
lem solving process; more importantly both methodologies entail selecting from alternative ways to perform tasks,
where each way has different performance characteristics, in order to construct custom schedules for a particular situ-
ation. Design-to-Time focused on quality and time trade-offs and building schedules to meet particular deadlines. To
increase flexibility, Design-to-Criteria instead builds schedules that trade-off quality, cost, duration, and certainty in
each of these dimensions, to meet a particular set of design criteria, in addition to meeting deadlines and other hard
resource constraints. In the spirit of flexible computation, Design-to-Criteria also uses this trade-off analysis to control
the scheduling combinatorics throughout the scheduling process, rather than as a post-production schedule selection
mechanism as in Design-to-Time.

This work falls into the general area of flexible computation [16], but differs from most flexible computation
approaches in its use of multiple methods for task achievement (one exception is [17]), in its first class treatment of
uncertainty, and in its ability to use uncertainty information in the selection of methods for execution. Much work
in flexible computation makes use of anytime algorithms [6, 24, 33], algorithms that always have an answer at hand
and produce higher quality results as they are given more time, up to a threshold. The TÆMS multiple methods
approach can model any activity, including anytime algorithms , that can be characterized statistically and we place
no constraints on the statistical behavior of the activities in question. In our work, uncertainty is a first class concept
that both appears in the statistical descriptions of the available methods and is propagated and related as schedules
and schedule approximations are generated. Unlike most work in anytime algorithms that focuses on the propagation
of uncertainty [34], we can also include uncertainty and uncertainty reduction in the goal criteria and focus work
on reducing uncertainty when important to the client. This ability stems from our task model’s representation of
alternative ways to perform various tasks. Because multiple-methods often exist to perform tasks, we can reason about
the quality, cost, duration, and uncertainty trade-offs of different actions when determining which actions to perform,
achieving the best possible overall results.

Recent research has advanced Design-to-Criteria in three primary areas: refining the goal directed criteria mecha-
nism and trade-off analysis process, improving the quality estimates associated with final schedules, and the addition
and incorporation of uncertainty in the scheduling process. In this paper, we focus on the uncertainty aspect of our

In Design-to-Time, schedule production is designed to produce an assortment of schedules, via a fixed set of heuristics, regardless of the design
criteria. In Design-to-Criteria, where possible, all computation is directed at producing schedules, partial schedules, and schedule approximations
that meet the design criteria, thus resulting in a larger set of high quality schedules from which to choose the “best” schedule to return to the client.

Though if all actions were anytime algorithms, there are better ways to frame and perform the scheduling task.

5

recent work, though we point out other advances along the way. The approximate, trade-off behavior of the scheduling
algorithm is presented in [30], along with identification of sources of complexity that pose significant obstacles to
generating real-time schedules and doing so in soft real-time.

This paper is structured as follows. In Section 2 we discuss the TÆMS task modeling framework and the addition
of uncertainty to the task models. Section 3 discusses how uncertainty is integrated and leveraged in the main Design-
to-Criteria scheduling process. In Section 4 we step outside of the main scheduling process and discuss secondary
contingency analysis methodology that uses Design-to-Criteria to explore uncertainty and the ramifications of schedule
failure. Experimental results illustrating the strength of contingency analysis, relative to Design-to-Criteria’s myopic
view, for certain classes of task structures are provided in Section 5.

2 Extending the TÆMS Modeling Language
TÆMS (Task Analysis, Environment Modeling, and Simulation) is a domain independent task modeling framework
used to describe and reason about complex problem solving processes. TÆMS models are used in multi-agent co-
ordination research [9, 32] and are being used in many other research projects, including: Cooperative-Information-
Gathering [22, 21], collaborative distributed design [10], distributed situation assessment [5], surviveable systems
[28], multi-agent diagnoses [2], intelligent environments [20], hospital patient scheduling [8], and coordination of
software process [18]. Typically a problem solver represents domain problem solving actions in TÆMS, possibly at
some level of abstraction, and then passes the TÆMS models on to agent control problem solvers like the multi-agent
coordination modules or the Design-to-Criteria scheduler.

TÆMS models are hierarchical abstractions of problem solving processes that describe alternative ways of accom-
plishing a desired goal; they represent major tasks and major decision points, interactions between tasks, and resource
constraints but they do not describe the intimate details of each primitive action. All primitive actions in TÆMS, called
methods, are statistically characterized in three dimensions: quality, cost and duration. Quality is a deliberately abstract
domain-independent concept that describes the contribution of a particular action to overall problem solving. Thus,
different applications have different notions of what corresponds to model quality. Duration describes the amount of
time that the action modeled by the method will take to execute and cost describes the financial or opportunity cost
inherent in performing the action. With the recent addition of uncertainty modeling, the statistical characteristics of
the three dimensions are described via discrete probability distributions associated with each method. The uncertainty
representation is also applied to task interactions like enablement, facilitation and hindering effects. Thus agents may
not only reason about the certainty of actions, e.g., “method A will fail 10% of the time,” but also with respect to the
interactions, e.g., “10% of the time facilitation will increase the quality by 5% and 90% of the time it will increase the
quality by 8%,” and the joint of these two. (Since interaction effects are dependent on the quality of the originator of
the effect.) The quantification of methods and interactions in TÆMS is not regarded as a perfect science. Task struc-
ture programmers or problem solver generators estimate the performance characteristics of primitive actions. These
estimates can be refined over time through learning and reasoners typically replan and reschedule when unexpected
events occur.

To ground further discussion, consider Figure 5, which is a slightly more complete view of the information gath-
ering task structure introduced in Figure 1. The top-level task in this structure is Recommend-a-High-End-PC-System
and it has two subtasks: one that pertains to finding information about products and constructing models of them,
Build-Product-Objects, and one for making the decision about which product to purchase, Make-Decision. The two
tasks are governed by a seq last() qaf. Qafs specify how the quality of the subtasks is related at the parent task. With
recent extensions to TÆMS, qafs may also specify orderings among the subtasks. Let denote a task, denote one
of its children, and let denote the number of children of . Let denote the quality of the item in question, e.g.,

is the quality of the task and is the quality of the child of . In TÆMS, the quality of any task or method
before performance (or after failure) is zero. A sampling of the qafs defined in TÆMS includes:

In the process work, a translator transforms and abstracts process programs into TÆMS task structures for scheduling and coordination.
Facilitation and hindering task interactions model soft relationships in which a result produced by some task may be beneficial or harmful to

another task. In the case of facilitation, the existence of the result, and the activation of the nle generally increases the quality of the recipient task
or reduces its cost or duration.

6

Recommend a High-End PC System

Make Decision

Money
Resource

Build Product
Objects

Outcomes

Num Prod 1-4

Num Prod 5-8

Num Prod 9-12

Num Prod ...

Get Basic Product
Information

Query & Extract
Vendor m

Query & Extract
Possible Maker n

Gather Reviews

Search & Process
ZDnet Reviews

Search & Process
PC World

Query & Process
Consumers Reports

q_seq_sum()

q_sum()
q_sum()

q_seq_last()

q (10% 0)(90% 10)
c (100% 0)
d (10% 2min)(10% 2.5min)(80% 3min)

q (20% 0)(80% 8)
c (100% 0)
d (50% 1min)(50% 2min)

Query & Extract
PC Connection

Query& Extract
NECX

q (25% 0)(75% 20)
c (100% $2)
d (90% 3)(10% 5)

q (15% 0)(75% 10)
c (100% 0)
d (30% 3min)
 (30% 4min)
 (40% 5min)

q(..), c(..), d(..)
q(..), d(..), c(..)

consumes $2

limits
q multiplier (100% 0)
c multiplier (x)
d multiplier (x)

q(..), c(..), d(..)

facilitates & hinders

facilitates & hinders
q multiplier (100% +20%)
d multiplier (100% +20%)

Task

Method

Resource nle

Task nle

Subtask Relation

Key

enables

...
q_sum()

Figure 5: Information Gathering Task Structure

sum: and any of the subtasks may be performed (power-set minus empty-set) in any order.

sum all: and all subtasks are to be performed in any order.

min: and all subtasks are to be performed in any order. Since all tasks have zero
initial quality, failure to perform a given child under a min results in zero quality for the parent task.

max: and any number of subtasks may be performed in any order, though generally
only one task is selected.

exactly one: and only one of the subtasks may be performed.

seq: and all subtasks must be performed in order.

seq sum, seq min, seq max: The seq prefix in this case denotes sequence preference and that all subtasks must
be performed; the suffix denotes the function to perform with the resultant qualities, e.g., seq sum indicates

Recommend-a-High-End-PC is thus performed by performing each of its subtasks, in order, and its quality is
determined by the Make-Decision subtask. This models the fact that the decision process takes into consideration
the quality, coverage, and certainty of the information used to make the decision and reflects these attributes in the
quality of its output. As discussed, Build-Product-Objects is performed by performing each of its child tasks, in
order, and its quality is the sum of its children’s qualities. In contrast, Get-Basic and Gather-Reviews can be achieved
by performing any one or more of their respective child tasks. Note the enables interaction between Get-Basic and
Gather-Reviews. This nle models a hard precedence relationship between the tasks – the agent must first successfully
learn about products before it can locate reviews for them. In TÆMS, task interactions are triggered by conditions
in the originator and the effects of the interactions are reflected in the quality, cost, and duration distributions of the
recipient. With the addition of uncertainty to TÆMS, soft interaction effects like facilitation and hindering, are also
quantified via probability distributions. Task interactions in TÆMS include: facilitates, hinders, bounded facilitates,
sigmoid, enables, and disables.

7

Resource models are another recent addition to the TÆMS framework. The information gathering task structure
also shows the use of a monetary resource. Resources are currently either consumable or non-consumable (replaced
after use, e.g., a network), though the hierarchical resource models will support further specialization. Task resource
consumption and production behaviors are modeled in TÆMS via consumes and produces task/resource nles – these
nles describe the quantity of resources consumed or produced by task execution. In the event that resources are
insufficient to meet the requirements of a given task, the negative effects are modeled via a limits resource-to-task nle
that is akin to a hinders task-to-task nle, i.e., it expresses negative multiplier effects on the recipient’s quality, cost,
and duration distributions. For a non-consumable resource, e.g., network bandwidth, where the resource is diminished
during the usage and then returned to its initial state, the definitions for consumes and limits are:

A resource-centered non local effect is a function of the form: nle(M, R, t, q, c, d, , p1, p2,...): [method resource
current time method quality method cost method duration resource quantity parameter1 other parameter2

..] = [method quality method cost method duration resource quantity]

Another recent addition to TÆMS is the outcome construct. Outcomes model situations in which a given method
has different classes of possible results, each class having its own distinct quality, cost, and duration characteristics
and possibly even its own interactions with other tasks. The Build-Product-Objects task in Figure 5 illustrates the
outcomes construct ; the outcomes serve to indicate the number of objects generated during the information gathering
phase. Attached to each of these outcomes are hindering and facilitation soft nles that affect the quality, cost, and
duration of the decision making task. This models the notion that the time required to make the decision increases as
more products are compared, but, that the decision process benefits in terms of quality by having more products.

TÆMS also supports modeling of tasks that arrive at particular points in time, individual deadlines on tasks,
earliest start times for tasks, and non-local tasks (those belonging to other agents). Obviously, scheduling TÆMS
task structures is a non-trivial process. In the development of TÆMS there has been a constant tension between
representational power and the combinatorics inherent in working with the structure. The result is a model that is
non-trivial to process and schedule in any optimal sense, but also one that lends itself to flexible and approximate
processing strategies.

3 Integrating Uncertainty Into Design-to-Criteria
Design-to-Criteria is the process of coping with exponential combinatorics to produce schedules in soft real-time that
meet a particular set of design criteria and hard constraints like deadlines or cost limitations. Because the scheduling
problem entails: 1) enumerating the alternative different ways to achieve the top level task, and 2) determining a
sequencing for each different way for task achievement, the combinatorics are pronounced (and) and
finding an optimal solution is not generally possible even for a small task structure. The scheduler controls the
combinatorics through a satisficing methodology described in detail in [30]. The main facets of the methodology
include:

The actual information gathering task structure does not incorporate outcomes at the task level. This example is a conceptual abstraction of the
class of task structures produced by the agent’s planner and is simplified for example purposes. Outcomes at the task level have semantics that are
difficult to specify.

8

Goal Directed Focusing The client’s design criteria is leveraged to focus all processing activities on producing solu-
tions and partial solutions that are most likely to meet the trade-offs and limits/thresholds defined by the criteria.
This is achieved by creating and identifying partial solutions that seem likely to meet the criteria and concen-
trating further development on these classes of partial solutions, pruning or ignoring other partial solutions that
are deemed least probable to lead to “good” solutions.

Approximation Schedule approximations, called alternatives, are used to provide an inexpensive, but coarse, overview
of the schedule solution space. Alternatives contain a set of unordered actions that can be scheduled (ordered)
to achieve a particular task along with estimates for the quality, cost, and duration distributions that may result
from scheduling the actions. An alternative represents one possible way in which a given task may be achieved.
Alternatives are inexpensive to compute as the complex task interactions are only partially considered and or-
dering, resource, and other constraints are ignored. The alternative abstraction space is used in conjunction with
criteria directed focusing to build schedules from alternatives that are most likely to lead to good schedules.

Heuristic Decision Making The process of turning alternatives into schedules, i.e., sequencing a set of actions, is
the classic scheduling problem and this too suffers from high order complexity; to schedule a set of
unordered actions. We cope with this complexity using a group of heuristics for action ordering. The heuristics
take into consideration task interactions, attempting to take advantage of positive interactions while avoiding
negative interactions. They also consider resource limits, individual action deadlines, task deadlines, commit-
ments made with other problem solving agents, and other constraints. The heuristic algorithm reduces the
action ordering problem to low-order polynomial levels in the worst case.

Heuristic Error Correction The use of approximation and heuristic decision making has a price – it is possible to
create schedules that do not achieve the high-level task, or, achieve the high-level task but do not live up to
quality, cost, duration, or certainty expectations set by the estimates contained in the alternatives. This can
be caused by an over constrained problem, but also by complex task interactions that are glossed over by the
alternative approximation and not considered by the action ordering heuristics. A secondary set of improvement
[36, 27] heuristics act as a safety net to catch the errors that are correctable.

The addition of uncertainty modeling to TÆMS has several implications to the Design-to-Criteria scheduling
process. First, the client must be provided a mechanism to describe the relative importance of certainty or uncertainty
reduction to their application. In some situations, certainty may not be an issue, but in other situations certainty
may be highly important, e.g., when the client is going to use the output of the process as input for another dependent
processes. Second, given the ability to specify certainty preferences, how can the information be used in the scheduling
process to produce schedules that are more or less certain, i.e., how to design schedules to address the enhanced design
criteria. Third, is the issue of how the new uncertainty representation impacts the computations and analysis performed
by the scheduler – the questions are whether or not existing computations are affected by the new model and whether
or not the computations can be improved. Related to this is the issue of building models of schedules where the
schedule characteristics include uncertainty and the relationship of a distribution style representation to a single value
representation like a hard deadline or hard cost constraint.

In the following sections we describe how these issues are addressed in Design-to-Criteria. In Section 3.1 we
discuss the integration of uncertainty into the client design criteria and how this is mapped to utility that is used during
the scheduling process. Section 3.2 discusses how uncertainty, and the design criteria, are used in the scheduling
process to produces more certain schedules when uncertainty reduction is important to the client. Section 3.3 identifies
areas in which the computations are effected by the addition of uncertainty and how the representation of uncertainty
is used in the modeling and construction of schedules. A high-level example of uncertainty reduction in the scheduling
process is then given in Section 3.4. In a certain sense, integration of uncertainty in the main scheduler is done on
a schedule by schedule basis, in Section 4 we step outside of the main scheduling process and discuss a secondary
analysis process that goes beyond the independent view of schedules and instead considers recovery or contingency
options for schedules.

9

3.1 Uncertainty in Client Goal Criteria and its Mapping to Utility
The client goal or design criteria is generated using a specification metaphor called sliders, the GUI shown in Figure 6.
Sliders take on values from 0 to 100% and are arranged in slider banks where each bank contains a slider for quality,
cost, and duration. The sum of the sliders in each bank range from 0 to 100%. A 100% weight given to a particular
slider expresses that the slider in question is the only item of importance relative to the other sliders in the same bank.
Examples follow below. There are five banks in the current specification metaphor, each relating to a different class of
concerns:

Raw Goodness This bank describes the raw relative importance of each dimension. For example, setting the quality
slider to 50% and cost and duration to 25% expresses the notion that high quality is twice as important as low
cost and low duration. The label “raw” here denotes that this preference is not with respect to any particular
deadline or other constraint. Because of the combinatorics of the scheduling problem, clients often do not know
a priori what is possible for a given task structure and thus setting hard limits and thresholds can be problematic.
This bank enables clients to specify simple, relative preferences about quality, cost, and duration.

Threshold and Limits This bank allows the client to set soft limits and thresholds for quality, cost, and duration either
using a fixed limit/threshold value or using a utility function that describes gradual changes in utility as the value
increases beyond a certain limit or as it crosses a certain threshold. The preferences expressed here are soft in
that the scheduler may elect to cross a particular limit or threshold if the overall utility of the item in question is
higher than the other candidates that stay within the limit or threshold. This concept is made more clear below
when we describe how the design criteria is related to the utility used by the scheduler. It is important to note
that hard constraints, e.g., hard deadlines, do exist in the scheduling process, but that the general design criteria
is about the expression of relaxable constraints and soft general preferences.

Certainty Whereas the raw goodness set above expresses the relative importance of quality, cost, and duration, this
set expresses the relative importance of uncertainty about quality, uncertainty about cost, and uncertainty about
duration. For example, if a client does not actually care when a result is produced, but is going to schedule
a meeting to discuss the results as soon as they are produced, the client would specify a preference for high
certainty in the duration dimension, expressed as a significant weight given to the duration slider in this bank,
e.g., 80% or 100%. This bank expresses relative predictability preferences.

Certainty Thresholds Akin to the thresholds and limits bank, this bank expresses the relative importance of meeting
certainty thresholds in the quality, cost, and duration dimensions. For example, through this mechanism, clients
can express a preference for schedules that have a duration certainty of 75% or higher (meaning that 75the
schedules will achieve their predicted runtime). As with limits and thresholds on quality, cost, and duration, it
is typically difficult for clients to know a priori what certainty thresholds are possible for a given task structure
so this bank expresses soft or relaxable preferences.

Meta This slider set relates the importance of the four previous slider sets. This separation allows clients to focus on
relating quality, cost and duration with each other in each of the cases above, then to “step back” and decide how
important each of the different classes are relative to each other. For example, within the raw goodness bank,
client’s can reason about the relative importance of quality, cost, and duration, then do the same in the certainty
bank, then decide how raw goodness relates to certainty. If certainty is the primary issue, then it is given more
weight in the meta bank than raw goodness.

The incorporation of uncertainty into the criteria specification provides clients with a means to describe how
important reducing uncertainty is for their application relative to raw-goodness and limits/thresholds. Given the ability
to specify the importance of these attributes, the issue then becomes how to relate the attributes to utility that can be
used in the scheduling process to evaluate and select from different possible courses of action. The mapping from
sliders to utility is presented in [29], however, we must examine a portion of the computations in order to discuss
the use of uncertainty in the utility computation as well. In general, utility is computed by comparing the statistical
characteristics of a member of a set of candidate schedules to the observed characteristics for the set as a whole. The

10

Certainty
Quality Cost Duration

100%

0%

Raw Goodness
Quality Cost Duration

66%

33%

50% 50%

Meta
Thresholds/

Limits
Raw

Goodness

Thresholds/Limits
Duration

Limit

Quality

Threshold

Cost

Limit
$5.75

100%

Certainty Thresholds
DurationQuality

Threshold

Cost

80%

Certainty
Certainty

Thresholds
100%

Threshold Threshold

25% 25% 25% 25%

Figure 6: Goal Specification Metaphor

utility computations form the basis of the goal or design directed problem solving behaviors of the scheduler and are
used both on completed schedules and the aforementioned alternatives (schedule approximations).

The utility computation is based on notions of relative goodness and normalized comparison. The computation
is decomposed into components, with one component associated with each slider bank. The components are further
decomposed into subcomponents, with one subcomponent associated with each slider in a particular bank, i.e., there
is one subcomponent for quality, one for cost, and one for duration, in each bank. The subcomponents are summed to
produce the rating component for a particular bank. Subcomponents are computed by examining items being rated in
the particular dimension with which the subcomponent is associated. For example, to compute the component for the
raw goodness (the first) slider bank:

1. Find the min and max expected values for quality, cost, and duration that occur in the set of schedules or
alternatives being rated.

2. Loop over the set of alternatives or schedules to be rated and calculate the raw goodness rating for each by
calculating the quality, cost, and duration subcomponents as follows in Steps 3 and 4.

3. Let denote the expected quality value of the alternative or schedule under consideration. Its quality
subcomponent is a function of the percentage of quality achieved by relative to the min and max,
and , quality values of the set of items being rated, scaled by the raw goodness quality slider,
and the total number of points in the raw goodness bank.

4. Duration is different than quality as greater duration is generally less preferable. Whereas with the quality
related equation, achieving the best quality of all items in the set should bring the highest reward, in this case,
achieving the least duration of all items in the set should bring the highest reward. Cost is like duration in that
lower cost is better.

5. The quality, duration, and cost subcomponents are then summed to obtain the aggregate raw goodness rating
component.

The certainty rating subcomponents are computed in a fashion akin to the previous subcomponent in that utility is
computed by comparing a given item to the observed minima and maxima for the set of candidate items. However,
the subcomponents differ in that the focus is on the certainty associated with the expected values of the quality, cost,

11

and duration dimensions rather than the expected values themselves. Consider the quality case. The general idea is to
reward schedules or alternatives based on how likely it is that a quality value that meets or exceeds the expected value
will actually occur. The reason for this is semantic – more quality is always a good thing. Clients will not mind if
the resulting quality is greater than predicted, only if the resulting quality is less than predicted. Certainty about cost
and duration is computed similarly, albeit that what is “good” is reversed – less cost and less duration are good things,
thus, the probability of producing a result in less time or lower cost is combined with the probability of obtaining the
expected (predicted) cost or duration.

Thus we compute the probability that the quality, as expressed by the discrete probability distribution, is greater
than or equal to the expected value, we then normalize and scale the probability as with the previous components,
and finally multiply by the proportion of points allocated to the certainty quality slider. Consider a partial example,
if a schedule has a simple quality distribution that denotes 25% of the time 0 quality will result and 75% of the
time quality 10 will result, its resulting expected quality value is 7.5. Contrast this with a schedule whose quality
distribution denotes that 50% of the time 0 quality will result and 50% of the time 15 quality will result; its expected
quality is also 7.5. However, the probability that the first schedule will generate a quality value greater than or equal to
the expected value is .75 whereas the second schedule’s probability is only .50. This is the gist of the certainty rating
subcomponents – the more certain that the expected value, or a better value, will occur, the greater the reward. The
calculation procedure is similar to the raw quality goodness procedure presented above, though the focus is always on
probabilities and probabilities of the items being rated are normalized using the derived min and max probabilities for
the set. For example, to compute the quality certainty rating subcomponent:

The certainty threshold rating component differs from the general certainty component in that the boundaries are
not determined by examining the candidate set of items being considered, but are, instead, specified by the client.
Exceeding a particular certainty threshold results in the same utility regardless of how far a particular item exceeds the
threshold. The initial conceptualization of this computation included a relative scaling component, i.e., the farther the
distance above the threshold, the more utility. However, this resulted in a mismatch between expectations and results
as certain schedules would receive greater utility from both the raw certainty bank and the certainty thresholds bank.
The computation is again computed by iterating over the set of candidate items and computing utility subcomponents
for each of the dimensions; the subcomponents are then again summed to produce the certainty thresholds rating
component. To illustrate the general certainty threshold computation, consider the quality subcomponent computation:

3.2 Incorporating Uncertainty in the Design-to-Criteria Process
Uncertainty is integrated into the process of schedule production in two primary ways. First, certainty preferences
specified in the client goal criteria are mapped into utility values which are used during the scheduling process to focus
production on schedules and schedule approximations that best address the client’s goals. If the objective is to produce
highly certain results, the scheduler will thus evaluate the different statistical trade-offs of different possible actions
accordingly, perhaps producing highly certain schedules whose expected quality is somewhat lower than the maximum
possible quality for the task structure. The second use of uncertainty in the main scheduling production process is more
direct. Through the addition of uncertainty to the TÆMS modeling framework and the goal specification, the scheduler
can do additional analysis during schedule production to explore a larger, different, schedule space. Namely, when

An alternate interpretation is to determine the probability that the actual value will fall near the expected value, on the upside or the downside.

12

uncertainty reduction is important to the client, the scheduler can consider redundant activities for task achievement
and consider moving uncertain activities earlier in the schedule to leave more time for recovery.

In order to illustrate the first type of integration, that flowing from the goal and utility specification pair, it is
necessary to describe certain aspects of the scheduling process. Unlike traditional scheduling tasks where the primary
issue is how to order a particular set of methods, Design-to-Criteria must also consider the many possible combinations
of alternative approaches for achieving the high-level task. Prior to the process of building schedules, the traditional
method-ordering scheduling problem, the scheduler must enumerate the different ways that the high-level tasks can
be achieved. Each “way” is a cheap to compute schedule approximation called an alternative. Alternatives contain
unordered sets of primitive actions and estimates for the quality, cost, and duration distributions that would result
from building a schedule from the alternative. Alternatives differ from schedules in that the ordering for the primitive
actions has not yet been defined and the attribute estimates are computed without regard for complex task interactions
or individual task-centric constraints like hard deadlines. This approximation is necessary because in order to evaluate
the individual constraints and interactions, all the other methods in the potential schedule must be evaluated. The
problem is circular – to evaluate method in one alternative may require the evaluation of methods and , that are
not in said alternative, which may in turn require evaluation of and , also not in the alternative, and so forth. In
essence, full evaluation of a given method drags in the worst-case exponential combinatorics of the general TÆMS
scheduling problem, hence the reliance on an approximation that gives a feel for the partial solution space at the local
node.

T ST = {ST1
x ST2

} T = task
M = method
S = alternative set for taskq_min()

q_exactly_one()

T2 ST2
 = { }{M2,1}{M2,2}{M2,3}

M2,1 M2,2 M2

T1

M1,1 M1,2 M1,3

ST1
 = { }{M1,1,M1,3} {M1,2,M1,3}

{M1,1}{M1,2}{M1,3}{M1,1,M1,2}
q_sum()

Figure 7: Alternative Sets Lead to Cumbersome Combinatorics

Alternatives are constructed bottom-up from the leaves of the task hierarchy to the top-level task node, i.e., the
alternatives of a task are combinations of the alternatives for its sub-tasks. Figure 7 shows the alternative set generation
process for a small task structure. Alternatives are generated for the interior tasks and and then these alternatives
are combined to produce the alternative set for the root task, . The complexity of the alternative generation process
is pronounced. A task structure with methods leads to possible alternatives at the root level. We control this
combinatorial complexity by focusing alternative generation and propagation on alternatives that are most likely to
result in schedules that meet the spirit of the client’s goal criteria; alternatives that are less good at satisficing to meet
the goal criteria are pruned from intermediate level alternative sets. For example, a criteria set denoting that certainty
about quality is an important issue will result in the pruning of alternatives that have a relatively low degree of quality
certainty.

After the alternative set for the high-level task is constructed, a subset of the alternatives are selected for scheduling.
Again, complexity is the issue. For alternatives that have methods, schedule construction via exhaustive search,

, is not feasible and even our low-order polynomial heuristic approach [30] precludes building schedules for
all alternatives. Satisficing with respect to the client’s goal criteria is used at this stage to select the alternatives that
are most likely to lead to schedules that fit the criteria. As with alternative generation, if uncertainty is important to
a particular client, schedules that reduce uncertainty in the desired dimensions will be produced. Using the heuristic
approach, selected alternatives are scheduled by iterating over the set of unscheduled and unordered candidate methods
and passing each method through a set of rating heuristics. The rating heuristics enforce hard constraints and express
preference over the relaxation of soft constraints, e.g.:

Enforce hard task interactions like enables and disables.
Enforce hard resource constraints.

13

Enforce earliest start times and deadlines.
Try to take advantage of positive soft nles, where doing one activity before another improves overall utility.
Try to avoid negative soft nles, where doing one activity before another degrades overall utility.
Try to satisfy external commitments made with other agents and avoid violating them (where commitments
have varying degrees of importance).
Try to coordinate over soft-degradation style resource consumption and production.

Focusing is Design-to-Criteria’s key to coping with the combinatorics and producing good schedules. Figure 8
illustrates the scheduler’s ability to focus processing on the goal criteria at hand. The figure shows the root-level
alternative sets generated for two different criteria specifications; one where raw quality is the only factor of importance
and one where certainty about quality is the only factor of importance. The task structure in question is moderately
complex and has approximately possible alternatives at the root level if focusing is not used to reduce the
number of alternatives generated. When quality is the only factor, the alternatives generated have a high expected
quality but also considerable quality uncertainty. In comparison, the alternatives generated for the quality certainty
case have lower expected quality but a much higher degree of certainty. The distributions are statistically significantly
different in both the quality and quality certainty dimensions; one-tailed t-tests reject the null hypothesis of equivalence
at the .05 level. If a third case where quality and quality certainty are equally important (omitted for clarity), was added
to the figure the alternatives would fall partly in the quality only range and partly in the certainty only range; the overlap
is due to the properties of the task structure where high quality methods tend to be uncertain and high certainty methods
tend to have low quality. In this third case, the highest ranked alternative would be the same as the highest ranked in
the certainty only case because it has the highest certainty to quality ratio.

Probability the Expected Quality or One Better Will Result

Expected
Quality

400

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1000

900

0

100

200

300

Best Alternative for High Quality Case
Alternative for High Quality Case
Best Alternative for High Certainty Case
Alternative for High Certainty Case

1100

Figure 8: Alternatives Generated for Two Different Criteria Sets

As discussed earlier, in addition to the criteria driven role of uncertainty, the scheduler can also take a more active
role in uncertainty reduction by generating alternatives that contain more than one way (other alternatives) to achieve
various tasks. This redundancy flavored scheduling may serve to reduce uncertainty and it provides the scheduler
with more options to consider. This is critical in some situations involving hard deadlines because in the event of a
failure there is not always enough time left to try a different solution approach, i.e., once committed to a course of
action, it is sometimes too late to reschedule and try again if a failure occurs. Consider a brief example. Figure 9
shows a task structure fragment, the relevant method attributes, and two schedules. The results generated by Task A
are necessary for Task B and there is a hard deadline of 30 minutes. Schedule 1 contains no redundancy, having one
method for achieving Task A and one for achieving Task B. Schedule 2 contains redundant methods for achieving
Task B and uses a lower quality but more certain and faster method for achieving Task A. If Schedule 1 is executed
and method A1 fails, 20 minutes are wasted and there is not time to reschedule and execute method A2 followed

Applicable when Design-to-Criteria is used in a multi-agent context. In general, Design-to-Criteria interfaces with an external multi-agent
coordination module, e.g., GPGP [8, 9], that proposes and forms commitments with other agents to handle the temporal sequencing of interdependent
tasks.

Also applicable only in a multi-agent context.

14

by either B1 or B2 prior to the deadline. Additionally, if method B1 fails there is also not time to reschedule and
execute B2. However, if Schedule 2 is executed, we are as certain as possible that some results will be generated by
the deadline because A2 is very certain and the less-certain-but-higher-quality B1 is followed by the more-certain-but-
lower-quality B2. Considering uncertainty in conjunction with redundancies is clearly important in some situations.
When the redundancy alternative generation feature is used, the alternatives that contain redundant activities are added
to the alternative set and compared to the goal criteria in the same fashion as the non-redundant alternatives. Thus, the
scheduler continues to focus processing on alternatives that best satisfice to meet the overall goal criteria – uncertainty
does not dominate the evaluation mechanism unless so specified by the goal criteria.

A1 B1
Schedule 1

t=20
deadline
t=30

B1A2 B2
Schedule 2

Task A

Quality (100% 1)
Duration (100% 10)

A2
Quality (50% 0)(50% 4)
Duration (100% 20)

A1

Task B

B2B1
Quality (25% 0)(75% 30)
Duration (100% 10)

enables

Quality (100% 12)
Duration (100% 10)

Task T

max() max()

min()

Figure 9: Redundancy Can Be Critical

It is important to note that the existence of a redundant method in a schedule does not mean that the redundant
method will be executed every time. The execution of said method is dependent on the rescheduling triggers or
envelopes associated with the schedule. The existence of the redundant method in the schedule does imply that the
schedule can be executed from end-to-end without rescheduling to recover from particular errors. However, one of
the main benefits of including redundancy in the schedule is analytical – it enables the scheduler to evaluate the
performance characteristics of a problem solving episode that includes method failure and recovery instead of simply
assuming no failure. When viewed in this light, redundancy is a very weak form of contingency planning and is related
to the secondary contingency analysis algorithms presented in Section 4.

Modeling uncertainty improves and empowers other aspects of the scheduling process as well. In environments
where rescheduling is undesirable the scheduler can use the probability distributions to design more fault tolerant
schedules. For instance, if fault tolerance with respect to duration is desired, the scheduler can build schedules by
estimating method execution times using the 95th percentile duration value rather than the expected value. In this
situation, uncertainty about finish times still gets propagated throughout the schedule, but timing assumptions are
based on a higher value that is by definition very certain.

The uncertainty representation can also improve the probability that little work is wasted in the event of a mid-
schedule failure. Because of task interactions it is possible that a method failure anywhere in the schedule can void
all the work done up to that point. Modeling uncertainty makes it possible for the scheduler to move the highly
uncertain activities toward the front of the schedule, thus reducing the likelihood of doing work that is voided later
in the schedule. This can be achieved through a new method rating heuristic that gives preference to methods that
have some probability of failure and interact with other methods – or methods that have a probability of failure and
are particularly important to the schedule. We will forgo further exploration of this idea in the context of the main
scheduling process as these concepts have contributed to a secondary contingency analysis phase discussed in detail
in Section 4.

3.3 Impact of Uncertainty to the Computations and Schedule Models
The implications of the addition of uncertainty to the TÆMS modeling framework are not all positive – at least not
from a computational expense standpoint. Maintaining and performing calculations with distributions is inherently
more expensive than working with single expected values. Additionally, distribution sizes generally grow as com-
putations progress. For example, combining two discrete probability distributions, where the distributions have
and pairs respectively, results in a distribution having pairs
(though like values may be combined). While this does not change the combinatorics of the scheduling process, it adds

15

significantly to the constant terms involved, even when the distributions are size-limited and compacted periodically.
Another downside to the addition of uncertainty to TÆMS models, and its incorporation into the scheduling

process itself, is that it invalidates a particular independence assumption that enables local evaluation of primitive
actions. Said independence assumption simplifies calculations and saves considerably on the computational expense
of reasoning about task interactions. The assumption is simply that the effects of any active nles can be accurately
reflected in the distributions of the node that is on the receiving end of the nles. Implementationally, this means that
whenever the context changes, and nles be come active, or switch to an inactive state, the distributions on the recipient
node are updated to reflect this state. With the addition of uncertainty to the task models, this assumption no longer
holds.

(a) Input Task Structure - Effects Not
Yet Propagated

enables
Quality .5 Quality 1.0

min()

Task

M2M1

(b) Neither Method Scheduled - Effects
Propagated

enables
Quality 0 Quality 0

min()

Task

M2M1

(c) Both Methods Scheduled - Effects
Propagated

enables
Quality .5 Quality 1.0

min()

Task

M2M1

Figure 10: Independence Assumption Valid with Expected Values

Figure 10 illustrates the assumption under the expected value case. Figure 10(a) shows the input TÆMS task
structure; the effects of interactions are not yet propagated to effected nodes. In the structure, method enables

and the two methods are joined under the qaf; thus the quality of is the minimum of the qualities
of and . Prior to scheduling either method, Figure 10(b), the expected quality of is zero, the expected
quality of is zero, thus also has an expected quality of zero. Once is scheduled, ’s expected quality
becomes .5. At this point, the enables nle between and becomes active and ’s potential quality, that which
can result if it is scheduled, becomes 1. Since there is no probability that may fail, is either enabled or it is
not. When is scheduled, Figure 10(c), its quality reflects the assumption that the required input will be available
and that will produce the expected result. In this case, ’s quality is and is correct. This
is the independence assumption at work; the same property holds for soft interactions like facilitation or hindering.
Additionally, the property holds for chains of such relationships. Implementationally, this means that each time a
method is scheduled, the effects of the outgoing nles can be reflected and propagated throughout the task structure and
then the nle may be ignored.

enables
Quality (50% 0)(50% 1) Quality (100% 1)

min()

Task

M2M1

(a) Input Task Structure - Effects Not
Yet Propagated

enables
Quality (100% 0)

min()

Task

M2M1
Quality (100% 0)

(b) Neither Method Scheduled - Effects
Propagated

enables
Quality (50% 0)(50% 1)

min()

Task

M2M1
Quality (50% 0)(50% 1)

(c) Both Methods Scheduled - Effects
Propagated

Figure 11: Independence Assumption Invalid with Uncertain Models

However, with the addition of uncertainty to the model nles are no longer binary, i.e., they are not simply active
or not. Instead, there is some probability that they will be active and some probability that they will be inactive.
Figure 11(a) shows the same task structure enhanced with the discrete probability distribution representation. Prior to

being scheduled, there is no probability that is enabled and thus both and have zero expected quality as
does , Figure 11(b). However, once is scheduled it may produce quality 50% of the time and fail 50% of the

Compaction can lead to a loss of information and the introduction of estimation error into the computation. However, the estimation error is
generally small and does not adversely affect the decision processes used in the scheduler.

This is not quite accurate. During scheduling, many different contexts are explored and the computations are repeated many times. However,
when constructing a given schedule, once a method is scheduled, the computations do not need to be repeated under the independence assumption.

16

time. We reflect this possibility in the potential quality distribution of method , i.e., if is scheduled, Figure 11(c),
50% of the time it will not have the required input and 50% of the time will succeed and produce the required input.
The propagation of the probability of not having the required input is valid, but, the independence assumption no longer
holds. Consider the quality of if both methods are scheduled. and each fail 50% of the time, thus ’s
quality distribution is: . After
combining like values (zeros), the distribution becomes: and its expected value is
.25. This is inaccurate because fails iff fails to produce the required result and fails to produce said result
50% of the time. Thus, should only fail to obtain quality 50% of the time and the remainder of the time it should
obtain , resulting in an expected value of .5. With the addition of uncertainty, and the representation of
some probability of failure, the independence assumption no longer holds but instead leads to over-emphasis on failure
effects throughout the task structure (and may be widely distributed in the structure).

The nle-effect-reflection type of calculation is performed an enormous number of times during scheduling. For
a moderately sized task structure, it is not uncommon to perform hundreds of thousands of distribution combination
operations in a single scheduling episode. To maintain efficiency, the independence assumption is left in place during
estimation, approximation, and method sequencing. However, once the set of candidate schedules is produced, each
schedule is re-evaluated using a tree-based in-context analysis approach that corrects the estimation errors in the
computation, Figure 12. The complexity of the tree-based analysis is driven by the frequency of method failure within
a given schedule and thus is occasionally too expensive even when used in this limited context.

M1
quality = 0

quality != 0

failure branch
probability = .5

M2
quality = 0

Taskquality = MIN(0,0) = 0

M2
quality = 1

Taskquality = MIN(1,1) = 1

success branch
probability = .5

Taskquality = (50% 0)(50% 1)

weight and merge

weight and merge

Figure 12: Accurate, Contextual, Execution Tree Computation is Expensive

The addition of uncertainty also affects schedule construction and reasoning about start times, finish times, cost
limits, and deadlines. Since methods may have a range of possible durations, as schedules are constructed, the uncer-
tainty associated with the durations must be propagated – methods no longer have single finish times but instead have
distributions of possible finish times. Additionally, since methods are serialized when scheduled, the uncertainty of
the methods scheduled before a given method affect its start time (a distribution) and consequently also its finish time
distribution. This complicates matters when determining whether or not a particular method will complete before a
deadline, or whether or not a result will be available to satisfy a commitment made to another agent by the desired
time. We leverage the improved models in these situations to reason about the probability of violating or satisfying a
particular constraint.

Consider the deadline case; if a method produces a result after a hard deadline, the result is considered valueless
and thus the method’s quality result is zero. When reasoning about deadlines from an uncertain perspective, we
reflect the possibility that a given method will exceed its deadline by modeling the effects of this violation in its
quality distribution. For example, Figure 13, if has a 10% chance of exceeding its deadline, the densities of all
the members of its quality distribution are multiplied by 90% (thus re-weighting the entire distribution) and a new
density / value pair is added to the distribution to reflect the 10% chance of returning a result after the deadline. The
leftmost histogram describes ’s expected finish time, the middle histogram describes ’s unmodified quality
distribution, and the rightmost figure shows the modified quality distribution after re-weighting and merging with the
new pair. This quality-based reflection is important because it improves the scheduler’s ability to
reason about hard deadlines.

17

QUALITY

10

20

30

50 100

Histogram OF Quality - Method Mx

100% Density

FINISH_TIME

10

20

30

40

5 10 2015

Histogram OF Finish_Time - Method Mx

Exceeds
Deadline
10% of the Time

Quality

10

20

30

50 100

Histogram OF Modified Quality
Method Mx

90% Density10% Density

0

Figure 13: Reflecting Probability of Missing Deadline in Method Quality

3.4 Scheduling to Reduce Uncertainty within Design-to-Criteria
To illustrate the benefit of modeling and using uncertainty in the main Design-to-Criteria process, let us consider the
problem of custom building schedules for two different clients from a moderately complex task structure. The task
structure has methods that fall into three general categories. 1) Methods that have high expected quality values also
tend to take longer and are highly uncertain in both the quality and duration dimensions. 2) Methods that have low
expected quality also tend to take less time to execute and are more certain in both the quality and duration dimensions.
3) Methods that have medium expected quality also take a moderate time to execute and are moderately certain.

The high-quality-but-uncertainmethods model information gathering tasks that are risky but also have a probability
of a large information pay-off. For example, methods of this type may find information about a software product
by submitting multiple queries to Infoseek and Altavista, going to the URLs, retrieving multiple documents from
each site, and processing them. As the information located can range from useful new information with wide-scale
ramifications to utterly useless information that is not relevant, there is the probability of big pay-offs and also the
probability of zero or poor results. Since methods of this type use a large amount of active web search on sites that
are unknown a priori, predicted duration is also long and uncertain. The low-quality-but-more-certain methods model
information gathering tasks where information is retrieved from individual sites that are known and modeled. Since
the information is predicted to be fairly narrow in scope, these methods lack the potential for big pay-offs, however,
since the methods search only one site and the site in question is modeled, durations are short and fairly certain. The
middle-quality-middle-certainty methods employ combinations of these behaviors.

Since the first client, Client A, is planning other activities based on the predicted outcome of schedule execution,
this client is interested in both schedule raw-goodness and schedule certainty. In the raw-goodness slider bank the
quality slider is set to 75% and the duration slider set to 25%, i.e., overall quality is 3 times more important than
overall duration. In the uncertainty bank the quality and duration sliders are each set to 50%, meaning that certainty
about the estimated quality and certainty about the estimated duration are equally important. The meta slider for
raw-goodness is set to 40% and the meta slider for uncertainty is set to 60%, denoting that uncertainty reduction is
1.5 times more important than raw schedule goodness. Unlike Client A, Client B has much simpler needs and is only
interested in raw-goodness. As with Client A, the raw-goodness quality slider for this client is set to 75% and the raw
goodness duration slider is set to 25%. The meta-slider for raw goodness is set to 100% denoting that raw goodness is
the only issue of importance to this client.

Figure 14(a) shows the expected quality and expected duration of the top-level alternatives generated for Clients
A and B; intermediate alternative sets were pruned according to the client’s goal criteria as discussed previously.
Despite both clients setting the raw quality and duration sliders to the same values, Client B’s alternatives always have
higher expected quality and higher expected duration than Client A’s. Since neither client is using hard deadlines,
this is attributable to Client A’s emphasis on certainty about quality and certainty about duration. Figure 14(b) tells
the rest of the story. As Client A put 60% of the overall weight on certainty in the quality and duration dimensions,
the alternatives generated for Client A trade-off between raw quality, raw duration, quality certainty, and duration
certainty, rather than just trading-off quality and duration. Figure 14(b) also shows the price of B’s high expected
quality – the expected values are also predicted to be much more uncertain than those of Client A.

The quality and duration attributes of the schedules produced from a subset of these alternatives are similar to

18

100

200

300

400

500

100 200 300 400 500 600 700

Expected
Quality

Expected Duration

Alternative for Client A
Alternative for Client B

(a) Alternatives for A and B

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability of
Expected
Quality or

Greater

Probability of Expected Duration or Lower

Alternative for Client A
Alternative for Client B

(b) Probability of Expected Values of Alternatives

the attributes of the alternatives. In this case, the estimates contained in the alternatives are fairly good indicators
of the schedules produced from the alternatives. This indicates that subtask interactions in the alternatives generated
and targeted for scheduling were fairly simple and generally involved hard-precedence constraints. In keeping with
intuitions, the highest rated schedule for Client B is that which has the highest expected quality with respect to duration.
However, Client A’s “best schedule” has a reasonably good quality for its expected duration and a high degree of
certainty about its expected quality and duration values.

The quality and duration results of executing the best schedules for each client thirty times are shown in Figure 14.
Whereas Client A’s executions produced a tightly spaced set of quality and duration values, Client B’s highly uncertain
schedule produced a wide range of results. Of the thirty runs, Client A’s results meet or beat expectations in the
quality dimension 90% of the time, in the duration dimension 50% of the time, and in both the quality and duration
dimensions 50% of the time. In contrast, Client B’s results only meet or beat quality expectations 63% of the time,
duration expectations 16% of the time, and both dimensions combined 13% of the time. Additionally, the uncertainty
in B’s quality dimension incurred more rescheduling because of methods failing to return any results (problematic
because of task interactions). On average, B’s schedule required rescheduling 2.1 times per each execution, with a
variance of .71, whereas A’s only required 1.2 reschedulings on average with a variance of .21. The 25% trimmed
mean brings out the contrast even more – B’s rescheduling average remains 2.1 but A’s 25% trimmed mean drops to
1.0, denoting no rescheduling during execution.

4 Uncertainty-based Contingency Analysis
In the previous sections we explored uncertainty as it is integrated into the standard Design-to-Criteria scheduling
methodology. However, in situations where hard deadlines exist, a mid-schedule failure may preclude recovery via
rescheduling because sufficient time does not remain to explore a different solution path. In these situations, a stronger
analysis that considers the existence of possible recovery options may lead to a better choice of schedules. To address
such situations, we have developed a contingency analysis methodology that functions as an optional back-end on the
Design-to-Criteria scheduler.

The contingency analysis algorithms operate by examining the highly-rated candidate schedules produced by the
scheduler and exploring failure / recovery scenarios for each schedule in the set. The secondary analysis tools also
perform more detailed reasoning about the placement of methods within a schedule in light of the existence of recovery
options. For example, recovery for a given schedule may be possible iff some critical method is performed
first rather than second. The standard scheduler is weakly biased toward moving uncertain methods earlier in the
schedule, but the determination is local, based only on the attributes of the method in question, whereas the method

19

100

200

300

400

500

600

700

800

500 1000

Actual
Quality

Actual Duration

Run for Client A
Run for Client B

Quality and Duration Meet
or Exceed Expectations

for Client B

Quality and
Duration
Meet or
Exceed

Expectations
for Client A

Figure 14: Execution Results for A and B

movement explored in the contingency analysis also takes into account the benefits of method movement from a
recovery perspective.

This underscores the primary difference between the use of uncertainty in the main Design-to-Criteria scheduling
process and its use in the secondary contingency analysis algorithms. To address resource limitations and to pro-
duce schedules in interactive time, Design-to-Criteria builds and evaluates schedules in an independent fashion – the
possibility of recovery from a particular failure is not considered by the main scheduling process. This is because
determining the existence of a recovery option requires more than simply finding an action to replace the failure; in-
deed because of task interactions and the combinatorics of TÆMS models, the process of evaluating recovery options
fully may require significant computational expense, e.g., trying all possible alternative ways in which a task might
be achieved (). This is true in general contingency planning as well [4]. In contrast, in the secondary analysis
algorithms, we perform more detailed, contextual, schedule analysis based on the availability of recovery options and
the possibility of failure at key points. This analysis is more expensive, but, in some situations, the added expense
is warranted. For example, the process of determining a schedule for a world-class telescope does not have to be
particularly timely, as the instrument is unused during day light hours, but evening observation time is too valuable to
waste. In this situation, a detailed analysis that considers recovery options is worthwhile.

In this section we discuss contingency scheduling issues and formalize five different measures of schedule robust-
ness, where robustness describes the quantity of recovery options available for a given schedule. In Section 5 we then
present experiments comparing the use of the contingency algorithms to the standard Design-to-Criteria scheduling
approach.

This work in contingency analysis of schedules is closely related to recent work in conditional planning. However,
the planning-centric research focuses on solving problems which involve uncertainty by probabilistic reasoning about
actions and information on the value of planning for alternative contingencies [11, 19] and using utility models [15].
Other approaches use partial Markov decision processes and decision theoretic planning approaches [3, 7] which prune
the search space using domain-specific heuristic knowledge. [23] describes a partial-order planner called Mahinur
that supports conditional planning with contingency selection. The authors concentrate on two aspects of the problem,
namely, planning methods for an iterative conditional planner and a method for computing the negative impact of
possible sources of failure. Our work addresses similar questions within the Design-to-Criteria application domain,
namely:

1. How can we effectively predict the performance of a schedule when there is uncertainty in the performance of
methods in the schedule?

2. What are the different approximations to the execution-time performance measure and when is a specific ap-
proximation appropriate?

20

[4] discusses an algorithm for a specific domain namely a real telescope scheduling problem where the stochastic
actions are managed by a splitting technique. Here the Just-In-Case scheduler pro-actively manages duration un-
certainty by using the contingent schedules constructed by analyzing the problem using off-line computations. Our
contingency scheduling research differs from previous work in the following ways:

1. The contingency analysis algorithms use the Design-to-Criteria scheduler to explore mainly the “good” portions
of the schedule solution space – that is those schedules that best address the client’s design criteria. This
serves to constrain the computation and reduces the combinatorics from their general upper bounds. More
importantly, the algorithm presented here is amenable to future research in bounding the algorithm directly,
which would enable the contingency analysis approach to operate in interactive time, as does the underlying
Design-to-Criteria scheduler.

2. Contingency analysis takes place in the context of the multi-dimensional goal criteria mechanism used in
Design-to-Criteria. Thus the analysis approach is fully targetable to different applications, e.g., situations where
quality should be traded-off to obtain lower cost accompanied by a hard deadline, or situations in which quality
should be maximized within a hard deadline.

3. Our algorithm takes advantage of the structural properties of the input problem. Namely the TÆMS task struc-
ture representation is used to constrain the analysis process and to help limit the exploration of the search used
to locate recovery options. This is in contrast to a simple exploration of all primitive actions without regards for
interactions or for how the actions relate to achieving the overall goal.

(B)

On-Adobe-Photoshop

(A2) (A3)

D (100% 3)
C (100% 3)
Q ((90% 4) (10% 0.5))

subtasks
enables

Search-Adobe-URLQuery-Benchin-Site
(A)

Find-User-Reviews

Q ((25% 0)(75% 3))
C ((30% 5)(70% 3))
D (100% 9)

Process-User-Reviews

Process-Document-Using-

Q ((20% 1)(80% 0.5))

D ((80% 6)(20% 8))

Advanced-Text-Processing

C ((15% 5)(85% 3))

End-User-
Benchmarks

(A1)

Q ((50% 2)(25% 1)(25% 0.5))

D (100% 6)

(P)

Find-Review-Information-

C ((25% 6)(75% 3))

enables

Method

Task

min()

min()

max()

Figure 15: Gather review information on Adobe Photoshop.

To better illustrate the power of contingency analysis, consider a simple example. Figure 15 shows a task structure
for gathering information on Adobe Photoshop. The top-level task can be achieved by either completing task Query-
Benchin-Site (A) successfully or executing the method Search-Adobe-URL (B), or both. If both A and B are executed
the maximum quality of these two is the quality propagated to the parent node (per the qaf). The quality, cost
and duration distributions for the executable methods denote expectations about method performance. For instance,
the quality distribution of method End-User-Benchmarks indicates that it achieves quality value of 2 with probability
0.5, quality of 1 with probability 0.25 and 0.5 with probability of 0.25. Lets assume the client design criteria specifies
that the task should achieve the maximum possible quality within a hard deadline of 18 minutes. The Design-to-
Criteria scheduler first enumerates a subset of the alternatives that could achieve the high level task. A subset of
these alternatives are selected and schedules are created using the one-pass method-ordering techniques identified in
Section 3. The set of candidate schedules are then ranked using the multi-dimensional evaluation mechanism [29]
which compares the schedules’ statistical attributes to the client design criteria.

21

We will use the term expected lower bound (ELB) to denote a slightly modified schedule utility rating returned
by the standard Design-to-Criteria scheduler. In the ELB computation, the standard utility value associated with
the schedule is computed without the relative scaling components discussed in Section 3.1; this enables comparison
between the ELB for a schedule belonging to one set, e.g., , and a schedule belonging to a different set, . For the
purposes of illustration simplicity, we will discuss the ELB in this document as being directly related to the expected
quality of a given schedule, i.e., in this document, the ELB is the expected quality of a given schedule assuming
no rescheduling. In terms of the design criteria described in Section 3.1, this is equivalent to a client specifying a
preference for maximizing quality within a given deadline – no weight or value are given to any of the other criteria
dimensions. The algorithms presented in the following sections operate on more interesting criteria settings, but, the
analysis is more easily understood if the metrics are cast in terms of expected qualities rather than a multi-dimensional
objective / utility function.

A1 A2 A3 Frequency Quality
50% 2 25% 0 nil 5%*25%=12.5% 0.0
50% 2 75% 3 90% 4 33.75% 2.0
50% 2 75% 3 10% 0.5 3.75% 0.5
25% 1 25% 0 nil 6.25% 0.0
25% 1 75% 3 90% 4 16.875% 1.0
25% 1 75% 3 10% 0.5 1.875% 0.5

25% 0.5 25% 0 nil 6.25% 0.0
25% 0.5 75% 3 90% 4 16.875% 0.5
25% 0.5 75% 3 10% 0.5 1.875% 0.5

Figure 16: Each row represents a possible permutation of the quality distributions of methods A1, A2, A3 in schedule
A1,A2,A3 . The first three columns represent the possible expected quality values achieved by each of the methods

A1, A2, A3. The fourth column shows the probability of the particular quality distribution combination occurring and
the last column shows the final expected quality of the schedule.

For the example in Figure 15, the two possible schedules are A1,A2,A3 and B . Figure 16 describes the
computation of the ELB for the schedule A1,A2,A3 . Consider the first entry in the table. It describes the case when
method A1 achieves a quality of 2, which occurs with a probability of 0.5 as described in the TÆMS task structure.
Method A2 achieves a quality of 0 with probability 0.25. The probability of the methods achieving these qualities
in a single execution is 0.125, given in column 4. The expected quality of the schedule A1,A2,A3 is 0 in this case,
described in column 5. The duration and cost distributions and their expected values are computed in a similar fashion.
The ELBs for schedules A1,A2,A3 and B are as follows:

1. A1,A2,A3 : ELB: 0.97 (Expected Quality)
Quality : (25% 0.0) (24% 0.5) (17% 1.0) (34% 2.0)
Duration : (100% 18)

2. B : ELB: 0.6
Quality : (20% 1) (80% 0.5)
Duration: (80% 6) (20% 8)

Since A1,A2,A3 has the highest ELB (indeed, the highest rating using the standard normalized utility functions),
it is chosen and executed. Suppose A1 executes successfully, but A2 fails (i.e. it results in 0 quality), which it does 25%
of the time. Then A3 cannot be executed because it is not enabled (A2 failed) but there is no time left to reschedule
and attempt method B because there is not sufficient time to execute method B before the deadline.

Because of the one-pass low-order polynomial method sequencing approach used by the scheduler to control
scheduling combinatorics, the standard Design-to-Criteria scheduler will only produce one permutation of the meth-
ods A1, A2, and A3. However, if the scheduler did produce multiple permutations, the schedules A1,A2,A3 and

Failure of A2 (where quality= 0) results in zero quality for the schedule due to the way in which the task structure is defined, i.e., under
qafs, failure results in zero quality for the parent task as well. Hence the quality of A3 is a not a determining factor and is represented by nil.

22

(ELB = 0.00; AEUB = 0.00)

A2

A1

TG1 A2

A3 A1

B

A3 (ELB = 0.97; AEUB = 1.29)

(ELB = 0.97; AEUB = 1.29)

A1

BFAIL
(freq. 25%)

(ELB = 0.60; AEUB = 0.60)

(ELB = 0.60; AEUB = 0.60)

A3 (ELB = 0.97; AEUB 1.29)

FAIL
(freq. 25%)

Figure 17: Schedule Options for IG Task (Figure 15) where Ratings are Expected Qualities

A2,A1,A3 would receive the same expected lower bound value. Hence the contention is that there is no difference
in performance between the two. However with more detailed evaluation of the schedules, it is clear that A2,A1,A3
allows for recovery and contingency scheduling which schedule A1,A2,A3 does not permit for the given deadline. If

A2,A1,A3 is the schedule being executed and A2 fails, there is time to schedule method B and complete task TG1.
This clearly implies that schedule A2,A1,A3 should have a better expected performance rating than A1,A2,A3 as
the schedule A2,A1,A3 includes the recovery option from failure in its structure.

4.1 Critical Task Execution Regions and the Approximate Expected Upper Bound
In our example, task A2 has an enables non-local effect as well as a 25% chance of failure within its distribution.
We hence predict that task A2 could potentially be a critical task execution region (CTER). A CTER is a method
that has the potential to seriously degrade the performance characteristics of the overall schedule if it should fail. We
will use the term approximate expected upper bound (AEUB) to denote the expected quality of schedules that are
computed with the CTER’s criticality removed. The AEUB is defined formally in the next section – the discussion
here is intuitive. Removing the possibility of failure in the AEUB enables us to better understand the implications
of the potential CTER on the rest of the schedule. For this example, let us remove the failure possibility from the
performance characterization of A2 and replace method A2’s 25% chance of quality 0 with the expected value of the
distribution. Method A2 hence is assigned a quality of 3, with a probability of 1, i.e. for method A2, Q (100% 3).
The Design-to-Criteria scheduler is reinvoked with the modified task structure and rescheduled. The following are the
AEUBs (expected qualities that result with the possibility of failure removed) returned by the scheduler.

1. : AEUB 1.29
Quality : (32% 0.5)(23% 1.0)(45% 2.0)
Duration: (100% 18)

2. B : AEUB 0.6
Quality: (20% 1) (80% 0.5)
Duration: (80% 6) (20% 8)

The new AEUB statistic describes performance expectations if failure is not possible. The relationship between the
AEUB and the ELB is a clue to the importance of the potential CTER to the overall schedule. In this case, the schedule

A1,A2,A3 now has an expected quality value of 1.29. The % improvement in quality with
respect to the ELB is significant. This 33% improvement in quality confirms that the possibility of failure in method
A2 significantly decreases the rating of schedule A1,A2,A3 . The next step is to consider the optional schedules for
the original task structure to neutralize the effect of this CTER.

The tree structure in Figure 17 presents all possible scheduling options, including recovery scenarios, that meet
the hard deadline of 18 minutes. From this diagram, we see that schedule does not have an op-

23

tion to reschedule and still meet the deadline if method A2 fails. Thus we consider a simple reordering of sched-
ule which is . To assess the effects of rescheduling when A2 fails on this schedule

A2,A1,A3 , we combine the ratings for schedules and based on their likeli-
hoods of occurrence. So a schedule starting with A2 gets a rating of We use a
similar analysis to get the values of schedules starting with A1 and B
This type of schedule evaluation is what we call the approximate expected bound (AEB), which is formally defined in
the next section. Note that with this detailed analysis it is clear that schedule has better expected per-
formance than . However, the ELB computation of the Design-to-Criteria scheduler returns an identical
ELB for both and as it does not take into account the recovery options present within

. This leads us to believe that the ELB perhaps is not the most appropriate performance measure for
all task structures, particularly where hard deadlines or cost limits (in contrast to soft preferences) are important and
failure is possible.

QUALITY

0

10

20

30

0 10.5 21.5

Histogram OF Quality[Simulation-Using-Elb-Measure]

QUALITY

-20

-10

0

10

20

30

40

0.5 1 21.5

Histogram OF Quality[Simulation-Using-Aeb-Measure]

Figure 18: Performance of ELB and AEB Selected Schedules

Figure 18 illustrates this concept. The figure contains two histograms, one displaying the quality that results from
executing the highest rated schedule produced by the standard scheduler, namely , and one displaying
the quality that results from executing the modified schedule . The results are presented in a left to right
fashion. In each case the chosen schedule was executed 100 times in an unbiased simulation environment in which
the execution results are determined by sampling from the distributions associated with the given methods. Recall
that the standard scheduler will give these schedules identical ratings as it does not consider recovery options. The
execution results are consistent with the claim that the schedules are not actually equivalent. The schedule produced
by the standard scheduler fails to generate quality about 20% of the time and the mean resultant quality is 0.98. In
comparison, the reordered schedule never produces a zero quality result, as it leaves time for recovery, and its mean
resultant quality is thus significantly higher, namely 1.96.

4.2 Performance Measures
In this section we formalize a general theory relating to the contingency planning concepts discussed in the previous
section. The question we strive to answer formally here is the following: What performance measure is the most
appropriate estimator of the actual execution behavior of a schedule given the possibility of failure? Our basic ap-
proach is to analyze the uncertainty in the set of candidate schedules to understand whether a better schedule can be
selected or an existing schedule can be slightly modified such that its statistical performance profile would be better
than that normally chosen by the Design-to-Criteria scheduler. We accomplish this analysis through the use of several
performance measures. Prior to presenting the measures, a few basic definitions are needed:

1. A schedule s is defined as a sequence of methods .

This is in contrast to other experiments done with the scheduler, not included in this work, in which the environment is biased in some way or
in which the agent sees an imperfect or subjective view of some objective task structure.

24

2. Each method has multiple possible outcomes, denoted , where denotes the ’th outcome of method . This is part
of the TÆMS definition of methods or primitive actions. Though the examples generally present methods as having quality,
cost, and duration distributions, methods actually may have sets of these distributions where each set is one possible outcome.
For example, if method may produce two classes of results, one class that is useful by method , and one class that is
useful by method , method will have two different possible outcomes, each of which is modeled via its own quality,
cost, and duration distributions. Additionally, these different outcomes will have different nles leading from them to the
client methods, and respectively.

3. Each outcome is characterized in terms of quality, cost, and duration, via a discrete probability distribution for each of these
dimensions and each outcome has some probability of occurrence.

4. is a CTER when the execution of results in outcome which has a value or set of values characterized by a
high likelihood that the schedule as a whole will not meet its performance objectives. For instance, is a CTER if the
probability of the quality of being zero is non-zero.

5. A schedule could have zero, one or more CTER’s in it. A general representation of such schedule with at least one CTER
would be .

6. is the frequency of occurrence of ’s , j’th outcome where is a CTER.
7. is with its current distribution being redistributed and normalized after the removal of its critical outcome. In other

words, the criticality of is removed and the new distribution is called .
8. If = , then

=
= and
=

The five statistical measures that aide in detailed schedule evaluation are:

Expected Lower Bound (ELB) The expected lower bound rating, of a schedule , is the performance measure of
a schedule execution without taking rescheduling into consideration [30]. It is a expected rating because it
is computed on a statistical basis taking quality, cost and duration distributions into account, but ignoring the
possibility of rescheduling. As mentioned previously, in this paper, to simplify presentation of the algorithms
we will concentrate on the case in which the ELB is only the expected quality of a given schedule. In the general
case, the ELB is the utility value generated by the computations presented in Section 3.1 with the relative scaling
aspect of the computation removed.

Approximate Expected Upper Bound (AEUB) The AEUB is the statistical schedule rating after eliminating all re-
gions where rescheduling could occur. The assumption is that there are no failure regions and hence the schedule
will proceed without any failures and hence no rescheduling will be necessary. The following is a formal defi-
nition of AEUB:
Suppose is a CTER in the schedule and it occurs with frequency . Let .

If , then is a CTER, where is a percentage value that determines when a region
should be classified a CTER and thus a candidate for more detailed analysis. The value of is contextually
dependent and should be specified by a scheduler client. For instance, if saving on computational expense is
more important to the client than high certainty, should be high, and thus the threshold for CTER classification
is also high. However, if certainty is paramount, then should be low, indicating that any significant change in
the ELB should be explored.

For our information gathering example, we see that . Hence there is
at least an 30% increase in the schedule rating if the likelihood of failure of A2 is removed.
When this computation is done on an entire schedule for all of its CTER’s, we call it the Approximate Expected
Upper Bound. Generalizing this formula for k CTER’s ,

.
The AEUB is thus the best rating of a schedule on an expected value basis without any rescheduling.

25

Optimal Expected Bound (OEB) The OEB is the schedule rating if rescheduling were to take place after each
method execution. So the first method is executed, a new scheduling subproblem which includes the effects
of the method completion is constructed and the scheduler is re-invoked. The first method in this new sched-
ule is executed and the steps described above are repeated. Hence the optimal schedule is chosen at each
rescheduling region. For complex task structures, the calculation would require a tremendous amount of com-
putational power and it is unrealistic to use it for measuring schedule performance in a real system.
In most situations, since the is based on recovery from a failure
while assumes no failure.

Expected Bound (EB) Let be the set of actual quality, cost, duration values when method is executed. After
each method execution the schedule is re-rated. If for some schedule = ,and

, i.e. the actual execution performance of a schedule is below expectation,
then a new schedule is constructed based on the partially complete schedule .
So the EB is the schedule rating when rescheduling occurs only when there is a possibility for the partial
execution of the current schedule will fail to meet expected criteria as a result of the outcomes of methods
already executed. This computation, like the OEB, will require extensive computational power. Again in most
situations, .

Approximate Expected Bound (AEB) It is the schedule rating with rescheduling only at CTER’s and using expected
lower bound of the new stable schedule for methods following the CTER. This is limited contingency analysis
at CTER’s.
Consider a schedule of n methods = . Now suppose is a CTER with a frequency
of occurrence of . In order to compute the AEB of the schedule, we replace the portion of the schedule
succeeding , which is by if there exists a such that

.
The Approximate Expected Bound for this instance is computed as follows:

= + . The new schedule
rating thus includes the rating from the original part of the schedule as well the ELB of the new portion of the
schedule. This is basically the calculation described when the AEB was introduced in a previous section.
Now we describe the general case scenario. Let be a schedule of n methods with k
CTER’s named . Let the recovery path available at each CTER be and each oc-
curs with frequency . The AEB of the entire schedule is described recursively as

which can be expanded out as follows:

+
+ ...

AEUB
The above computation produces an approximate measure since we use the

. A better and more exact computation would be to use the
. So if we recursively refine the , the schedule rating ap-

proaches the expected bound . Thus, the deeper the recursion in the analysis of CTER’s, the better
the schedule performance measure and the closer it is to the actual performance measure when reschedul-
ing occurs. This describes the potential anytime nature of the AEB computation. Thus, in most situations,

and the by definition.
“Optimal” in this case is meant in a satisficing fashion. In the context of Design-to-Criteria, the “best” schedule for a given task structure is not

guaranteed to be optimal as the combinatorics prevent an exhaustive search. As it is used here, optimal means the best possible schedule within the
space searched by Design-to-Criteria.

26

Here we would like to add that all computations above are based on heuristics and hence are approximations
including the OEB and EB. We could define AEUB’,OEB’,EB’, AEB’ and ELB’ which would involve complete
analysis of all paths by the scheduler. The resulting schedules would display higher performance characteristics and
meet goal criteria better but will also be computationally infeasible to generate [30].

4.3 Rescheduling and Recovery Algorithms
In this section, we describe a generic algorithm which can guarantee a more precise performance evaluation of sched-
ules when uncertainty is present in the schedule, using the theory described above.
Algorithm for building stable schedules:
The following is a formal description of the algorithm which chooses the schedule that provides the best performance
guarantee statistically

1. Let be the best schedule returned by the Design-to-Criteria scheduler for a given
task structure.

2. Suppose the scheduler evaluates schedules to decide which is the best schedule, where and
let S be the set of all schedules.

3. has the highest ELB in .
4. Let . Then for all .
5. Let be the set of such that . If , then we compute the

for each .
6. The new best schedule is the one with with the highest AEB. is guaranteed be more robust where

schedule robustness as defined earlier, is a characteristic of a schedule in which the schedule allows for recovery
from execution failure of one of the scheduled actions.

Identifying CTER’S:
The AEB is a better estimate than the ELB when there is uncertainty in the schedule, i.e., there are CTERs in the
schedule and there is a possibility for contingency plans. Earlier we defined CTERs as those regions in the schedule
which could potentially lead to degradation in the expected performance and examined CTERs in the context of method
failure. For example, method A2 has a quality distribution of (25% 0)(75% 3) – the 25% chance of failure makes it a
candidate CTER. Other factors that may be used to determine whether or not a method is a CTER include:

1. Significant variance in the quality distribution: For methods with a single outcome, we look for variance in the
quality distribution of the method with respect to the expected values and evaluate if this variance may critically
affect the performance of the schedule.

2. Importance of NLES: Certain methods may affect overall schedule performance indirectly via interactions with
other tasks. For example, a given method might produce a result that has very little quality, but, a result that is
needed by other consumer methods in the task structure. The failure of such a method may not impact overall
quality directly, but, indirectly by preventing the performance of the consumer methods. Methods from which
interactions originate, or from which important interactions originate, may also be CETRs.

3. Relationship between NLEs and outcomes: For methods with multiple outcomes, the variance in the quality
distribution is evaluated for each outcome, as above. Additionally, any non-local-effects that are tied to particular
outcomes must be examined for their importance to the overall task structure. When scheduling, each outcome
has some probability of occurrence. Thus the scheduler reasons from the perspective of all outcomes occurring
where the likelihood of occurrence determines the probabilities associated with nles originating from particular
outcomes; the uncertainty associated with the nles is then propagated to the rest of the structure. To evaluate
whether or not a particular method may be a CTER in this context requires the evaluation of each outcome
and then some measurement of the probability of the outcome versus the implications of the outcome. The
thresholds involved are an area of current work.

27

4. Small effects: Hereto CTER detection has focused on the criticality of individual methods. However, it is
possible for a series of low frequency failures to be spread across several methods in such a way that no single
method is a CTER but that the cumulative effects of the failures are equivalent to a standard, localized, CTER.
This cumulative aggregation of small effects is potentially equally important as method-specific failure points
because the contributing methods may be supported by recovery options as well. The OEB and EB computations
in fact consider cumulative small effects of method performance because they entail rescheduling after every
method execution, in the case of the OEB, and in the case of an evelope being violated in the case of the EB.
The issue of what constitutes a CTER of this class and how to detect such CTERs is an area of future research.

Method reordering:
Earlier, we noted that the AEB evaluation, unlike the ELB evaluation, views permutations of the same set of methods
as different schedules. We saw that while one permutation A2,A1,A3 permitted a contingent schedule, the other

A1,A2,A3 did not. We describe below two types of method reordering within a schedule:
Simple reordering: Consider a schedule . Suppose is a CTER. Then if the

AEB computation is unable to find a contingent schedule in case of failure of , we will automatically try to move
ahead in the schedule without affecting any of the non-local effects such as enables or facilitates. So if can be

moved ahead of without affecting any non-local effects, we get a new schedule and
we reevaluate the AEB rating. Our example uses simple reordering i.e. A2 can be moved ahead of A1 and a contingent
schedule can be obtained.

Complex reordering: Consider the schedule again but suppose facilitates , which is a CTER. Also
suppose we are unable to find a contingent schedule in case fails. Here, we would try to move method forward
in the schedule, by ignoring the facilitates and evaluate if the AEB rating of the new schedule justifies the loss of the
facilitates.
Better redundancy estimation:
The relationship between the redundancy techniques employed in the main scheduler process and the recovery op-
tions explored in this secondary contingency analysis is not obvious. With respect to the redundancy techniques,
contingency analysis yields better estimators of schedule performance because it factors in the probability that recov-
ery options will be needed, and the probability that they will not be needed. In contrast, the redundancy techniques
employed by the main scheduler conceptually assume either failure or success from a duration perspective, not the
probability of either. Consider Figure 9 from Section 3. The standard scheduler may produce the schedule (A2, B1,
B2) that contains embedded redundancy, as well as schedule (A2, B1). The schedules represent two extreme ends of
the performance spectrum, one in which B1 is assumed to succeed and one in which B1 is assumed to fail. In the
first case, the probability that B1 may fail is reflected in B1’s expected quality and thus in the quality distribution
of the schedule. However, the fact that if B1 fails, B2 must be employed, is not reflected in the quality or duration
distributions of the schedule. In contrast, in the latter case, the assumption is that both B1 and B2 will be executed
and the quality and duration distributions of the schedule reflect this. The extra time required to execute B2 is actually
built-in to the schedule.

Regardless of whether or not B2 is actually executed, the schedule (A2, B1, B2) is evaluated on the assumption
that B1 fails and B2 is required. This results in an over estimation of the time (and/or cost) that is generally required
to obtain a result. In actuality, (A2, B1) will suffice 75% of the time and B2 will be required as a recovery option
only 25% of the time. The exploration of this scenario via the AEUB and AEB computations correctly view these
different possibilities from a probabilistic perspective and does not suffer from the over-statement problem of the
main scheduler. The over estimation problem of the (A2, B1, B2) schedule is important because it may cause the
main scheduler to select a different schedule for execution, i.e., it is more than a poor estimate, it may send the
scheduler down the wrong path entirely. The stronger contingency analysis approach yields much better estimates and
consequently leads to better decisions about which schedule(s) to execute in these cases.

28

5 Experimental Results
Using the measures described above, effective contingency planning is a complex process. It involves taking into
account a number of factors, including task relationships, deadlines, the availability of alternatives, and client design
criteria (i.e., quality, cost, duration, and certainty trade-offs). In this section, we evaluate the performance of the
contingency analysis tools by comparing them to the standard Design-to-Criteria scheduler. Comparison is done by
examining the ELB (standard scheduler metric) and the AEB (contingency analysis metric) and comparing schedules
selected on the basis of these metrics to the actual results obtained by executing the schedules in a simulation environ-
ment. As part of the evaluation process, we have partially determined the characteristics of task structures and design
criteria that indicate a problem instance for which contingency planning is advantageous. In this section, we define
the characteristics and explain why they affect performance.

The experiments in this section were conducted by randomly generating task structures while varying certain char-
acteristics. Intuitions of which characteristics would lead to structures that are amenable to contingency analysis were
used to seed the search for interesting test cases. Since method failure is a crucial factor for the contingency analysis
argument, the generation of task structures was designed to concentrate on the variance of two factors, namely, the
effects of failure location and failure intensity (probability of failure) within a task structure. Ten randomly gener-
ated task structure classes were then modified to varying degrees with respect to these two factors. Figure 19 shows
two such randomly generated structures. In other words, ten task structure classes or prototypes were produced ran-
domly and then these structures were modified to vary the probability of method failure and to vary the location of
the method failure within all possible schedules. The latter is accomplished via nles and sequencing-related qafs that
force particular actions to be carried out at particular points in any schedule including the actions.

The design criteria in these experiments is to maximize quality given a hard deadline on the overall schedule. This
simple design criteria setting is one that lends itself to contingency analysis as the existence of a hard deadline (in con-
trast to a soft preference, e.g., soft deadline) may preclude recovery via rescheduling in certain circumstances. Because
of the hard deadline, a poorly chosen initial schedule may not leave time for the deployment of recovery options and
thus the normal Design-to-Criteria scheduler may fail to produce results in situations where contingency analysis has
planned for the recovery scenario and chosen an initial schedule accordingly. Understanding the relationship between
more interesting or diverse criteria settings and the contingency analysis is an area of current work; though results
suggest that contingency analysis has benefits beyond the hard deadline (or hard cost) scenarios. For example, in some
instances, contingency analysis leads to results in less time as the failure points appear earlier in the schedule.

M4

M1 M2

q_min()
q_sum()

M3

S

T2 T3

T1

q_min()

q_max()

M5

D ((50% 10.0)

Q ((50% 120.0)
 (50% 100))

C (100% 1.0)
D (100% 5.0)

Q ((20% 60.0)
 (80% 70))
C (100% 1.0)
D (100% 2.0)

 (50% 15))

Q ((35% 140.0) Q ((45% 0.0)
 (55% 160))
C (100% 1.0)
D (100% 1.0)D (100% 10.0)

 (65% 120))
Q ((5% 0.0)

C (100% 1.0)

Task

Method

Enables

 (95% 150))
C (100% 1.0)

M6

Q ((80% 10.0) (20% 150))
C (100% 1.0)
D ((20% 10.0) (80% 15.0))

M2

Q ((95% 20.0)(5% 10.0))

M6

q_max()

q_min()

M6

q_max()

q_max()

q_min()

M4

M5

T1

T2

T3

T4

T5

Q ((50% 10.0)(50% 20))
C (100% 1.0)
D ((50% 10.0)(50% 5.0))

Q ((95% 10.0)(5% 0.0))
C (100% 1.0)
D (100% 5.0)

Q ((25% 20.0) (65% 80) (10% 0.0))
C (100% 1.0)
D ((20% 15.0)(80% 10.0))

M3

Q ((5% 30.0)(95% 15.0))
C (100% 1.0)
D ((50% 10.0)(50% 15.0))

D ((50% 10.0)(50% 5.0))
C (100% 1.0)

Q ((5% 40.0)(95% 50.0))
C (100% 1.0)
D ((50% 10.0)(50% 15.0))

Figure 19: Sample task structures; A and B

29

The results for the experiments are shown in Figure 20. For each task structure instance, 100 simulated executions
were performed using the schedule with the highest ELB and with the schedule having the highest AEB, i.e., the best
schedule selected by the Design-to-Criteria scheduler was executed a 100 times and the best schedule selected by (or
generated by, in the case of method movement) contingency analysis was executed 100 times. Each row in the table
indicates a different (failure location, failure probability) parameter setting for the ten task structures; each row is
also an aggregation of results for the ten task structure instances. In other words, each row represents data from an
aggregate view where the ten task structure classes have been modified in a certain way to produce ten task structure
instances. Of the two factors used to differentiate the task structures in each row, failure location (Lo) (found in the first
column of the table) refers to the position of critical method(s) in a task structure and hence in the schedule. Failure
intensity (In) (second column) refers to the probability of a method failing. Three different classifications of failure
location are used in the experiments: early(E), medium(M), and late(La). Similarly, three different settings for failure
intensity are used in the experiments, namely, low(L), medium(M) and high(H) where low is 1%-10% probability of
failure, medium is 11%-40%, and high is 41%-90%.

For each problem instance, the execution results produced by the AEB selected schedule were compared to the
results for the ELB selected schedule via statistical significance testing. The third column, N.H. valid count, identifies
the number of problem instances for which the null hypothesis of equivalence could not be rejected at the .05 level via a
one-tailed t-test. In other words, N.H. valid count identifies the number of experiments for which the results produced
via AEB are not statistically significantly different from the results produced by the ELB. These experiments are
omitted from subsequent performance measures. Generally these are instances where the schedule selected by both
methodologies are the same, indicating a lack of many appealing options that may serve to lure the standard Design-
to-Criteria scheduler away from the schedule that also happens to have recovery options associated with it. The
elimination of many of the task structures is evidence that it is difficult to pre-determine whether contingency planning
is expedient for a certain task structure.

The fourth column indicates the number of task structures of the ten possible whose data is compared. These
are task structures that led to schedules for the ELB case and the AEB case that produced execution results that are
statistically significantly different, i.e., the null hypothesis of equivalence was rejected at the .05 level. The remain-
ing columns compare the AEB and ELB selected schedules’ execution results for the these task structures from an
aggregate perspective.

Columns five and eight, titled Contingency A.Q and Normal A.Q. respectively, show the mean, normalized quality
that was produced by the AEB and ELB selected schedules respectively. In other words, the best schedule per the
AEB metric was selected and executed in an unbiased simulation environment, when failure occurred the scheduler
and contingency-analysis tools were reinvoked and a new schedule generated that attempted to complete the task.
The resultant quality was measured and recorded and the experiment repeated 100 times. The same procedure was
done for the ELB selected schedule, though when rescheduling occurred, the contingency analysis tools were not
invoked (nor were they invoked in the production of the initial schedule). The overall maximum quality produced by
either the AEB or the ELB simulation runs was recorded and all resultant quality then normalized over the maximum,
resulting a quality value that expresses the percentage of the maximum observed quality that a given trial produced.
This procedure was then repeated for the other task structure that produced statistically significantly different results,
and the normalized quality values averaged. Thus, the 0.73512 A.Q. from the first row of Table 20, column four,
indicates that contingency analysis yielded schedules that produced approximately 74% of the maximum observed
quality on average. Column seven indicates that the standard Design-to-Criteria scheduler produced approximately
63% of the maximum observed quality, on average, for the same set of task structures. Thus, contingency analysis
yielded a 14.24% percentage increase in resultant quality over the standard Design-to-Criteria scheduler, as shown in
column 11.

Columns six and nine show the number of times a given selected schedule failed to produce any result, that is,
recovery before the deadline was not possible, for the AEB and ELB cases respectively. It is interesting to note that
the contingency selected schedule failed to produce a result with somewhat greater frequency for rows one and five.
This is because both the contingency selected schedule and its recovery option had some probability of failure, though,
we do not actually consider the failure rate in these cases to be statistically significant. The failure rate in row three
illustrates the classic case in which recovery before the deadline is often not possible for the schedules chosen by
the standard Design-to-Criteria scheduler, whereas it is more often possible for the schedules selected by contingency

30

analysis.
Columns seven and ten show the number of times rescheduling was necessary during execution. These results

are somewhat counter intuitive as the contingency analysis selected schedules generally resulted in more rescheduling
during execution due to failure. This is because the contingency analysis tools explore the possibility of recovery and
do not seek to avoid the failure in the first place. Relatedly, because the contingency analysis considers the existence
of recovery options, it may actually select a schedule more prone to initial failure than the standard Design-to-Criteria
scheduler because the schedule has a higher potential quality. For example, say two schedules and have the
following respective quality distributions: and . The expected value
of is 7.5 whereas the expected value of is 7. The standard scheduler will prefer over because it has a
higher expected quality value (assuming that the goal is to maximize quality within a given deadline). However, the
contingency analysis tools might actually prefer over if there are recovery options, e.g., for , because has
the potential for a higher quality result than . If has a quality distribution like , then the /
recovery scenario has a higher joint expected quality than does alone. Associating a cost with rescheduling in the
contingency algorithms could modulate this opportunistic risk-taking type of behavior. If a cost were associated with
rescheduling, the utility of a recovery option could be weighted to reflect such a cost.

The last column shows the mean normalized OEB of the AEB selected schedule. This is the measure where
rescheduling is invoked after every method execution irrespective of the execution outcome. It describes the optimal
performance of a schedule since the best possible path is selected every step of the way. The quality value shown is
the average of 100 executions of the OEB schedule, normalized by the maximum observed quality over all the AEB
selected and ELB selected schedules’ executions. The OEB is higher than both Contingency A.Q. as well as Normal
A.Q. for each class of task structures. This is as it should be, as the OEB is a computationally intensive performance
measure which strives to obtain the optimal schedule at every point of the plan.

Irrespective of rescheduling, in general, for the task structures that lead to statistically significantly different results,
contingency analysis produced schedules that yielded higher average quality than did the standard Design-to-Criteria
scheduler. However, as illustrated by the large number of task structures that lead to results that were not statistically
significantly different, very few of the candidate task structures were suitable for contingency analysis (about 20%).

Fail N.H valid T.S. Contingency Normal Perf. OEB
Lo In count count A.Q. F.R. R.C. A.Q. F.R. R.C Impr.
E M 8 2 0.73512 0/200 72 0.63041 0/200 0 14.24% 0.75227
M M 8 2 0.70125 2/200 64 0.63883 0/200 0 8.89% 0.71222
La M 8 2 0.79936 21/200 100 0.66246 38/200 48 17.12% 0.84531
M L 10 0 0 0 0 0 0 0 0% 0
M M 8 2 0.70125 3/200 64 0.63883 0/200 0 8.89% 0.71222
M H 10 0 0 0 0 0 0 0 0% 0

Figure 20: Fail Lo is the failure location; Fail In is failure intensity; N.H. valid count is number of task structures
that fail to produce results for the contingency and standard scheduler cases that are statistically significantly different;
T.S. count is number of task structures whose performance qualities will be compared; Contingency A.Q. is average,
normalized quality of AEB selected schedule; Contingency F.R. is the failure rate is number of times AEB selected
schedule fails to achieve any quality; Contingency R.C. is the reschedule count which is the number of times the AEB
selected schedule reschedules due to failure of a method to achieve quality. Normal A.Q. is average, normalized quality
of ELB selected schedule; Normal F.R. is the number of times ELB selected schedule fails to achieve any quality;
Normal R.C. is the number of times the ELB selected schedule reschedules due to failure of a method to achieve
quality. Perf. Impr is the average improvement in performance of contingency analysis over normal scheduling. OEB
is the average, normalized quality of AEB selected schedule.

Let us now step back from the aggregate view and compare contingency analysis to the standard Design-to-Criteria
scheduler from a detailed perspective. Figure 21 shows a TÆMS task model on which both the standard scheduler
and the contingency analysis tools were used. The expected and actual performance of the schedules produced by

31

S

q_sum()

q_max() q_max()

T1 T3

q_max()

M3

T2

M4

Q ((70% 230)

D (100% 5.0)

Q ((90% 190)Q ((80% 210)

C (100% 4.0)
D (100% 5.0)

(20% 180))

C (100% 4.0)

 (30% 190)) (10% 175))
D (100% 2.0)
C (100% 4.0)

Q ((70% 150)
 (30% 163))

D (100% 7.0)

Q ((95% 135)
 (5% 130))

D (100% 3.0) D (100% 2.0)

M6 M8 M9

C (100% 4.0) C (100% 4.0) C (100% 4.0)

Q ((50% 129)
 (40% 118) (10% 0))

D (100% 4.0)

Q ((80% 135)(20% 0))

C (100% 4.0)

M2M1

Sample task structure-3.

Figure 21: Task structure C

contingency analysis and normal scheduling techniques are described in Table 22. The design criteria is again to
maximize quality within a hard deadline of 36 minutes.

The schedule selected by the contingency tools, based on the AEB, is which has an ELB of
472.94, an AEUB of 506.9, and an AEB of 494.21. The CTER in this schedule is because has a 20%
probability of failure. Because the top-level qaf is a sum(), and because there are no task interactions, the failure of

is localized entirely at . This also means that a failure of , or for that matter the failure of any individual
method within a schedule, will not preclude achieving some quality at the top-level task . The contingent schedule is

, where is the recovery option for method . The two schedules considered by the contingency
tools are hence and .

The schedule selected by the standard scheduler, based on the ELB, is which has an ELB of 484.2.
The schedule is processed by the contingency analysis tools only to compute the contingency related metrics so that
the schedules may be compared. The AEUB of the schedule is 494.72 and its AEB is 474.89. During the contingency
analysis of this schedule, the “move CTER forward” heuristic moved forward to pull the critical region closer to
the front of the schedule to leave more time for recovery. Thus, the scenarios considered when computing the metrics
are: and . Regardless of the results of this analysis, the original
schedule produced by the scheduler, and selected on the basis of the ELB, namely , is the schedule
subsequently executed.

The quality achieved by the contingency selected schedule, that having the highest AEB , after
100 simulation runs is 502.5 which is higher than the 494.7 achieved by the best ELB schedule .
Because has a higher probability of failure, the schedule failed over twice as often as did the schedule
selected on the basis of its ELB. This risk-taking behavior is again because contingency analysis revealed the existence
of a good quality recovery option for , namely , and that sufficient time existed to recover from a failure of

. Thus, the best schedule from a quality perspective is one that includes the riskier but also considers in
the failure case as a backup. In comparison, the standard scheduler does not consider the existence of recovery options
and thus it made its choice based on expected quality alone. It is interesting to note that the ELB performance estimate
for both schedules is below that which actually resulted from execution and recovery. This is related to the risk-taking
behavior of the contingency analysis tools – the standard scheduler does not consider the existence of recovery options
nor their value to the selected schedule. Thus the fact that when fails, there is actually a probability of obtaining
even a higher quality result by recovering and employing is completely lost on the scheduler and not reflected
in the ELB computation. This example illustrates the difference between the statistical, but local or single-schedule
view employed by the Design-to-Criteria scheduler and the more accurate, contextual view, generated by performing

32

contingency analysis on the schedules produced by the scheduler.

Schedule Analysis Schedule Produced ELB AEUB AEB Resched count Actual Quality
Contingency 472.94 506.9 494.21 23 502.35 %

Normal 484.2 494.72 474.89 12 495.13

Figure 22: Performance information for task structure C

Based on the results presented here and other similar results, it is possible to characterize the types of task structures
that are amenable to contingency analysis, i.e., those for which analysis of recovery options is beneficial from a
cost/benefit perspective. The general characteristics include:

1. Methods in task structures should have possibility of failure in their distribution.
2. There could be multiple methods which could fail in a single task structure.
3. Task structures should contain alternate paths with significant performance differences. For instance, a task

structure in which one path has high potential quality but also a high risk of failure, and another path has low
quality but has no possibility failure.

4. A possibility of moving failure methods forward (absence of associated hard nle’s) would further the potential
of contingency analysis, i.e., structures in which there is some flexibility in terms of method placement within a
schedule.

5. Presence of an alternate path that achieves some quality, but does so with low cost, low duration, and low
uncertainty. This is akin to the conceptual notion of a “quick and dirty” approach to solving a problem. The
existence of these types of methods provide the contingency planning approach with a recovery option that is
usable even in tight resource situations.

6. Dependence of methods with good average performance on critical methods (enables nle from a critical method
to a non-critical method).

The following are the characteristics of the design criteria which augments contingency planning.

1. The objective function could specify a hard deadline, and emphasis should be given to either the quality or
duration slider.

2. The deadline should also provide enough time for contingency analysis, if the scheduling cost is factored into the
equation. Regardless, the deadline must provide sufficient time for recovery options to be deployed otherwise
the existence of such options is meaningless. In these cases, the contingency analysis tools must resort to the
same single-pass execution view that is used in the main Design-to-Criteria scheduler.

3. Giving relatively equal importance to the quality goodness and duration sliders and setting the meta goodness
slider to its maximum.

4. Setting relatively equal importance to the meta goodness and meta duration sliders if a deadline is specified.

6 The Future Role of Uncertainty
Dealing with uncertainty as a first class object both within the scheduling process and via the secondary contingency
analysis is beneficial. The addition of uncertainty to the TÆMS modeling framework increases the accuracy of TÆMS
models. The uncertainty enhancement is leveraged ubiquitously by Design-to-Criteria scheduling to reason, from a
probabilistic perspective, about the performance characteristics of primitive actions and task interactions. Including
explicit models of uncertainty improves the scheduling process not simply by increasing modeling power, but also
by increasing the representational power of all the computations in the scheduling process. As discussed in Sec-
tion 3.3, the probabilistic models occasionally adversely affect the scheduler calculations, but, even with the loss of
the independence assumption, improvement of computation accuracy outweighs the associated computation costs.

33

As discussed in Sections 3.1 and 3.2, integration of uncertainty in the client goal or design criteria specification
enables clients to describe the relative importance of certainty, and uncertainty reduction, to a particular application.
Integration of this metric into the utility calculations that govern scheduler problem solving enables the scheduler
to evaluate quality, cost, duration and quality-certainty, cost-certainty, and duration- certainty trade-offs of particular
courses of action. This integration approach enables clients to specify the balance between uncertainty reduction and
the other utility metrics, i.e., uncertainty reduction does not dominate the problem solving process unless so specified
by the client. The integration and use of uncertainty in the main Design-to-Criteria scheduling process provides
a means for reasoning about, and working to reduce, uncertainty within the confines of addressing soft real-time
scheduling deadlines and other real performance constraints.

The secondary contingency analysis procedures presented in Section 4 step outside of this context to perform
a more detailed analysis of schedule performance based on the existence of recovery options. Since the algorithms
explore the schedule recovery space using the Design-to-Criteria scheduler, they still exhibit a satisficing, approximate,
resource conservative nature. It is interesting to note that even the coarse analysis performed in the AEB and AEUB
computations is beneficial in certain circumstances. Future efforts in contingency analysis will involve explicitly
bounding and controlling the complexity of the contingency analysis process. Intertwined with this research objective
is the ability to classify particular problem solving instances. From the experiments performed in Section 5, it is clear
that certain classes of task structures are more amenable to contingency analysis than others. Contributing factors
include the location of the failure point and the number and quality of recovery options available. Given the ability
to classify task structures, an input task structure could be examined to determine 1) whether or not contingency
analysis should be performed and 2) if the analysis should be performed, how deep the algorithms should search when
exploring recovery options. In some cases, deep exploration may not be fruitful and in others, it may be critical.

Another area of future exploration in contingency analysis lies in the area of determining critical regions, CTERs,
within schedules. One aspect of this is determining CTER status based on the existence and types of task interactions.
Another aspect is in the determination of CTER status by examining the cumulative or aggregation of low frequency
failures in methods. The algorithms discussed earlier focus on a local determination of criticality, that is, as being
localized in a given method. However, it is possible that low frequency failures spread across multiple methods may
also result in a critical region within a given schedule. This small effects condition may also benefit from the existence
of recovery analysis and contingency planning. Another related area is that of dynamically re-evaluating the CTER
status of methods. In this work, we considered only static critical task execution regions i.e. the identification of critical
task execution regions is independent of the progressive results of schedule execution. However, as execution unfolds,
methods that are not critical to begin with may become more important. In general, changing context is handled by
rescheduling, however, envelopes or triggers could be specified and examined incrementally during execution, akin to
[1].

Related to the issue of envelopes is caching the recovery options explored and identified during contingency anal-
ysis. As the recovery options are explored from a statistical perspective, where primitive actions have ranges of
characteristics, it is not immediately clear that storing the recovery options and deploying them automatically in the
case of failure is a good solution. This is somewhat related to the issue of small effects discussed earlier in that during
actual execution, values are produced and while a single value may not fall outside of a conventionally generated
rescheduling envelope (e.g., reschedule if results are not within 25% of the trimmed mean), the cumulate effects of the
results may lead to different recovery options being more desirable in the event of a failure. Because the scheduler and
contingency analysis tools reason about nles from a probabilistic perspective, these aggregation effects may be even
more pronounced than the small effects dealt with in CTER determination (as the CTER computation uses the same
probabilistic view used in the rest of the scheduler computations).

Another area of future uncertainty-related work in Design-to-Criteria scheduling involves leveraging the uncertainty-
enhanced TÆMS models in multi-agent scheduling and coordination. In multi-agent systems the scheduler is typically
coupled with a multi-agent coordination module that forms commitments to perform work with other agents; local con-
cerns are thus modulated by non-local problem solving. Uncertainty in this context could be used to reason about the
utility of the commitments made with other agents and to understand how the uncertainty about commitments made
by other agents affects local problem solving.

Other, more general, future efforts in Design-to-Criteria include using organizational knowledge [31] to guide
the scheduler decision process when operating in multi-agent environments and to support negotiation between the

34

scheduler and its clients, which may be other AI problem solvers or humans. Negotiation during the scheduling
process can iteratively refine client goal criteria based on what is actually being produced by the scheduler. This is
important because often if the scheduler cannot produce schedules that satisfice well enough with respect to the goal
criteria, due to task limitations or resource constraints, the client may prefer to submit a different set of goal criteria
and try again, exploring the solution space prior to selecting a course of action.

7 Acknowledgments
We would like to acknowledge the work and contributions of Professor Alan Garvey. His Design-to-Time scheduling
work provided the conceptual foundation for subsequent work in this area.

References
[1] R. St. Amant, Y. Kuwata, and P. Cohen. Monitoring progress with dynamic programming envelopes. In Pro-

ceedings of the Seventh International IEEE Conference on Tools with Artificial Intelligence, pages 426–433,
1995.

[2] Ana L.C. Bazzan, Victor Lesser, and Ping Xuan. Adapting an Organization Design through Domain-Independent
Diagnosis. Computer Science Technical Report TR-98-014, University of Massachusetts at Amherst, February
1998.

[3] C. Boutilier, T. Dean, and S. Hanks. Planning under uncertainty: Structural assumptions and computational
leverage. In Proceedings of 3rd European Workshop on Planning (EWSP’95), 1995.

[4] J. Bresina, M. Drummond, and K. Swanson. Just-in-case scheduling. In Proceedings of the Twelfth National
Conference on Artificial Intelligence, 1994.

[5] Norman Carver and Victor Lesser. The DRESUN testbed for research in FA/C distributed situation assessment:
Extensions to the model of external evidence. In Proceedings of the First International Conference on Multiagent
Systems, June, 1995.

[6] T. Dean and M. Boddy. An analysis of time-dependent planning. In Proceedings of the Seventh National
Conference on Artificial Intelligence, pages 49–54, St. Paul, Minnesota, August 1988.

[7] Thomas Dean, Leslie Kaelbling, Jak Kirman, and Ann Nicholson. Planning under time constraints in stochastic
domains. Artificial Intelligence, 76(1-2):35–74, 1995.

[8] Keith Decker and Jinjiang Li. Coordinated hospital patient scheduling. In Proceedings of the Third International
Conference on Multi-Agent Systems (ICMAS98), pages 104–111, 1998.

[9] Keith S. Decker. Environment Centered Analysis and Design of Coordination Mechanisms. PhD thesis, Univer-
sity of Massachusetts, 1995.

[10] Keith S. Decker and Victor R. Lesser. Coordination assistance for mixed human and computational agent sys-
tems. In Proceedings of Concurrent Engineering 95, pages 337–348, McLean, VA, 1995. Concurrent Technolo-
gies Corp. Also available as UMASS CS TR-95-31.

[11] D. Draper, S. Hanks, and D. Weld. Probabilistic planning with information gathering and contingent execution.
In Proceedings of the Second International Conference on Artificial Intelligence Planning Systems (AIPS-94),
pages 31–36, 1994.

[12] Alan Garvey. Design-to-time real-time scheduling. Ph.D. Dissertation, Department of Computer Science, Uni-
versity of Massachusetts, Amherst, MA, February 1996.

35

[13] Alan Garvey and Victor Lesser. Design-to-time real-time scheduling. IEEE Transactions on Systems, Man and
Cybernetics, 23(6):1491–1502, 1993.

[14] Alan Garvey and Victor Lesser. Representing and scheduling satisficing tasks. In Swaminathan Natarajan, editor,
Imprecise and Approximate Computation, pages 23–34. Kluwer Academic Publishers, Norwell, MA, 1995.

[15] P. Haddaway and S. Hanks. Utility models for goal-directed decision-theoretic planners. Computer Intelligence,
14(3), 1998.

[16] Eric Horvitz, Gregory Cooper, and David Heckerman. Reflection and action under scarce resources: Theoretical
principles and empirical study. In Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, August 1989.

[17] Eric Horvitz and Jed Lengyel. Flexible Rendering of 3D Graphics Under Varying Resources: Issues and Di-
rections. In Proceedings of the AAAI Symposium on Flexible Computation in Intelligent Systems, Cambridge,
Massachusetts, November 1996.

[18] Stanley M. Sutton Jr. and Leon J. Osterweil. The design of a next-generation process language. In Proceedings
of the Fifth ACM SIGSOFT Symposium on the Foundations of Software Engineering, pages 142–158, September
1997.

[19] N. Kushmerick, S. Hanks, and D. Weld. An algorithm for probabilistic planning. In Proceedings of the Twelfth
National Conference on Artificial Intelligence, 1994.

[20] Victor Lesser, Michael Atighetchi, Bryan Horling, Brett Benyo, Anita Raja, Regis Vincent, Thomas Wagner,
Ping Xuan, and Shelley XQ. Zhang. A Multi-Agent System for Intelligent Environment Control. In Under
Review, 1998.

[21] Victor Lesser, Bryan Horling, Frank Klassner, Anita Raja, Thomas Wagner, and Shelley XQ. Zhang. BIG: A
resource-bounded information gathering agent. In Proceedings of the Fifteenth National Conference on Artificial
Intelligence (AAAI-98), July 1998. See also UMass CS Technical Reports 98-03 and 97-34.

[22] T. Oates, M. V. Nagendra Prasad, and V. R. Lesser. Cooperative Information Gathering: A Distributed Problem
Solving Approach. Computer Science Technical Report 94–66, University of Massachusetts, 1994. Journal of
Software Engineering, Special Issue on Developing Agent Based Systems, 1997.

[23] N. Onder and M. Pollack. Contingency selection in plan generation. In Proceedings of the Fourth European
Conference on Planning, 1997.

[24] Stuart J. Russell and Shlomo Zilberstein. Composing real-time systems. In Proceedings of the Twelfth Interna-
tional Joint Conference on Artificial Intelligence, pages 212–217, Sydney, Australia, August 1991.

[25] Herbert A. Simon. Administrative Behavior. Macmillan Company, New York, NY, 1945.

[26] Herbert A. Simon. Models of Bounded Rationality. MIT Press, Cambridge, MA, 1982.

[27] Wolfgang Slany. Scheduling as a fuzzy multiple criteria optimization problem. Fuzzy Sets and Sys-
tems, 78:197–222, March 1996. Issue 2. Special Issue on Fuzzy Multiple Criteria Decision Making; URL:
ftp://ftp.dbai.tuwien.ac.at/pub/papers/slany/fss96.ps.gz.

[28] Regis Vincent, Bryan Horling, Thomas Wagner, and Victor Lesser. Survivability simulator for multi-agent adap-
tive coordination. In Proceedings of the First International Conference on Web-Based Modeling and Simulation,
1998. To appear. Also available as UMASS CS TR-1997-60.

[29] Thomas Wagner, Alan Garvey, and Victor Lesser. Complex Goal Criteria and Its Application in Design-to-
Criteria Scheduling. In Proceedings of the Fourteenth National Conference on Artificial Intelligence, pages
294–301, July 1997. Also available as UMASS CS TR-1997-10.

36

[30] Thomas Wagner, Alan Garvey, and Victor Lesser. Criteria-Directed Heuristic Task Scheduling. International
Journal of Approximate Reasoning, Special Issue on Scheduling, 19(1-2):91–118, 1998. A version also available
as UMASS CS TR-97-59.

[31] Thomas Wagner and Victor Lesser. Toward quantified, organizationally centered, decision making and coordi-
nation. Whitepaper, 1998.

[32] Thomas Wagner and Victor Lesser. Toward Ubiquitous Satisficing Agent Control. In 1998 AAAI Symposium on
Satisficing Models, March, 1998.

[33] S. Zilberstein and S. J. Russell. Optimal composition of real-time systems. Artificial Intelligence, 82(1):181–214,
December 1996.

[34] Shlomo Zilberstein. Using anytime algorithms in intelligent systems. AI Magazine, 17(3):73–83, 1996.

[35] Shlomo Zilberstein and Stuart J. Russell. Constructing utility-driven real-time systems using anytime algorithms.
In Proceedings of the IEEE Workshop on Imprecise and Approximate Computation, pages 6–10, Phoenix, AZ,
December 1992.

[36] M. Zweben, B. Daun, E. Davis, and M. Deale. Scheduling and rescheduling with iterative repair. In M. Zweben
and M. Fox, editors, Intelligent Scheduling, chapter 8. Morgan Kaufmann, 1994.

37

