Two Search Techniques for
Imperfect Information Games
and Application to Hearts

Theodore J. Perkins

CMPSCI Technical Report 98-71

May 1998

NOTE: This paper is available by anonymous ftp from the site ftp.cs.umass.edu in the direc-
tory pub/techrept/techreport/1998

Two Search Techniques for Imperfect Information Games and
Application to Hearts

Ted Perkins

perkins@cs.umass.edu

Abstract

Two techniques for game-tree search in imperfect in-
formation games with an arbitrary number of play-
ers are described: II-Max.n and MC-Maxn. They
use probability computations and Monte Carlo-style
sampling to overcome imperfect information problems.
We then discuss implementations of both algorithms
for the card game Hearts. We describe and empiri-
cally evaluate methods for estimating probabilities rel-
evant to card games, and report on the performance of
the search procedures. We also compare the Hearts-
playing ability of the programs against each other and
against a rule based Hearts player.

Introduction

Game tree search has been a very successful paradigm
for computer playing of perfect-information games. To
name just two, Deep Blue (Hsu, Campbell, & Hoane
1995) and Logistello (Buro 1997) have been enor-
mously successful in chess and Othello respectively -
beating the best human players. Games with a stochas-
tic element, such as a die roll, can also be handled
successfully by algorithms such as Expectimax (Rus-
sell & Norvig 1995) as long as a distribution for the
random element is known. Alternatively, one could
develop an extremely good heuristic function for eval-
uating moves with little or no search, overcoming prob-
lems of randomness and large branching factor simul-
taneously. This method was used by Tesauro in creat-
ing his world-class Backgammon player TD-Gammon
(Tesauro 1995).

In some games, the players have only imperfect infor-
mation — they do not have complete knowledge of their
current situation. For instance, in most card games a
player will not know which cards are held by the other
players. Imperfect information is problematic for the
standard game tree search methods.

In the usual formulation of game tree search, at each
internal node we recursively evaluate each move the
player might make. In an imperfect information game,

we may not know which moves are available to the
other players, or moves may have different probabilities
of availability. Further, heuristic evaluations of the
leaves of the tree must produce their predictions in the
face of only partial information.

We describe two different algorithms, II-Max_n and
MC-Max_n, for search in imperfect information games.
The idea of MC-Max_n has been circulating unnamed
in the game-playing literature for the past decade.
Wheen (1989) and Levy (1989) suggested its use for
Bridge, and Ginsberg (1996a; 1996b) has an implemen-
tation. Although neither of II-Max_n and MC-Max_n
are designed for games with a stochastic element, they
can easily be generalized to do so in the same way that
Expectimax generalizes Minimax. We discuss imple-
mentations of these two algorithms for the card game
Hearts, and present empirical studies of the algorithms’
performance.

Search Algorithms

For generality and because of our target application,
we have designed the search methods to allow games
with an arbitrary number of players. The outcome
of such a game is given by a payoff vector, with each
element representing the final outcome of the game for
a different player. The payoff vector formulation also
means that we are not limited to zero- or constant-sum
games. Our only assumption is that each player seeks
to maximize his own element in the final payoff vector,
without regard to the payoffs of the other players.

II-Maxn

The Max.n algorithm (Luckhardt & Irani 1986) ex-
tends Minimax to the multiple-player case. Leaves are
evaluated to payoff vectors, and the vectors are propa-
gated up the tree using the assumption that each player
maximize his own payoff. Like Max.n, II-Max_n builds
a single game tree to evaluate the possible moves of the
root player. However, the generation of moves at inter-
nal nodes, and the recombination of the payoff vectors

for each move is different.

At an internal node of the game tree, we recursively
evaluate each move the player might make. Since we
do not know the true state of the game, II-Max_n gen-
erates a list of all moves available to the player in eny
game state consistent with the information we have.
Many of these moves may be mutually exclusive; in
fact, in our Hearts implementation it is not uncom-
mon to search more moves than the player has cards.
In order for us to correctly compute the expected pay-
offs at an internal node, every move the player might
possibly make must be searched.

After these moves are recursively evaluated, we must
combine their payoff vectors to form an evaluation
of the internal node. If the highest-valued move is
available, then we should expect its payoff vector. If
that move is unavailable, but the second highest-valued
move is available then its payoffs are what we should
expect, and so on.

Suppose that the player has N moves; let
Vi, Va,...,Vn be the payoff vectors for these moves,
sorted by decreasing value for the current player, and
let P; for i € 1...N be the probability that the it*
highest-valued move is available but no higher valued
moves are; then the value of the current node is:

V=WVsP+VosxP+...+Vy*Py

For the root player we presumably know exactly
which moves are available, so P, = 1 and P; = 0 for
i > 1, and the equation degenerates to taking the move
with maximum value.

II-Maxn requires that we search any move consis-
tent with our imperfect knowledge of the game state.
For some games this set of moves may be impractically
large. In fact, this is a difficulty in our application of II-
Max.n to Hearts; despite theoretical incorrectness, we
use forward-pruning heuristics to reduce the branching
factor to a manageable level. For II-Max n to be appli-
cable, one must also be able to compute or estimate the
P;s. II-Max_n is most appropriate when these proba-
bilities are not too difficult to compute, and when the
number of potential moves (which determines branch-
ing factor) is reasonable.

MC-Max_n

An alternative way to get at the value of a root-level
move is as its Max.n value, averaged over all game
states consistent with our imperfect knowledge. This
suggests a Monte Carlo approach to move evaluation.
For as many times as we care:

1. Generate a complete (i.e. perfect information) game
state consistent with our imperfect knowledge.

2. Perform a Max_n search to evaluate each available
move.

And when we have sampled and searched enough
times:

3. Choose the move that has the highest average payoff.

We want to sample enough times to get a reliable
estimate of the values of possible moves; this number
can depend on the game we are playing and our current
situation in the game. We may also be concerned about
meeting time constraints.

Because II-Max_n requires us to search every pos-
sible move no matter how unlikely, and probabilities
for each move must be computed, an II-Max_n tree
will be large and slow to compute. MC-Max_n builds
simpler, perfect information trees, but it may have to
do so many times to get good estimates of the values
of different moves. Depending on characteristics of the
game being played, either method might be better. We
do note that MC-Max_n offers extra flexibility for time-
sensitive applications because the number of samples
taken can be varied in addition to the search depth.

Bluto and Sweetpea

We tested both of these methods by applying them to
the card game Hearts. Hearts is a trick-based game,
played like no trumps Bridge. The cards are dealt to
the players, and the player holding the two of clubs
begins play by leading that card. Players must follow
suit if possible. The player that plays the highest card
in the lead suit wins the trick and leads the next trick.
The only restriction on subsequent leads is that Heart
cards and the Queen of Spades may not be lead until
one of them has been played (as a follow) in a previous
trick.

Unlike Bridge, scoring is based on cards taken during
tricks, not the number of tricks taken. Each Heart card
taken subtracts one point from the trick winner’s score,
and taking the Queen of Spades subtracts 13 points.
The exception is that if a player takes all of the Hearts
and the Queen in a single hand, then each of the other
players loses 26 points. This feat is called “Shooting
the moon.”! We also play with the Jack of Diamonds
rule — the player who takes this card has 10 points
added to his score. Each hand of Hearts is thus a multi-
player game with imperfect information, no random
elements after the initial deal, and is not constant-sum
due to the possibility of shooting the moon.

A game of hearts is a set of hands, played until
one of the players reaches some predetermined score.

! Alternatively, some people prefer to add 26 points to a
player who shoots the moon, and leave the other players’
scores unchanged.

We use —75 points, the default set by Paul Utgoff for
four-player games on his Internet Hearts ladder. (Note
that the total points distributed in each hand is -16 or
below, so scores tend downwards.) Bluto and Sweet-
pea do not attend to any information about the game
scores, they just try to maximize the points they get
out of each hand individually.

Hearts may be played with three to five players, but
we focus on four player games in this paper. Read-
ers familiar with Hearts will know that there is also a
passing phase to the game, after the initial deal but
before the playing of tricks begins. We do not dwell on
passing here, as it is unrelated to the search procedures
that are the topic of this paper.

Bluto’s Search

Bluto uses II-Max.n to play hearts. Each node in
the tree consists of what Bluto knows: the cards it
holds and what it has deduced about the other players’
hands, which cards have been taken by which players
in prior tricks, and possibly information about a trick
in progress. To organize the knowledge about the play-
ers’ hands, Bluto maintains what we call a YMN table.
For each player and for each card in the deck it stores a
“Yes”, “Maybe”, or “No,” meaning that the player def-
initely does, may, or definitely does not hold the card.
Branches of the game tree correspond to different cards
the players might play.

Bluto uses two different degrees of forward pruning
to limit the branching factor; this was found neces-
sary if search is to complete in reasonable time. When
a player is leading a new trick, all possible leads are
considered. When a player is following suit, the less-
pruned method is to search in-suit all cards the player
might (or does) have. An effective pruning heuristic for
in-suit follows is to consider up to four cards: the low-
est and highest cards that might be held in the lead
suit, and the cards closest above and below the cur-
rent card that is winning the trick. Naturally, if some
of these cards coincide they are not searched twice. If
the chance that the player is void in the lead suit ex-
ceeds a threshold, we consider up to five other follows:
the Queen of Spades and Jack of Diamonds, if there
is some chance they are held, and the highest card in
each non-lead suit.

Bluto has an unusual method for computing the
probabilities that a player holds a certain cards — prob-
abilities required for the P;s used in recombining the
payoff vectors of possible plays. Exact computation is
too difficult a combinatorial problem, so we use an iter-
ative approximation scheme; since the probabilities of
holding various cards are interdependent, we actually
compute a whole table of probabilities with an entry

for each player and card. The algorithm follows:

1. Initialize the probability table from the YMN table.
A “yes” gets probability 1, and “no” gets 0, and a
“maybe” gets (H, —Y,)/M,, where H, is the total
number of cards held by player p, Y}, the number of
cards we know he has, and M, the number of cards
he might have. In words, the count of unidentified
cards held by the player is spread evenly over all the
“maybe”s.

Improve our Approximation:

2. For each player p, let S, be the sum of the all the
card probabilities for p. This should sum to the num-
ber cards held by the player, H,,. If not, add to each
probability corresponding to a “maybe” the quantity
ax (Hy, - 5p).

3. For each card ¢, let S. be the sum of the probabilities
for that card across all players. This should sum to
1. If not, add to each “maybe” a* (1 —S,).

4. If we choose, further refine our approximation by
going to step 2. Otherwise, we are done.

Here, a is an update rate — we found that 0.5 pro-
duced the fastest convergence while maintaining sta-
bility. We may terminate the process either by noting
when the probabilities are not changing very much, or
by simply completing a specified number of iterations.
We found that after 10 iterations there is no signifi-
cant improvement in accuracy, but fewer iterations are
insufficient. In the experimental section we report on
this method’s accuracy and speed.

Sweetpea’s Search

Sweetpea uses MC-Max n search to evaluate possible
plays. The game tree node contents are the exact
hands of each player, outcomes of prior tricks, and in-
formation on the trick in progress, if any. Care must
be taken in generating the perfect information sam-
ples of the game state to which Max_n is applied. It
is easy to come up with a method that does not sam-
ple uniformly from the set of states consistent with our
knowledge. Sweetpea starts from the same YMN table
that Bluto uses, and performs the following algorithm:

1. If no “maybe”s remain, we have generated a perfect
information state and are done. Otherwise, select
a “maybe” from the table uniformly randomly. Let
this “maybe” be for player p and card c.

2. Set entry (p,c) to “yes” and draw any other con-
clusions that may be made. For instance, (g,c) for
players ¢ # p are all “no”. It may also be that
some player now has as many “yes”s as cards held,

so all “maybe”s for that player should be set to
“no”. On the other hand, a player may have as
many “maybe”s and “yes”s as cards held, thus all
“maybe”s should be set to “yes”. Goto step 1.

Although we do not prove mathematically that this
is an unbiased method of sampling the consistent
states, we empirically found it to be so. We were able
to compute exact card probabilities for certain YMN
tables where not too much was unknown — mainly in
tricks near the ends of hands®. We then used the
sampling method to estimate the card probabilities by
generating many (up to 100,000) consistent states and
counting how many times a card appeared in a par-
ticular player’s hand. These probabilities were seen
to converge to the exact probabilities, so we claim the
sampling method is correct.

Evaluation Functions

Both Bluto and Sweetpea have heuristic evaluation
functions that apply only between tricks. This re-
stricts the search procedure because we cannot termi-
nate at any ply we want; we can only end search at
a trick-ending ply. This decision simplifies the evalu-
ation function, however, in that no information about
an ongoing trick need be taken into account.

Sweetpea evaluates perfect information situations at
the leaves of its search tree. The details of our evalua-
tion function change as we improve it, but the first step
is always to compute a number of simple counting-style
features. We tabulate the numbers of high and low
cards held, and in particular the numbers of cards held
by each player above and below the Queen of Spades
and the Jack of Diamonds. We count void suits, and
the number of tricks in a row that each player can win
in each suit assuming the player has the lead. We also
have a “softer” version of this last feature; assuming
that a player gets to lead and that each opponent will
choose in-suit follows randomly, we compute the ex-
pected number of tricks that can be won in each suit.
This feature bears on how many tricks a player can
win, which affects his ability to shoot the moon. Using
these features, we then estimate the probability of a
successful shoot and the expected outcome of choosing
not to shoot. These estimates are conditioned on who
holds certain key cards, and based partly on program-
mer intuition and tuned by observing of Sweetpea’s
play.

Luckhardt and Irani discussed pruning for the
Max.n algorithm based on evaluating only some com-

2A simple procedure that tentatively assigns cards to
a certain player and recursively counts how many states
are consistent with this assignment is all that is needed to
compute exact probabilities.

ponents of the payoffs vectors at leaves (Luckhardt &
Irani 1986). Sweetpea’s heuristic evaluator is such that
single components of the payoff vector may be com-
puted, so pruning is applicable here. This would re-
quired significant bookkeeping and rearranging of the
search procedure, and has not yet been implemented.
Informal testing suggested that Sweetpea does spend a
significant amount of time evaluating its leaves, so we
might expect to gain a lot from such pruning.

Bluto was originally designed with its own evalua-
tion function, but in order for the comparisons in the
experiments section to be more meaningful we are cur-
rently running Bluto with Sweetpea’s evaluation func-
tion. At a leaf, Bluto creates a sample set of perfect
information states in the same way Sweetpea creates
its samples. It applies Sweetpea’s evaluator to each
and averages the results to form an expected payoff
vector.

Experimental Results

In this section we compare different methods for esti-
mating card probabilities, report on search tree char-
acteristics and evaluate Bluto’s and Sweetpea’s perfor-
mance.

Probability Estimation

The computation of card location probabilities is an
explicit part of Bluto, and implicit in Sweetpea’s sam-
pling and subsequent search. In this section we com-
pare the accuracy and speed of several methods for es-
timating these probabilities. The results reported are
for a standard test set of 455 game situations. These
were generated by playing 4 Sweetpeas against each
other for three games, a total of 35 hands. At the be-
ginning of each trick, the Sweetpea in the first position
recorded its world view — the cards it held, and all it
had deduced about the other players’ hands and seen in
previous tricks. These situations are intended to repre-
sent, realistic, naturally occurring situations for which
probabilities need to be calculated. The methods we
report on are:

1. Exact computation of probabilities, which is feasi-
ble only in the later tricks in a game, when little is
unknown.

2. Tterl0: Bluto’s Iterative algorithm, run for 10 iter-

ations. This number was chosen to minimize com-
putation time, while still achieving near to the algo-
rithm’s asymptotic accuracy.

3. Sampl0, Samp150: We sample the imperfect infor-

mation state 10 (resp. 150) times, and see how often
each card is held by each player. In order to meet

Figure 1: Error in Probability Estimates

...... —-Samp10 |-
-o-Samp150‘
...... —~lter10 e

o
>
@

°
a

y.°
w
»

o
w

o
N
«»

o
Y

Error in Probabitit

o
o I
- o

o
o
o

-]

V3 5 7 8 11 13 1 3 5 7 9 4y 123
Trick

timing constraints, Bluto uses 10 samples to evalu-
ate leaves and Sweetpea searches 150 samples, hence
the sample sizes we report on here.

Figure 1 displays the error in the probabilities es-
timated by these methods compared to the estimates
based on 100,000 samples, which we believe are quite
close to correct. On the left side of the graph we see
the mean absolute error in the probability table, aver-
aged over uncertain cards and all hands, but separated
by trick. The mean maximum absolute error, on the
right side, is the largest error in absolute value for any
player and card in the table, averaged across hands.

Samp10’s errors are quite large, but perhaps not un-
expectedly so. The probabilities are off by about .1 on
average. More alarming is the mean maximum error, a
whopping .3-.4 during most of the game. Samp150’s es-
timates are much better, but not as good as we would
like. Apparently Samp’s convergence to the correct
values is rather slow. The iterative method, surpris-
ingly, has the least error of all, uniformly beating the
other two methods.

Iter10is also significantly faster than the other meth-
ods. Figure 1 shows mean computation times, by trick,
for the four different methods. Iterl0 and Sampl0 are
equally speedy, with Samp150 a distant third (note the
split scale on the time axis). Iterl0 is more accurate
than Samp150 and as fast as Samp10, so we use it in
Bluto despite its asymptotic incorrectness. The inac-
curacy of the estimates based on sampling raises con-
cerns for both Sweetpea and Bluto. Are Bluto’s leaf
evaluations too unreliable because it is only sampling
and evaluating the state 10 times? Is Sweetpea testing
enough Max n trees to get good estimates? We return
to these questions later.

Search Characteristics

On the same sample of 455 game situations we tested
three search procedures: Bluto with the lesser and

Figure 2: Probability Computation Times

13607 L0y

Compulalion_ﬂmg {msec)
) ® 9o o g

N 2

o

2 3 4 5 [} 7 8 9 10 11 12 13

greater levels of forward pruning and 10 samples to
evaluation every leaf and Sweetpea at 150 samples.
We refer to these as Bluto-Ip (less pruning), Bluto-mp
(more pruning) and Sweetpea-150. We searched each
position as if we were leading the trick — searching to
the end of the trick for a total of four ply®. We re-
port the results as a function of trick number, giving
us some idea of total cards held and decreasing uncer-
tainty about the game state affect search.

Figure 3 illustrates the mean search time per trick.
We desired an average time of 10 seconds per move,
and Bluto-mp’s and Sweetpea-150s sample sizes were
set to meet this criterion. Bluto-lp takes considerably
longer at 10 samples per leaf, with time increasing su-
perlinearly as trick number decreases.

We graph the mean branching factors for the same
set of searches in Figure 4. Bluto-mp and Sweetpea-
150 have fairly similar branching factors, and show 3
flat profile in the early tricks tapering to zero at the end
of the game?. Bluto-Ip has a branching factor roughly
twice that of the others and it increases significantly
toward the beginning of the game, so Bluto-Ip’s long
search time is not surprising.

Players’ Performance

Figure 5 compares three different hearts-playing pro-
grams set against each other in various arrangements.
The letters s, b and f stand for the players Sweetpea,
Bluto-mp and £86 respectively. F86 is a rule-based
hearts-playing program written by Paul Utgoff in 1986;
it was the winner of his computer Hearts tournaments

3Four ply may not seem like much by contemporary
standards, but realize that Sweetpea, for instance, is doing
a four ply search 150 times. The total work is comparable
to a single 7-8 ply Max_n search

“All of the search procedures begin by counting the num-
ber of moves available to the searching player. If there is
only one, then no searching is done; hence the branching
factors go to zero in the final trick.

Figure 3: Mean Search Times

180 o . .. |-—Bluto-tp b
-o- Bluto-mp :
160 " |-e~Sweetpea-150
o140 A . . . L . BN [
8
S20
[
£
-4
S 80
3
» 60
40
20
0
1 2 3 4 S5 8 7] 9 10 11 12 13
Trick
Figure 4: Mean Branching Factors
9
8 -|—e—Bluto-lp
-o-Bluto-mp
7 * |-o-Sweetpea-150
gs -
(=]
o
2,
g ¢
&3
20 TS\
1
]

~
)
FS
L
@
-
®
©
°
~
°

then and until recently. All games had four players,
and ended when any player dropped below -75 points.
We report each player’s mean score and mean rank (1
for highest score in game, down to 4 for lowest score)
averaged over 100 games.

A 95% confidence interval for the game scores has
a radius of 5-6 points, and .2 for the ranks. So, for
instance, in the first row of either table we see that
Sweetpea significantly outplays all of the three f86s set
against it. In only one case, the first and last play-
ers in the fourth pattern, does an 86 achieve a better
score than a Sweetpea, and the difference is negligi-
ble. Nearly all of the possible pairwise Sweetpea/f86
comparisons show Sweetpea playing significantly bet-
ter. Sweetpea does best when it is in a game alone; as
the number of Sweetpeas increases, their scores become
depressed. We attribute this to Sweetpea’s conserva-
tive, defensive style of play. When it is alone, it can de-
fend itself, but when everybody is playing defensively
then no one does very well.

Bluto, using the same evaluation function but a dif-
ferent search procedure, plays worse than £86. In about
two thirds of the possible comparisons, Bluto does sig-
nificantly worse in terms of score. Looking at the mean
ranks puts Bluto in a slightly better light. Even after
100 games, the Bluto in the b.f,f,f pattern is not losing
statistically significantly more games than any of the
f86s. The Sweetpea/Bluto games’ outcomes are similar
to the Sweetpea/f86 games.

There are several possible explanations for Bluto’s
inferior play: (a) too much forward pruning, (b) in-
accurate probability computation, (c) too few samples
for the leaf evaluations, (d) Sweetpea’s evaluation func-
tion does not work well with Bluto’s search procedure.
We believe that we have not pruned important plays,
and we intend to test (b) by substituting an unbiased
monte carlo probability estimation into Bluto’s code.
Such a version could not be used in competition be-
cause it would be too slow, but would help to clarify
the source of Bluto’s weakness.

We did examine the effect of sample size on both
Sweetpea’s and Bluto’s performance, with the results
displayed in Figure 6. The lines represent the mean
game score on 100 games of Sweetpea against three f86s
and Bluto against the same. 95% confidence intervals
are plotted along with each data point.

Sweetpea’s performance increases nicely along with
the number of samples, seeming to level off as we reach
64 samples. The 150 samples used in the table of
matches above should be more than enough. Bluto
seems strangely insensitive to the number of samples
it makes at its leaves; it could be that Sweetpea’s eval-
uation function, which was tuned to get good perfor-

Figure 5: Play Comparison

players score
plp2p3p4 | pl p2 p3 p4
s fff -35.2 -52.3 -50.1 -54.8
s,s,f.f -45.3 -42.0 -50.7 -56.4
s,f,s,f -41.1 -50.2 -414 -53.9
8,8,8,f -52.7 -48.7 -40.6 -52.4
b,tff -53.35 -46.32 -51.12 -46.00
b,b,f,f -55.23 -48.41 -42.66 -51.46
b,f,b,f -52.38 -40.7 -54.7 -40.74
b,b,b,f -48.84 -434 -52.26 -43.02
s,b,b,b -32.6 -499 -52.3 -48.2
s,8,b,b -36.8 -36.4 -53.8 -56.9
s,b,s,b -39.2 -549 -36.4 -54.0
s,8,8,b -42.8 -43.7 -444 -52.4
players rank
plp2p3pd | pl p2 p3 p4
s f.ff 2.02 263 255 2.76
s,s,f.f 2.38 2.19 258 2.82
s,f,s,f 234 255 2.29 279
s,8,8,f 2.60 259 2.17 2.59
b,ff,f 2.54 2.38 2.56 244
b,b,f,f 2.71 236 2.24 2.63
b,f,b,f 269 230 273 2.25
b,b,b,f 2.68 2.36 2.68 2.27
s,b,b,b 1.98 265 2.72 2.62
s,s,b,b 2.09 228 269 292
s,b,s,b 2.24 287 2.11 273
s,8,8,b 238 2.32 243 2.79

Figure 6: The Importance of Sample Size

0 1 2 4 8 18 32 64 128

Number of Sweetpea's Max_n Samples

o
-

2 4 8 16 32 64

~
L]

Mozn Game Scoro
o
(0]

-
@

-75

-85

Number of Samples for Bluto's Leaf Evaluation

mance out of Sweetpea, is ill-suited to Bluto’s search
procedure.

In an informal attempt to get a broader-based eval-
uation of our programs, we tested Sweetpea against
a publicly available shareware program for the Mac-
intosh, Hearts Deluxe. The scores on three games
were: -29,-71,-71,-101; -29,-71,-100,-24; and -32,-70,-
95,-103 where the first score in each set is Sweetpea’s.
A moderately-skilled human player is generally able
to beat any of these computer players, especially after
some practice games to characterize their strategy and
find weaknesses. Computer Hearts players have a ways
to go before they achieve the dominance of Deep Blue
or Logistello.

Conclusion

We have described two methods for search in games
where the players have only imperfect information
about the state of the game, II-Max_n and MC-Max_n.
II-Max_n tries to build a game tree that accounts for
incomplete knowledge probabilistically, and is close in
conception to the Expectimax algorithm (Russell &
Norvig 1995). The assumption that it is the availabil-
ity of moves themselves that is uncertain requires a
different method for combining the values of children

in the search tree. Unfortunately, the required prob-
ability computations and branching factor make these
trees ponderous. MC-Max.n builds a set of simpler,
perfect information trees and averages the results; no
probability computations are involved, and branching
factor may be reduced as well.

Sweetpea, using MC-Max.n, played better Hearts
than the II-Max_n player Bluto and the rule-based
system f86. The lesser performance of Bluto is not
entirely explained, but it may be due in part to inac-
curate probability estimates in the tree. It may also
be that the use of Sweetpea’s evaluation function at
Bluto’s leaves, which was done mainly for comparison
purposes, is inappropriate. We continue to work on
improving the evaluation functions. We would like to
use reinforcement learning to tune functions for Bluto
and Sweetpea in a more principled way, and we want
to add features to encourage more aggressive play, es-
pecially shooting the moon.

Card games offer and excellent venue for exploring
issues in imperfect information search. Many control
problems exhibit imperfect information, either because
important variables are unobservable or are too costly
to observe frequently (Bertsekas 1995). Game theorists
and economists also study many competitive situations
in which imperfect information plays a role (Shubik
1983). Search procedures for these types of problems
have many potential applications.

References

Bertsekas, D. P. 1995. Dynamic Programming and
Optimal Control. Belmont, Massachusetts: Athena
Scientific.

Buro, M. 1997. The othello match of the year:
Takeshi murakami vs. logistello. [CCA Journal
20(3):189-193.

Ginsberg, M. 1996a. Analysis of the law
of total tricks. The Bridge World. Also
available via ftp at ftp.cirl.uoregon.edu as
/pub/users/ginsberg/papers/total.ps.gz.

Ginsberg, M. 1996b. How computers will
play bridge. The Bridge World. Also
available via ftp at ftp.cirl.uoregon.edu as
/pub/users/ginsberg/papers/bridge.ps.gz.

Hsu, F.-H.; Campbell, M. S.; and Hoane, A. J. 1995.
Deep Blue system overview. In ACM., ed., Confer-
ence proceedings of the 1995 International Conference
on Supercomputing, Barcelona, Spain, July 3-7, 1995,
Conference Proceedings of the International Confer-
ence on Supercomputing 1995; 9th, 240-244. New
York, NY 10036, USA: ACM Press.

Levy, D. 1989. The million pound bridge program. In
Levy, D., and Beal, D., eds., Heuristic Programming
in Artifical Intelligence: the first computer olympiad.
Ellis Horwood. 95-103.

Luckhardt, C. A., and Irani, K. B. 1986. An algorith-
mic solution of n-person games. In Proceedings of the
Fifth National Conference on Artificial Intelligence,
158-162. Morgan Kaufmann.

Russell, S., and Norvig, P. 1995. Artificial Intel-
ligence: A Modern Approach. Upper Saddle River,
New Jersey: Prentice Hall.

Shubik, M. 1983. Game Theory in the Social Sciences:

Concepts and Solutions. Cambridge, Massachusetts:
MIT Press.

Tesauro, G. 1995. Temporal difference learning and
td-gammon. Communications of the ACM 38(3):58 —
G8.

Wheen, R. 1989. Solving double dummy bridge prob-
lems by exhaustive search. In Levy, D., and Beal, D.,
eds., Heuristic Programming in Artifical Intelligence:
the first computer olympiad. Ellis Horwood. 88-94.

