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Abstract

We present a formal model for data-parallel cycle-stealing in networks of workstations
that was developed in

S.N. Bhatt, F.R.K. Chung, F.T. Leighton, and A.L. Rosenberg. On optimal
strategies for cycle-stealing in networks of workstations. IEEE Trans. Comp.,
46:545-557, 1997

and refined in

A.L. Rosenberg. Guidelines for data-parallel cycle-stealing in networks of work-
stations, I: on maximizing expected output. Tech. Rpt. 98-15, Univ. Mas-
sachusetts. See also 12th IEEE Intl. Parallel Proc. Symp., 519-523, 1998.

A.L. Rosenberg. Guidelines for data-parallel cycle-stealing in networks of work-
stations, II: on maximizing guaranteed output. In preparation, Univ. Mas-
sachusetts, 1998.

We review the major results about scheduling cycle-stealing opportunities that have been
obtained in those sources; and we enumerate and discuss several significant problems that
remain unresolved.

1 Introduction

The cycle-stealing problem. Cycle-stealing is an emerging modality of parallel computation
that occurs within a network of workstations (NOW). In the version of cycle-stealing that we

“The research reported herein was supported in part by NSF Grant #CCR-97-10367. This paper encapsulates
an invited address at the Intl. Conf. on FUN with Algorithms, Isle of Elba, June 18-20, 1998.



study, the owner of workstation A contracts to take control of workstation B’s processor when
B’s owner is away, with the promise of relinquishing control of B immediately upon the owner’s
return—thereby losing all work in progress.! Such a contract presents a challenging scheduling
dilemma, for A’s owner. On the one hand, the typically large overhead required to set up
an inter-workstation communication in a NOW suggests that A’s owner should communicate
with B very infrequently, sending large quantities of work in each transmission—in order to
minimize the aggregate nonproductive communication setup time. On the other hand, the
harsh interrupt provision of the contract suggests that A’s owner should communicate with B
very frequently, sending small quantities of work in each transmission—in order to keep the
amount of vulnerable remote work small at all times. Avenues for resolving this dilemma form
the focus of our study.

Related work. The conceptual and economic rationale for using NOWSs as parallel computers
is discussed at length in [10]. Several anecdotal descriptions of such use appear in the appli-
cations literature; cf. [16]. Systems too numerous to list have been developed for facilitating
the mechanics of cycle-stealing in NOWs, e.g., providing a mechanism that allows A to assume
control of B’s processor; cf. [8, 11]. The scheduling problem for cycle-stealing opportunities
has thus far received relatively little attention. In [1], one orchestrates a cycle-stealing oppor-
tunity by “auctioning off” large identical chunks of a compute-intensive task within a NOW,
to determine the sub-NOW that promises the best parallel speedup (computed using the au-
thors’ model); one then distributes appropriate-size chunks of the task within the
sub-NOW. In [2], cycle-stealing is viewed as one application, among many, of a theory of how
to make random decisions better than by random choices; with high probability, the proposed
randomized scheduling algorithm achieves work-output that is within a logarithmic factor of
optimal. The companion papers [4, 5] present and analyze a system that schedules dags (di-
rected acyclic graphs) on a NOW in a way that optimizes system time and space requirements.
One finds in [14, 15] two opposing systems-oriented philosophies for scheduling cycle-stealing
(“pushing” and “pulling”), but neither formal models nor rigorous analyses. Finally, there are
our three studies of cycle-stealing, which form the subject matter of this paper. In [3], we de-
veloped a two-faceted formal model of data-parallel cycle-stealing (wherein the computational
load consists of an enormous number of small independent tasks); one submodel focuses on the
expected work-output of a cycle-stealing opportunity, while the other focuses on the guaranteed
work-output. One finds in [3] exactly optimal strategies for a variety of specific scenarios within
both submodels. In [12, 13], we refine the model of [3], and we derive guidelines for near-optimal
data-parallel cycle-stealing for a broad range of scenarios within the two submodels of [3]: [12]
focuses on the expected-output submodel and [13] on the guaranteed-output submodel.

winning”

The current paper reviews the models and main results of [3, 12, 13] (Sections 2 and 3)
and then presents and discusses a number of significant unresolved problems that merit further
study (Section 4).

!Such a draconian contract is inevitable, for instance, when workstation B is a laptop that can be unplugged
from the network; it occurs also, we are told, in cycle-stealing contracts in force at many institutions.



2 A Formal Model for Data-Parallel Cycle-Stealing

2.1 General Features of the Model

The computing environment. We assume that the workstations in the NOWSs of interest
are identical in structure and power. Cleaving to the “architecture-independent” scheduling
paradigm of [9], we characterize each NOW by a single parameter, the fixed constant ¢ which
is the overhead for setting up each pair of communications in which workstation A sends work
to workstation B and B returns the results of that work to A. Note that ¢ is independent of
the marginal per-task cost of communications between A and B, which we incorporate into the
cost of computing the tasks. We assume that tasks are indivisible; they may differ in size, but
we know their sizes perfectly.

Cycle-stealing opportunities and schedules. We view each cycle-stealing opportunity as
a sequence of episodes during which workstation A has access to workstation B, punctuated
by interrupts caused by the return of B’s owner. In order to decrease our vulnerability to
the metaphorical malicious adversary’s ability to kill work in progress on B, we partition each
episode into periods, each of which begins with A sending work to B and ends with B returning
the results of that work. Since our discretionary power thus resides solely in deciding how much
work to send in each period, we view an episode-schedule simply as a sequence of period-lengths
S =11,ta,.... As we shall see, we usually employ a different episode-schedule for each episode
in a cycle-stealing opportunity.

Work-output. Reflecting the inescapability of the communication setup time ¢, a length-¢
period in an episode accomplishes? ¢t © ¢ units of work if the period is not interrupted and 0
units of work if the period is interrupted. Thus, the entire episode scheduled by & = ¢, %, ...

accomplishes
k—1

W) = Yoo
i=1
units of work when it is interrupted during period k. The work garnered in an entire cycle-
stealing opportunity is the sum of the work-outputs of the opportunity’s constituent episodes.

Approaching our submodels. In order to have any chance of achieving productive work
during a cycle-stealing opportunity, we must have access to some mechanism that prevents a
malicious adversary from interrupting the first period of every episode, thereby killing all work
that we start. Within our model, we consider two such mechanisms which, while idealized, are
not completely unrealistic in any actual environment where we may have some knowledge of
B’s owner’s work habits (say, via traces). These mechanisms, which define our two submodels,
are the subjects of the next two subsections.

2«x o y” denotes positive subtraction: * ©y = x —y if > y and 0 otherwise.



2.2 The Known-Risk (KR) Submodel

The KR submodel, which focuses on scheduling a single episode of cycle-stealing, assumes
that we know the probability distribution of interrupts by B’s owner—inferred possibly from
statistics concerning the lengths of workstation B’s idle periods. This knowledge is encapsulated
in the life function of the episode, i.e., the function

P(t) & Pr(being “alive” at time t).

Our challenge within the KR submodel is to maximize the exzpected work production from the
episode characterized by P; for any episode-schedule S:

Exp-Work(S) = Y (t; © o)P(T}) (1)
i>1

where, for each 7, T; ottt ti.

Note: The simple form of Exp-Work(S) makes it easy to cope with life functions that are
known approzimately—say via gathered statistics.

2.3 The Guaranteed-Output (GO) Submodel

The GO submodel, which focuses on scheduling a multi-episode cycle-stealing opportunity,
assumes that we have modified the cycle-stealing contract so that:

e workstation A gets a guaranteed amount of usable time on B, say a usable lifespan of U
time units;

e the adversary gets only a fixed allocation of interrupts, say p interrupts, during the lifes-
pan.

Our challenge within the GO submodel is to maximize the guaranteed work-output from the
entire cycle-stealing opportunity, no matter how many interrupts actually occur, or where they
occur.

2.4 An Important Auxiliary Result

The following technical result is proved for the KR submodel in [3], with a slight strengthening
in [12]; it is proved for the GO submodel in [13]. The result has three significant consequences.
First, it materially narrows our search for optimal schedules. Second, it allows us to use ordinary
subtraction, rather than positive subtraction, when discussing the potential work-output from
each of an episode’s periods, save the last. Finally, within the GO submodel, it leads directly to
two significant observations about the adversary’s strategy during the game. The result shows
that we lose no generality by restricting attention to episode-schedules that are productive, in
the sense of having all period-lengths, save perhaps the last, exceed c. Stated formally,



The Productivity Theorem [3, 12, 13] Any episode-schedule S can be replaced by an episode-
schedule 8" whose work-output is at least as great, such that each period of S', save perhaps
the last, has length > c.

In fact, in studying the GO submodel in [13], we have focused on episode-schedules that are
fully productive, in the sense that all period-lengths—including the last—exceed c¢. We have not
yet been able to verify that this focus loses no generality, but it seems to make sense intuitively.

3 Progress To Date

For the KR submodel, the main results of [12] specify each period-length ¢ of schedule & =
t1,t9,. ..ty from all lower-index period-lengths. For the GO submodel, the main results of [13]
specify each period-length ¢; from all higher-index period-lengths. In both cases, however, our
results specify the base period-length—t¢; for the KR submodel and ¢, for the GO submodel—
only to within a factor of 2 (and possibly with side conditions).

3.1 Progress within the KR Submodel

The results reported in this subsection come from [12] unless otherwise attributed.

3.1.1 Guidelines for Scheduling within the KR Submodel

Let schedule § = 11,2, ... be optimal for the differentiable life function P.

A. Characterizing the optimal sequence of t;’s

For each period-index k > 1:3

P(Ty) = = (tj — oP(T)).

i>k
In computationally more useful form: for each period-index k > 1:

P(Ty) = P(Tk1)+ (k1 — )P (Tp 1)

Note that the preceding specification can be invoked in an on-line fashion, determining ¢; 1
only after the ith period. In such a setting, one can use conditional, rather than a priori,
probabilities in defining an episode’s life function.

B. Bounds on the optimal ¢

3As usual, “f’” denotes the first derivative of the differentiable function f.



For convex* life functions P:

2 P(t) ¢ 2 cP(t)
¢ ¢ < 2,/ = :
Va ~Pa) T S S AT ) e

For concave life functions P:

2 Pt1) ¢ 2 cP(t)
° hd < o= - L
Vi~ 7w 2 S =T TP e

3.1.2 Applications of the KR Guidelines

In this section, we compare the period-specifications obtained using the broadly applicable
guidelines of [12] with the ad hoc optimal specifications derived in [3] for the KR submodel (the
“BCLR values”). Throughout, we denote the sought schedule by S = ty,ts,....%

A. The Geometrically Decreasing Lifespan (GDL) Scenario

In the GDL scenario, each episode has a “half-life.” The scenario’s life function is P,(t) o

aPu(t+1)=at

The optimal GDL schedule

The sequence of ¢;’s

Our predicted values at+t,_1lna = 1+clna

The optimal BCLR values | a=% +¢;lna =1+ clna

The value of t;

. c? c c 1
Our predicted range — 4 —+=- <t < c+—
4 Ina 2 Ina

—t1 1
The optimal BCLR value | t; + g = c+—
Ina Ina

*A function f is convex (resp., concave) if its derivative is everywhere nondecreasing (resp., everywhere
nonincreasing): for all positive real £ and > £, we have f'(¢) < f'(n) (resp., f'(¢) > f'(n)).
*We denote by “Inz” (resp., “logz”) the base-e (resp., the base-2) logarithm.



Ad hoc hint. The BCLR values derive from the fact that the conditional risk of interruption
is identical after every period in the GDL scenario.

B. The Uniform Risk (UR) Scenario

In the UR scenario, the risk of interruption is uniform throughout an L-unit episode-lifespan.
The scenario’s life function is Py, (t) < 1 —¢/L.

The optimal UR schedule

The sequence of ¢;’s

Our predicted values ti=ti_1—c

The optimal BCLR values: | t; =t;_1 — ¢

The value of t;

Our predicted range Vel < t1 < 2¢veL+1

The optimal BCLR value | #; = v2cL + lo.t.

Ad hoc hint. The BCLR values derive from the fact that the aggregate communication
overhead forms an arithmetic sum.

C. The Geometrically Increasing Risk (GIR) Scenario

In the GIR scenario, the risk of interruption doubles at every step of the L-unit episode-lifespan.
The scenario’s life function is P9 (t) &2l —2ty/(2b —1).



The optimal GIR schedule

The sequence of ¢;’s

Our predicted values tkr1 = log((ty —c)In2+1)

The optimal BCLR values | tx1; = log(ty — ¢+ 2)

The value of t;

L
Our predicted value tp, = —5— +Lo.t.
log” L

The optimal BCLR value | Given implicitly

Ad hoc hint. The BCLR values emerge from explicitly comparing the optimal episode-schedule
S with its kth-period perturbations:

ef
S(ik) = ti,to, oy tp—1, bk £ latk+1 + latk+23 N NP

Our guideline-generated values implicitly use the same device.

3.2 Progress within the GO Submodel

The results reported in this subsection come from [13].

3.2.1 Guidelines for Scheduling within the GO Submodel

Our quest for good schedules within the GO submodel employs the following strategy. For
each combination of lifespan U and number p of potential interrupts, we craft the doubly
parameterized episode-schedule®

where m = m®) [U]. At the beginning of each lifespan-U p-interrupt opportunity, workstation
A invokes episode-schedule S®) [U]. If the opportunity is interrupted at time 7', then upon
regaining control of B’s processor, A invokes episode-schedule & (p_l)[U — T]. A proceeds in
this way until the entire usable lifespan is exhausted.

®To enhance legibility, we omit the parameters p and/or U when they are clear from context.



Throughout, let W®[U] denote the maximum achievable guaranteed work-output from a
lifespan-U p-interrupt opportunity.

A. The Boundary Situations

Short lifespans: If U < (p+ 1)c, then WP[U] = 0.

The “end game”: When p =0, the 1-period schedule SO [U] = U achieves WOU] = U—c
units of work, which is optimal.

B. The Optimal Period-Lengths
The optimal episode-schedule SP)[U] = tgp) Uy, tép) oi,..., P (U] satisfies the following.
Case 1. p=0: mO[U] =1, and t\"[U] = U.
Case 2. p > 0: Let £ be the smallest period-index for which
0T = P A ) > e

Then the following table (partially) specifies the optimal period-lengths of SP)[U].7

Range of k ‘ Value/Range of t,(cp )

1<k<t-2|tP = c4 WD 1P - W=D — 77 ]

k=0—1 ) = e WEDP)

3.2.2 Applications of the GO Guidelines

We illustrate in the following table the approximate optimal values of the scheduling parameters
for the cases p = 1 and p = 2. We must satisfy ourselves with approximate values because of
the computationally complicated expressions for the actual values—which often contain nested
radicals and, even worse, are often not even algebraic. This issue is discussed at length in [13].

TAs usual, “z € (¢, 2¢]” (resp., “z € (¢, 2¢)”) means “c < x < 2¢” (resp., “c < < 2¢”).



Parameter Approximate Optimal Value

p=1 | p=2
m®) V2U/c vV2U/c
v € (1.54, 1.62)
e c/2 N/A
a+p N/A € (1.912, 2]
t,gp) V2cU — ke tg),Q + 6, (m® — k —2)c
k<m-—3 o € (0.38, 0.42)
tP | V2eU = (m—2)c (5/2+a+5—\/4+2(a+ﬁ)> c
£® 3¢/2 c+B € (c, 2
o 3¢/2 ctac (e 2d
Q) U—V2cU —¢/2 U—(1+e)V2cU —c¢/2

e € (0.62, 0.65)

4 Remaining Challenges

4.1 Challenges within the Current Model
4.1.1 For Both Submodels

Seeking definitive schedule specifications. In our view, the most significant shortcom-
ing in our progress thus far on both of our submodels is that our guidelines are not totally
prescriptive—due to the factor-of-2 uncertainty in the “base” period-lengths (#; in the KR
model and the highest-indexed period-lengths in the GO model). It is conceivable that some
uncertainty in specifying the ¢; is inevitable, for we do not yet know if optimal schedules are
unique within either submodel—an interesting question in its own right. We do have two ob-
servations that are relevant to the uniqueness question. First, every specific scenario that we
have looked at thus far admits a unique optimal schedule—if it admits any optimal schedule
at all. Second, any nonuniqueness that occurs must reside in the factor-of-2 uncertainty just
mentioned.

Proceeding with less exact knowledge. In their current forms, both of our submodels
demand a lot of exact knowledge—exact task times and durations of lifespans in both submodels,
the exact form of the life function in the KR submodel, the exact number of potential interrupts
in the GO submodel. As noted earlier, the simple form of the expected-work summation (1)
for the KR submodel should allow us to estimate the impact of using a life function that only
approximates the true probability of “being alive”, say one obtained by fitting a smooth curve
to trace data. Similarly relaxing any of the other demands for exact knowledge seems to be a
much stiffer challenge—but a worthwhile one since the range of potential applications of our
model to real computational situations would be significantly enhanced if such relaxation were

10



possible. One possible avenue for relaxation that was suggested by Kurt Mehlhorn would be to
replace some or all of our assumed exact knowledge by the assumption that we know (bounds
on) the expected lengths of episodes.

4.1.2 For the GO submodel

Understanding GO schedules. The earlier mentioned computational complexity of the
submodel has prevented us to this point from explicitly determining an/the optimal schedule
for a GO scenario with p > 2 possible interrupts—even though such determination is clearly
possible in principle. A major reason for wanting to proceed to larger values of p is to be able
to verify or refute the following conjecture.

Conjecture. There is a fized constant & such that, for all p and U, WP[U] > U —£vV/2cU —c.

We are currently pursuing this conjecture in [13].

Fully productive vs. productive schedules. Although of limited likely import, the following
vexing problem merits some attention. Can every episode-schedule be replaced by a fully
productive one without compromising guaranteed work-output? An affirmative answer seems
likely, since having a nonproductive last period (the only one that need not be productive, as we
saw in the Productivity Theorem in Section 2.4) seems only to help the adversary by nullifying
part of our usable lifespan. But, a rigorous answer has thus far eluded us.

4.1.3 For the KR Submodel

Understanding the greedy heuristic. There is a simple on-line scheduling heuristic for
this submodel, which would seem intuitively to yield good work-output, at least for some life
functions. This is the “greedy” heuristic which operates as follows.
1. Choose the initial period-length #; as the value of ¢ that maximizes the function Py (%) o
(t—c)P(t). (P is just the first term of the expected-work summation (1) for a productive
episode-schedule.)

2. Having thus chosen t1, choose the second period-length t9 as the value of ¢ that maximizes
def

the function Pa(t) = (t — c)P(t + t1).

3. Having thus chosen ¢; and {3, choose the third period-length ¢3 as the value of ¢ that

def

maximizes the function P3(t) = (t — ¢)P(t + t1 + t2).

4. And so on...

We prove in [12] that this strategy never generates the optimal sequence of period-lengths,
but we have not shown that it does not yield a computationally simple good approximation to

11



optimal work-output, at least for some large class of life functions. This is worth looking into,
for possible practical scheduling.

Life functions that (do not) admit optimal schedules. Of somewhat less moment than
the other questions in this section, but intriguing nonetheless, is the fact that, within the KR
submodel, some life functions—P(t) = 1/(t + 1) is one example—do not admit an optimal
schedule [12]. We have yet to understand: (a) why this is so (except in a purely mathematical
sense); (b) how to characterize those life functions that do admit optimal schedules; (c) how to
cope with a cycle-stealing opportunity whose life function is intransigent in this way.

4.2 Significant Alternative Submodels

There are (at least) two major directions in which our model should be enhanced.

Less draconian contracts. Perhaps the biggest criticism we have heard concerning our model
is its insistence that interrupts kill work in progress. Despite our rejoinders about laptops
being unplugged and about the several instantiations of our type of harsh contract actually in
force, many people have indicated that they would prefer a modification to our model wherein
interrupted jobs get “niced”—i.e., get lower priority—rather than being killed. We believe that
both types of contracts merit study, so we in fact hope that a “niced” variant of our model gets
some of the attention it deserves. We remark that such a “niced” variant of our model would
assume some of the characteristics of scheduling within heterogeneous clusters of computers [6],
just as our present variant enjoys some of the characteristics of scheduling in anticipation of
machine failures [7].

More complicated workloads. It would be desirable to extend the scheduling approach
that gives rise to our results in Section 3 to handle tasks that are not mutually independent.
A natural first step in this direction would be to try to schedule computations that have
the structure of dags. Such scheduling is, of course, a well-studied problem in other parallel
computing environments [6, 9] but has only begun to be studied within the context of computing
in clusters [4, 5].
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