
Oldest-First Garbage Collection
Computer Science Technical Report 98-81

Darko Stefanović J. Eliot B. Moss Kathryn S. McKinley
Department of Computer Science

University of Massachusetts

Revised, April 1998

Note. Some of the information in this document is
superseded by later results. In particular, we now
view the oldest-first collection described in this re-
port as a special case of renewal-age oldest-first
collection. We also believe that excess promotion of
objects can be a significant factor for performance
in practice, but it is not modelled in this study. This
circumstance diminishes the utility of mathematical
analyses and simulations based solely on object life-
times. April 1998.

Abstract. An oldest-first generational garbage col-
lector leaves intact the most recently allocated object
space, and instead collects the remaining, older ob-
jects. Because these older objects have had more
time to die, an oldest-first copying collector will
generally do less copying than a traditional gen-
erational collector (which operates youngest-first),
a non-generational collector, and even Clinger and
Hansen’s non-predictive collector (which does wait a
little while for objects to die). To explore the perfor-
mance of oldest-first collection, we present a math-
ematical analysis, simulation results for a variety of
mature object lifetime distributions, and simulation
results for mature object lifetimes drawn from real
programs and for real mature object traces. These
results demonstrate that oldest-first collection does
perform significantly better than youngest-first or
non-generational collection for mature objects. Al-
though some previous work pointed in this direction,
it provided very little evidence of our conclusion.
We also find that oldest-first collection works well
for lifetime distributions that satisfy the generational
hypothesis, which suggests we should also consider
oldest-first collection in the young object space.

1 Introduction

Garbage collection, automatic dynamic memory manage-
ment, frees programmers from explicitly managing data
allocation and reclamation. Its software engineering ben-
efits are well known, but its influence on performance is
a subject of debate. To date, the best-performing garbage
collectors in wide use are generational copying collectors.
According to common wisdom, these collectors rely on
the fact that the youngest objects die quickly, and concen-
trate their collection efforts on them. For longer-lived ob-
jects, there is little evidence that the younger ones die more
quickly than the older ones. Nevertheless, we show that,
if collection cost is determined by object lifetimes, then a

non-standard generational “oldest-first” collector can effi-
ciently collect these longer-lived, mature objects, and in
general, objects that do not die quickly.
Figure 1 illustrates a collector that divides objects into

young and old, using a traditional generational collector
for the young space, and a mature space collector. The
collector promotes objects that survive the oldest genera-
tion of young space into the mature space. In this paper,
we consider three alternative organizations for the mature
space collector: (1) non-generational, (2) youngest-first,
and (3) oldest-first. The non-generational collector simply
collects the entire space every time it fills up. It serves as
a base line for comparison. The youngest-first collector is
a traditional two-generation copying collector. It collects
the young objects every time the heap fills up. The oldest-
first collector instead collects the old objects every time
the heap fills up.
To explore these alternatives, we study a variety of ob-

ject allocation traces which exhibit different lifetime dis-
tributions. We analyze the three collectors mathematically
and through simulation using widely different object life-
time distributions, and show that the oldest-first collector
is superior to the others. We take the lifetime traces for
mature objects from a number of analytical distributions
and distributions built from actual programs, and we sim-
ulate the collectors on actual mature object traces. We are
not aware of any other work that reports accurate object
lifetime information for mature objects.
The remainder of the paper is organized as follows.

We first discuss related work that prompted our effort.
Section 3 then defines the object lifetime terminology.
Section 4 provides a simply motivating example for why
oldest-first should perform well. We then present a set of
analytical object lifetime distributions we use to study the
three collectors in Section 5. The remaining sections de-
scribe collection space and time costs, and provide mathe-
matical and simulation analyses of these costs for the three
collectors, including their behavior on actual mature object
traces.

2 Related work

The primary related work is a recent study by Clinger
and Hansen [Clinger and Hansen, 1997]. They consid-
ered the behavior of heaps under the exponential distri-
bution (radioactive decay model), and proposed a non-
predictive collector. Rather than collecting the youngest
data like a traditional generational collector, the non-
predictive collector processes the youngest portion of the

nursery and young space collector mature space collector
new objects mature objects

Figure 1: Structure of collection.

older generation, so it differs from our oldest-first collec-
tor, which processes the oldest portion. Because oldest-
first copies the oldest portion it will do less copying than
non-generational, youngest-first, or Clinger and Hansen’s
non-predictive collector, for any object survival function.
Clinger and Hansen presented their results as being con-
fined to the exponential distribution.

Because the analysis is simpler, Clinger and Hansen
only explored values of g 0 5, where g is the fraction
of the heap not collected at the next collection. We ex-
tend the analysis to the full range 0 g 1 and find that
values of g close to 1 perform well. Other ways in which
we go beyond Clinger and Hansen’s work are: we ana-
lyze youngest-first collection; we consider other analytical
distributions; we simulate collector behavior with mature
object distributions determined from actual traces; and we
simulate collector behavior on actual mature object traces.

There have been a number of papers about ob-
ject lifetimes and the generational hypotheses;
Clinger and Hansen offer a good overview of these
[Clinger and Hansen, 1997, Section 9 (pp. 106–107)]. We
could not find any recent studies of mature object lifetime
distributions that go beyond anecdotal reports, with the
signal exception of Hayes’ data [Hayes, 1993].

One of us has worked on collection techniques di-
rected at mature objects, the Mature Object Space
(MOS) collector, also called the Train Algorithm
[Hudson and Moss, 1992]. The objective of that work,
though, is not so much the minimization of total garbage
collection cost as avoidance of disruptive pauses. Selig-
mann and Grarup [Seligmann and Grarup, 1995] imple-
mented MOS and found it to work quite well. It both
keeps pauses short and keeps heap usage very close to the
amount of live data. What makesMOS relevant here is that
if we ignore the fact that it will tend to reorganize objects
according to their reachability, it is an oldest-first collector
for mature objects. Thus the present work provides addi-
tional support for the MOS approach.

3 Background and definitions

There is no consensus on terminology for garbage collec-
tion analysis, so we define the terms as we use them. The
time between two events as seen by a collector is expressed
as the amount of data allocated in between the events and
managed by that collector. For a mature space collector,
the time reflects the amount of data allocated into the ma-
ture space, i.e., promoted out of the young space. The
lifetime of an object is the time elapsed between the ob-
ject’s allocation and when the object becomes unreach-
able. Given a sequence of new or mature objects, we char-
acterize some statistical properties of the sequence using
survival-related functions.
Following standard practice [Cox and Oakes, 1984,

Elandt-Johnson and Johnson, 1980], we describe the dis-
tribution of lifetimes using the survivor function, the den-
sity function, and the mortality (or hazard) function. If we
view the object lifetime as a random variable T, then the
survivor function is sT t ! T t , and it expresses
the fraction of original allocation that is still live after an
interval t. It is a monotone non-increasing function. The
density function is fT t sT t , and it expresses the
distribution of object lifetimes. The mortality function is
mT t fT t

sT t
d
dt logsT t , and it expresses the age-

specific death rate. (Subscripts T are dropped in the fol-
lowing.)

4 Why oldest-first is better: a simple
analysis

Consider an arbitrary survivor function s t , as illustrated
in Figure 2. The only certain property of s t is that it is a
monotone non-increasing function. Suppose that space V
is available for allocating new objects, and that following
a period of allocation into this space we collect the live ob-
jects, copying them elsewhere. The volume of objects col-
lected is V

0 s t dt, or the area under the curve s t . Col-
lections occur at regular intervals of lengthV , so the copy-
ing cost of collection is proportional to

V
0 s t dt

V . If instead
we look at only one half of the allocated space, namely

3

0 t
V/2 V0

1

s(t)

Figure 2: Fundamentals of collection: survivor function.

that allocated earlier, i.e, with greater current age, then
the volume collected is V

V 2 s t dt, or the area hatched
in the figure. We can implement this strategy by collect-
ing twice as frequently, and each time collecting not the
area V 2 just allocated, but the one allocated in the previ-
ous cycle. The copying cost of collection is then propor-

tional to
2 V

V 2 s t dt
V . Now, because s t is non-increasing, it

will always be the case that V
V 2 s t dt V 2

0 s t dt, and
2 V

V 2 s t dt V 2
0 s t dt V

V 2 s t dt V
0 s t dt. This

difference is indicated by the shaded region on the top of
the left half of the figure. Collecting twice as frequently a
region half as big, but with postponement, makes the copy-
ing cost lower (or in the worst case does not change it),
regardless of object lifetimes.
The foregoing reasoning can be generalized to configu-

rations in which a portion smaller than one-half of the vol-
ume is considered each time, and postponement is by more
than one collection cycle. These configurations promise
even lower copying costs, and we use the term oldest-first
collection for all of them. Hence, we can summarize by
saying that oldest-first collection copies less and is thus
better than non-generational collection. By similar argu-
ments it is also better than traditional two-generational col-
lection, which repeatedly examines the most recently allo-
cated region, and can thus be termed youngest-first. We
now examine how much better it is, and refine the analysis
to include also the cost of invoking the collector.

5 Object lifetimes

Generational collection has traditionally been justified and
explained using certain hypotheses about the distribution

of object lifetimes in real systems. The weak generational
hypothesis states that young objects die fast, i.e., that mor-
tality m t is high for small t. The strong generational
hypothesis states furthermore that even among older ob-
jects, the relatively younger ones die faster, i.e., that m t
is a monotone decreasing function. In the context of these
hypotheses, the exponential distribution,1 for which the
mortality is constant, is the boundary case between dis-
tributions favorable to generational collection, with m t
decreasing, and those unfavorable to it, with m t increas-
ing [Baker, 1993].
We show that these assumptions are not intrinsically

necessary for the efficient operation of a generational col-
lector, but that the form of the distribution does affect the
best organization of the collector.
We were interested in analyzing distributions reflective

of actual mature object lifetime distributions, but could
find no previous studies of mature object lifetimes. There-
fore we gathered object allocation traces from 25 long-
running programs in Smalltalk and in SML/NJ, and ex-
tracted traces of allocation into mature space. Some of
the object lifetime distributions satisfy the generational hy-
potheses and some do not. To cover the space of possi-
ble shapes of the mortality function, we chose three rep-
resentative analytical distributions: the exponential distri-
bution (mortality is constant), the square-root-exponential
(mortality decreases with age), and the square-exponential
(mortality increases with age).2

Exponential survival: The survivor function is s t
e "t , mortality is m t ", and the probability den-
sity function is f t "e "t . The mortality is con-
stant for all ages. For this distribution, we also have
analytical solutions for collector performance. We
used them to validate the simulation procedure.

Square-root-exponential survival: The survivor func-

tion is s t e #t , m t
#
t
2 , and f t

#
t e #t

2 . The mortality is a decreasing function of
age. This distribution satisfies the generational hy-
potheses and corresponds well to the lifetime distri-
butions of young objects in real systems.

Square-exponential (semi-normal) survival: The sur-
vivor function is s t e #t 2 , m t 2#2t, and
f t 2#2te #t 2 . The mortality is an increasing
function of age.

1Also known as the radioactive decay model [Baker, 1993,
Clinger and Hansen, 1997].

2The questions of modelling the observed lifetime distributions us-
ing particular analytical distributions are beyond the scope of this paper.

4

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000 1e+06

Su
rv

ivo
r f

un
ct

io
n

Age

Exponential
Sqrt-exponential

Square-exponential

(a) Survivor function

0

2e-05

4e-05

6e-05

8e-05

0.0001

0.00012

0.00014

1 10 100 1000 10000 100000 1e+06

M
or

ta
lity

Age

Exponential
Sqrt-exponential

Square-exponential

(b) Mortality function

0

2e-05

4e-05

6e-05

8e-05

0.0001

0.00012

0.00014

1000 10000 100000

Pr
ob

ab
ilit

y
de

ns
ity

Age

Exponential
Sqrt-exponential

Square-exponential

(c) Density function

Figure 3: Analytical distributions.

On opposite sides of the exponential distribution we
have: the square-root-exponential with mortality decreas-
ing for all ages, so it should be ideal for youngest-first col-
lection; and the square-exponential, with mortality starting
at 0 and increasing for all ages. Figure 3 illustrates these
survivor functions, and the dramatic differences in their
mortality functions.
In the remainder of the paper, we develop and compare

the total cost of garbage collection for each scheme (non-
generational, youngest-first, and oldest-first), for the an-
alytical distributions, for real distributions, and for real
traces. We make the comparison of the collection cost
overheads of different schemes fair by allowing each
scheme an equal amount of space overhead. We first
develop mathematical formulae describing the time and
space cost of collection (Section 6). We continue by de-
scribing how each collector works in Section 7 and giving
a summary of the mathematical analysis for the exponen-
tial distribution in Section 8. We offer simulation results
for the analytical distributions and traces synthesized us-
ing real distributions in Section 9.1, with results from ac-
tual traces in Section 9.2. These results, based on object
lifetimes, show that for a broad range of operating con-
ditions, which we expect to be representative both of real
workloads and of real collector implementation costs, the
oldest-first organization is superior to the youngest-first or-
ganization. However, the results based on heap pointer
structure show a different and ambiguous picture, as we
discuss in Section 10; we present our final conclusions in
Section 11.

6 Time and space overheads of collec-
tion

Time. The main cost of copying garbage collection is the
cost of copying live objects, whether they are copied else-
where (pure copying) or compacted within the region (slid-
ing). This cost partly depends on the number of objects
copied, but it is roughly proportional to the total volume
copied. Themark/cons ratio, defined as µ Volume copied

Volume allocated ,
is a good measure of the copying cost and we use it to
compare copying costs. It represents the average num-
ber of times an object is copied, and thus measures the
time “wasted” by the collector. If a program allocates an
amount A, and the cost of copying one word is cc times
the cost of allocating one word, where cc is a small num-
ber, perhaps in the range 1-3, then the copying cost for the
program is ccµA.
In an earlier study, we measured the cost of one garbage

5

collection in a deployed system (SML/NJ v0.93) to be
C 5183 81 2w, whereC is the cost in cycles and w is
the amount copied in words, and the second term always
dominates. The first term, which we call CS, is the cost
of an invocation of the garbage collector. The number of
invocations is inversely proportional to the amount of allo-
cation between two collections, i.e., the amountF freed by
each collection. The total garbage collection startup cost
for a program that allocates an amount A is CS

A
F ; the to-

tal cost is ccµA CS
A
F ; and the cost per word allocated is

c ccµ CS
1
F .

In addition to these costs, which we model, there are
some costs that are beyond the scope of this study. In both
analysis and simulation, we assume that perfect knowl-
edge of object reachability is available. In practice, that
knowledge is derived by the collector itself by means of
tracing. There is clearly an up-front cost of the tracing
operation, but in a copying collector that cost can be ac-
counted for as part of the copying cost by suitably increas-
ing cc. However, tracing in a collector with multiple heap
regions depends on the availability of remembered sets—
records of pointers that cross region boundaries, in partic-
ular, pointers into the region collected. The maintenance
cost of these sets is paid in part by the collector and in part
by the mutator. In addition, whenever a region is not col-
lected, the collector assumes that all data in it are live, and
that all pointers emanating from that region and into the
region collected are root pointers. Thus, the collector as-
sumes that more data are live than is actually the case, and
the copying cost is correspondingly higher than it would
be given perfect reachability knowledge.

Space. We use V to denote the volume available for the
heap. It is possible in real collectors to vary this size to
adapt to the workload, and since using more space tends
to reduce the time overhead, in our study we fixV to com-
pare different schemes equitably by giving each the same
space constraints. We note that pure copying collection
has higher peak space demands than sliding compaction.
Here we consider only sliding collection.
When considering a heap in equilibrium, in which the

rate of allocation equals the rate of object demise, we use
v to denote the steady-state amount of live data.3 The ra-
tio L V

v expresses the space overhead of the collector
configuration: how many times the available heap space is

3The notion of a steady state is convenient for mathematical treat-
ment of heap organizations. Moreover, real programs that do reach a
quasi-steady state can run long and go through a large number of col-
lections, so the effects of the fortuitous choice of collection instants are
reduced.

gretaer than the amount of live data. The smallest possi-
ble heap, with no space overhead, would have V v and
L 1. But for any collector organization, as L is made
to approach 1, the copying cost µ tends to infinity. In or-
der not to deal with such large values of µ for small L, it
is often convenient when visualizing and comparing copy-
ing costs to normalize with respect to a non-generational
collector, and we define the relative mark/cons ratio $
µ µnon-generational. The value of this metric will turn out to
be just $ µ L 1 , in other words it measures the time-
space product overhead.
We denote by f the fraction of the heap a collec-

tion frees: f F
V . The total cost of collection is thus

c ccµ CS
1

f Lv . Normalizing, we can use the cost c
µ CS

1
cc f Lv µ X

f L . Here X CS
ccv captures the cost of

collection startup relative to the cost of copying. CS and cc
depend on garbage collector implementation, and v is spe-
cific to the application program. The number of collector
invocations differs in the collector organizations we con-
sider, thus relative collector performance depends on the
cost of collection startup. We therefore present compari-
son results with X as parameter for a wide range of values
of X . But we must then ask—what are reasonable val-
ues of X that one could encounter in practice? Consider
our earlier measurements: the cost of copying one word
is about 80 cycles, but the cost of allocating one word is
about 2 cycles, so cc 40; the cost of startup CS is about
5000 cycles. Then for a program with a smallish steady-
state live amount of 50,000 words, X 0 0025. Our com-
parison results will show that for reasonable values of X
and L the best configuration of the oldest-first collector has
lower cost than the best configuration of the youngest-first
collector.

7 Collector details

We now describe each collector in more detail. These de-
scriptions correspond to the way in which we simulated
the collectors’ behavior.
Non-generational collector: The total space available

is V and after collection i, %iV data is live and fiV is free.
Initially the whole heap is empty: %0 0 and f0 1. Each
collection processes the entire space V . It does not mat-
ter in which direction objects are compacted or in which
direction they are allocated.
Youngest-first collector: The total space available is

V . It is divided into a young generation of size gV and
an older generation of size 1 g V . Allocation proceeds
in the young generation until it is exhausted, which trig-

6

gers a minor collection. The minor collection processes
the young generation, copying survivors into the old gen-
eration. Eventually the old generation fills up, and the next
time the young generation fills, the entire heap is collected,
with survivors put back into the old generation. We assume
that g is chosen such that the old generation exactly fills
up in the steady state. That is, if the old generation “over-
fills”, we increaseV to hold the additional survivors, while
keeping the young generation’s size constant (implying g
is smaller than first assumed).
Oldest-first collector: We proceed circularly through

the space, which we visualize here as proceeding from left
to right. Just after collection i 1, there is fi 1V space
available for allocation (see Figure 4). We allocate from
left to right until that space fills. We then choose to collect
some part of the area of very old objects just ahead (to the
right) of the allocation pointer. In the steady state, that
space is 1 g V . In any case, we collect it, sliding %iV
survivors to the left and creating fiV free space. We set
the allocation pointer to the left end of that space and we
can resume allocation. Note that we will cycle through the
entire space in K V

1 g V collections. Note that K need
not be an integer, so analysis is intricate.

8 Mathematical analysis for the case
of the exponential distribution (sum-
mary)

We summarize here the results of the mathematical analy-
sis of the three collectors described in the preceding sec-
tion.
Non-generational collector: The mark/cons ra-

tio is µnon-generational 1
L 1 regardless of distribution

[Appel, 1987, Jones and Lins, 1996].
Youngest-first collector: Under exponential distribu-

tion, the number of minor collections per major collec-
tion cycle is & L 1 g e Lg

1 e Lg . The mark/cons ratio is
µyoungest-first 1 g

&g . The full derivation is given in Ap-
pendix A.
Oldest-first collector: Even under exponential distri-

bution the analysis is quite complicated, and the details
of the general solution are given in Appendix B. In the
simplest case, when K from previous section is an inte-
ger, the mark/cons ratio is µoldest-first 1 g f

f , where f
is found as the solution of the nonlinear equation: 1
K f L 1 e K f L Ke K f L e f L 1 .
Under exponential distribution, and for any configura-

tion, µoldest-first µnon-generational µyoungest-first.

9 Simulation results

We produced synthetic object allocation traces, with object
lifetimes as independent identically distributed random
variables. We normalized the steady-state live amount in
the heap, i.e., the expected value of lifetime, to 50,000,
and used traces of at least 1,000,000 objects allocated, so
that a steady-state is clearly entered. For the three distribu-
tions reported here, we have: for exponential, " 2 10 5,
and generation of the synthetic trace lifetimes T by in-
version from a uniformly-distributed random variate U ac-
cording to formula T 1

" lnU (see Ref. [Devroye, 1986,
pp. 27ff]); for square-root-exponential, # 4 10 5, and
T 1

lnU 2; for square-exponential, # 1 772454
10 5, and T 1

lnU.
We built simulators for both youngest-first and oldest-

first collection, according to the description given in Sec-
tion 7. Under the assumption that the allocation trace en-
ters a steady state, the simulator reports the steady-state
value of the live amount of data, of the amounts collected,
mark/cons ratio, frequency of collection, etc. We validated
the simulators against the mathematical model for the ex-
ponential distribution, by calculating the mark/cons ratio
for each collector configuration L, g used in simulation.
The average relative error is e ' µsimulated

µcalculated 1 2, where
the summation is over all configurations. For youngest-
first collection, e 0 0048 over 6630 configurations. For
oldest-first collection, e 0 0076 over 10587 configura-
tions. With agreement within 1%, we are satisfied that the
simulator is accurate.

9.1 Simulation results for analytical distribu-
tions

We first present the results of the simulations of analytical
distributions varying the configuration parameters L (heap
space overhead) and g (fraction considered young). For
better readability, we use the mark/cons ratio $, normal-
ized to the non-generational collector. We show in Fig-
ure 5 the copying cost of youngest-first collection on the
left, and that of oldest-first collection on the right. Each
plot has the configuration parameter g along the horizon-
tal axis, and includes several curves for selected values of
the space overhead parameter L: 1.3, 1.5, 1.7, 2.0, 2.5,
3.0, and 4.0. Note first that the scale on the vertical axis
is different on the left and on the right: the curves for
youngest-first lie mostly above 1, and those for oldest-first
mostly below 1: youngest-first is mostly worse than non-
generational, and oldest-first is mostly better. It is only
for the square-root-exponential distribution, and only for

7

%i V

%i V

allocation

allocation pointer

free area

new free area

collect

i Vf

i-1V

+ = (1-g)Vi V

f

f

area chosen for collection

Figure 4: Oldest-first collection.

small values of L and of g that the opposite is true. Second,
the relative advantage of oldest-first over non-generational
collection grows with more space L. The relative disad-
vantage of youngest-first against non-generational collec-
tion also grows with more space L. Third, for youngest-
first collection the cost diminishes with increasing g. As g
increases, the number & of minor collections between ma-
jor collections decreases, and the collector behaves more
like a non-generational one. Fourth, for oldest-first col-
lection the cost has a downward trend with increasing g;
it decreases monotonically for the exponential but non-
monotonically for the two other distributions. (The case-
analysis in Appendix B provides an intuition for this pat-
tern.) Fifth, and quite surprising, the variance of cost
of youngest-first collection for the three distributions is
not great. This variance grows with L, but for a modest
value L 1 5 for example, the cost on the square-root-
exponential distribution is at least 82% of the cost on the
exponential distribution (achieved with g 0 1), and the
cost on the square-exponential distribution is at most 106%
(with g 0 16).

We see that the mark/cons ratio of a collector is heav-
ily dependent on the configuration parameter g. Let us
assume, however, that a collector is capable of adapting
to the workload by changing its configuration, within a
fixed amount of heap space. In other words, we are in-
terested in the best choice of g for a given L. The op-
timization is done with respect to the total cost measure
c µ X

f L . If both the youngest-first and the oldest-
first collector achieve their best configuration, then we can
fairly compare them, by asking which one has the lower
cost for the same space overhead (measured by L) and the
same relative cost of collector invocation (measured byX).

For the three distributions, the answer is presented in Fig-
ure 6. In the region indicated by shading, where the cost of
invocation X is high, and in the region of extremely tight
heaps where L is close to 1, the youngest-first collector
is better (but the absolute performance of either scheme
is poor). However, for reasonable values of L, and rea-
sonable values of X , as discussed previously, the oldest-
first collector is better. To see how much better, observe
the contour lines drawn at 20% increments of the cost
ratio cyoungest-first

coldest-first
. The advantage of the oldest-first collec-

tor increases with diminishing X and with increasing L.
However, for the square-root-exponential distribution on
the left, the contours are widely spaced, which indicates
a shallow grade, and only modest improvement in the ad-
vantage of the oldest-first collector. For the exponential
distribution and even more so for the square-exponential
distribution, this improvement is rapid. The break-even
contour also shifts a bit with the change in distribution.

9.2 Simulation results for real traces

In this section, we consider copying costs for
real programs. We instrumented three systems to
record object lifetimes: a Smalltalk virtual machine
[Hosking et al., 1992], a custom version of the SML/NJ
compiler [Stefanović and Moss, 1994], and a Java virtual
machine. We use our language-independent garbage
collector toolkit [Hudson et al., 1991] to record object
allocation and to report the demise of objects at each
collection. We configured the collector to collect very
frequently (each 40,000 words of allocation for Smalltalk,
and 125,000 words for SML) and to collect the whole
heap each time. This setup enables accurate (in relation
to trace length) measurement of object lifetimes. We

8

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

re
la

tiv
e

m
ar

k/
co

ns
 ra

tio
 rh

o

g

Square-root-exponential

L=1.3
L=1.5L=1.7

L=2.0

L=2.5L=3.0

L=4.0

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

re
la

tiv
e

m
ar

k/
co

ns
 ra

tio
 rh

o

g

Square-root-exponential

L=1.3L=1.5L=1.7L=2.0
L=2.5
L=3.0
L=4.0

Youngest-first Oldest-first
(A) Square-root-exponential distribution

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

re
la

tiv
e

m
ar

k/
co

ns
 ra

tio
 rh

o

g

Exponential

L=1.3

L=1.7

L=2.0L=2.5

L=3.0

L=4.0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

re
la

tiv
e

m
ar

k/
co

ns
 ra

tio
 rh

o

g

Exponential

L=1.3
L=1.5
L=1.7
L=2.0
L=2.5
L=3.0
L=4.0

Youngest-first Oldest-first
(B) Exponential distribution

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

re
la

tiv
e

m
ar

k/
co

ns
 ra

tio
 rh

o

g

Square-exponential

L=1.3
L=1.5

L=1.7
L=2.0

L=2.5

L=3.0

L=4.0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

re
la

tiv
e

m
ar

k/
co

ns
 ra

tio
 rh

o

g

Square-exponential

L=1.3

L=1.5

L=1.7

L=2.0
L=2.5L=3.0L=4.0

Youngest-first Oldest-first
(C) Square-exponential distribution

Figure 5: Copying costs of different distributions.

9

1.03 1.2 1.41 1.65 1.94 2.27 2.66 3.12 3.65 4.28 5.01 5.87
0.0002

0.0004

0.0008

0.0016

0.0032

0.0064

0.0128

0.0256

0.0512

0.102

0.205

0.41

0.819

1.64

3.28

6.55

13.1

26.2

L

X

1.03 1.18 1.35 1.56 1.79 2.05 2.36 2.71 3.11 3.58 4.11 4.72
0.0002

0.0004

0.0008

0.0016

0.0032

0.0064

0.0128

0.0256

0.0512

0.102

0.205

0.41

0.819

1.64

3.28

6.55

13.1

26.2

L

X

1.03 1.18 1.36 1.56 1.79 2.06 2.36 2.72 3.12 3.58 4.12
0.0002

0.0004

0.0008

0.0016

0.0032

0.0064

0.0128

0.0256

0.0512

0.102

0.205

0.41

0.819

1.64

3.28

6.55

13.1

26.2

L

X

Square-root-exponential Exponential Square-exponential

Figure 6: Comparison of youngest-first and oldest-first collection.

obtained traces for a number of long-running benchmark
programs and interactive sessions (17 in Smalltalk, 8 in
SML, 19 in Java). The longest trace allocates 310 million
words and comes from an hour-long Smalltalk session.
Since our emphasis is on collection in mature space,

we used a filtering mechanism to extract subtraces of only
mature objects. In practice, mature objects will be those
that are promoted out of a young-space collector. Al-
though the objects promoted out of the young-space col-
lector vary in age, depending on the construction of the
collector, it can safely be assumed for the purposes of our
evaluation that they are of the same age. This threshold
age can be chosen somewhat arbitrarily; we made several
choices for each original object trace, making sure that
the thresholds were beyond the first knee of the survivor
function—beyond the region of very young objects with
very high mortality. 4 We then focused on those mature
object traces that approach a quasi-steady state. Here we
report on two SML programs, Tomcatv and Swim, which
are adaptations of two SPEC95 matrix calculation bench-
marks, and one Smalltalk heap-intensive benchmark pro-
gram, Tree-replace, which repeatedly replaces subtrees of
a large tree by newly allocated subtrees.
We show in Figure 7(a,b,c) the comparison of oldest-

first and youngest-first collection for three real program
traces of mature space objects. Plots of their survivor func-
tions are in Figure 7(e). The interpretation of the contour
graphs is as in the preceding section: oldest-first collec-

4It is not correct, however, simply to reject objects with lifetimes
under the threshold: the lifetimes of the remaining objects must be
transformed to correspond to the allocation amounts as seen by mature
space.

tion is preferred in the lower region of the plot, for smaller
X . However, recall that X CS

ccv . For real traces the value
of the live amount v in the quasi-steady state is known.
Thus, with the suggested realistic values ofCS and cc, we
have actual values for X as indicated underneath the fig-
ures. For these values of X , oldest-first is better, regard-
less of L. Why then provide the plots for a range of X
values? CS and cc values are different among collector
implementations, and so X could be somewhat higher or
lower. Note, however, that CS

cc
would have to be at least

1000 times higher than we have estimated for the operat-
ing points to move up into the regions where youngest-first
is preferred.
We never expected simulations of real program traces

to produce smooth results like those for synthetic traces of
analytical distributions; after all they do not enter a truly
steady state. Nevertheless, we thought the plots in the top
row of Figure 7 to be very jagged. We considered two
possible sources of the irregularity: first, that the distri-
bution of lifetimes may be far from smooth (with sharp
peaks in mortality at critical ages); and second, that there
is significant correlation between lifetimes of successively
allocated objects. Both effects can be expected in a trace
of any iterative algorithm.
To eliminate the second effect, we generated a synthetic

trace having the same distribution of object lifetimes as
the real trace, but with lifetimes drawn independently. We
show in Figure 7(d) the outcome for such a synthetic trace
based on the Tomcatv benchmark. The appearance is still
slightly jagged, so this effect must be caused by the dis-
tribution itself. The contours change very little, but in
the relatively flat region at the top of the plot, the bound-

10

ary shifts somewhat downward. We cannot claim, how-
ever, that the correspondence between the real trace and
its synthetic version is close for all traces, and this ques-
tion awaits further investigation.

10 Simulation results for real traces
with pointer structure

11 Discussion and conclusions

We found that oldest-first collection almost always out-
performs youngest-first generational collection and non-
generational collection. Now for the caveats! The reported
analyses are for sliding compaction; pure copying may ex-
hibit some differences. However, since oldest-first does
less copying, it presumably will also need less additional
space for pure copying. Our comparisons are for a cost
model that includes copying and collector startup costs,
but the model ignores remembered set maintenance and
write-barrier issues, and further assumes that the memory
hierarchy affects all collectors equally.
Changing the relationships between the regions col-

lected and not collected might have large effects on re-
membered set sizes and their processing times. On the
other hand, if locality of reference between objects is cor-
related with original allocation time, then the effects might
not be large. We observe that the oldest-first collector ef-
fectively inserts new survivors between batches of old sur-
vivors, so it may decrease locality. This subject demands
experimental measurement, and so does cache behavior.
Our simulations assumed perfect knowledge of reach-

ability, too, and actual generational collectors will tend
to copy a bit more because they rely on the remembered
sets, which are an upper bound on live pointers into the re-
gion to be collected, but are not necessarily precise. A re-
lated concern is that straightforward oldest-first collection
might fail to collect cycles of garbage. The Mature Object
Space collector [Hudson and Moss, 1992] addresses that
concern, but necessarily reorganizes objects.
We also observe that real systems often have long-lived

data, not likely to be discarded, and special techniques are
needed to prevent copying such data repeatedly. An ex-
ample are class files for heavily used language or library
classes in Java. On the other hand, classes dynamically
loaded by a net browser should perhaps be subject to col-
lection as the user changes attention to different tasks.
Another obvious area for future exploration is applying

the oldest-first strategy to collection of young objects. In
any case, we conclude that oldest-first collection is quite

promising, and look forward to evaluating it in vivo.

References

[Appel, 1987] Appel, A. W. (1987). Garbage collection
can be faster than stack allocation. Information Pro-
cessing Letters, 25(4):275–279.

[Baker, 1993] Baker, H. G. (1993). ‘Infant Mortality’
and generational garbage collection. SIGPLAN Notices,
28(4):55–57.

[Clinger and Hansen, 1997] Clinger, W. D. and Hansen,
L. T. (1997). Generational garbage collection and the
radioactive decay model. SIGPLAN Notices, 32(5):97–
108. Proceedings of the ACM SIGPLAN ’97 Confer-
ence on Programming Language Design and Imple-
mentation.

[Cox and Oakes, 1984] Cox, D. R. and Oakes, D. (1984).
Analysis of Survival Data. Chapman and Hall, London.

[Devroye, 1986] Devroye, L. (1986). Non-Uniform Ran-
dom Variate Generation. Springer-Verlag, New York.

[Elandt-Johnson and Johnson, 1980] Elandt-Johnson,
R. C. and Johnson, N. L. (1980). Survival Models and
Data Analysis. Wiley, New York.

[Hayes, 1993] Hayes, B. (1993). Key Objects in Garbage
Collection. PhD thesis, Stanford University, Stanford,
California.

[Hosking et al., 1992] Hosking, A. L., Moss, J. E. B.,
and Stefanović, D. (1992). A comparative perfor-
mance evaluation of write barrier implementations.
In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications,
pages 92–109, Vancouver, Canada. SIGPLAN Notices
27, 10 (October 1992).

[Hudson and Moss, 1992] Hudson, R. L. and Moss, J.
E. B. (1992). Incremental collection of mature ob-
jects. In Bekkers, Y. and Cohen, J., editors, Interna-
tional Workshop on Memory Management, number 637
in Lecture Notes in Computer Science, pages 388–403,
St. Malo, France. Springer-Verlag.

[Hudson et al., 1991] Hudson, R. L., Moss, J. E. B., Di-
wan, A., and Weight, C. F. (1991). A language-
independent garbage collector toolkit. Technical Report
91-47, University of Massachusetts, Amherst.

11

1.38 1.49 1.75 1.97 2.22 2.43 2.82 3.03 3.53 3.96 4.55
0.0002

0.0004

0.0008

0.0016

0.0032

0.0064

0.0128

0.0256

0.0512

0.102

0.205

0.41

0.819

1.64

3.28

6.55

13.1

26.2

L

X

1.33 1.63 1.97 2.27 2.59 3.14 3.53 4.39 4.78 6.05 7.2 8.18
0.0002

0.0004

0.0008

0.0016

0.0032

0.0064

0.0128

0.0256

0.0512

0.102

0.205

0.41

0.819

1.64

3.28

6.55

13.1

26.2

L

X

1.06 1.11 1.15 1.19 1.24 1.29 1.34 1.4 1.45 1.51 1.57 1.64 1.7
0.0002

0.0004

0.0008

0.0016

0.0032

0.0064

0.0128

0.0256

0.0512

0.102

0.205

0.41

0.819

1.64

3.28

6.55

13.1

26.2

L

X

(a) SML SPEC101-Tomcatv
(v 13396, X 0 01)

(b) SML SPEC102-Swim
(v 25094, X 0 005)

(c) Smalltalk Tree-replace
(v 187966, X 0 0007)

1.38 1.55 1.75 1.97 2.22 2.5 2.82 3.17 3.57 4.02 4.53
0.0002

0.0004

0.0008

0.0016

0.0032

0.0064

0.0128

0.0256

0.0512

0.102

0.205

0.41

0.819

1.64

3.28

6.55

13.1

26.2

L

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000 1e+06 1e+07

Su
rv

ivo
r f

un
ct

io
n

Age

SML SPEC101-Tomcatv
SML SPEC102-Swim

Smalltalk Tree-replace

(d) Synthetic trace with distribution as in
SML SPEC101-Tomcatv

(e) Survivor function of the mature object lifetime
distribution

Figure 7: Comparison of youngest-first and oldest-first collection (real traces).

12

[Jones and Lins, 1996] Jones, R. and Lins, R. (1996).
Garbage Collection: Algorithms for Automatic Dy-
namic Memory Management. John Wiley, Chichester.

[Seligmann and Grarup, 1995] Seligmann, J. and Grarup,
S. (1995). Incremental mature garbage collection using
the train algorith. In Nierstras, O., editor, Proceedings
of 1995 European Conference on Object-Oriented Pro-
gramming, Lecture Notes in Computer Science, Uni-
versity of Aarhus. Springer-Verlag.

[Stefanović and Moss, 1994] Stefanović, D. and Moss, J.
E. B. (1994). Characterisation of object behaviour in
Standard ML of New Jersey. In 1994 ACM Confer-
ence on Lisp and Functional Programming, Orlando,
Florida.

13

Appendix

A Copying cost in the youngest-first collector

Let the younger generation (0) occupy gV and older generation (1) occupy 1 g V .
The exact time between two minor collections is (0 gV . The expected live amount in the younger generation at

collection is %0V (0
0 so t dt 1

" 1 e "gV . Live data from generation 0 are promoted into generation 1.
Upon some number & 1 of minor collections, the older generation fills up. On the next minor collection it becomes

necessary to collect the older generation as well in a major collection. Let %1V be the expected live amount in both
generations at the time of major collection. The expected available space in generation 1 between collections is)1V
1 g V %1V . The expected number of minor collections between two major collections is & 1)1

%0
. For the

purposes of analysis, we take the values of the free parameters g and L such that & is an integer. (It can be shown that
this assumption is more than just a convenience for analysis.) At collection time, the younger generation contains an
area of size %1V that was last established live at time &(0 ago, and & 1 areas of size %0V that were last established live
at times & 1 (0 (0 ago. Generation 0 also contains new live data, as at any generation 0 collection. Owing to the
memoryless property of the object lifetime distribution, the expected amount of live data in generation 1 is then:

%1V %1V s0 &(0
& 1

'
i 1

%0Vs0 i(0 %0V %1V s0 &(0
& 1

'
i 0

%0Vs0 i(0 %1Ve "&(0 %0V
& 1

'
i 0

e "i(0

or,

%1 %0
'
& 1
i 0 e "igV

1 e "&gV
%0

1 e "gV

In one generation 1 cycle, the amount allocated is &gV , and the amount copied is & 1 %0V %1V , so the mark/cons
ratio is

µ
& 1 %0V %1V

&gV

%0V & 1 1
1 e "gV

&gV

1 e "gV & 1 1
1 e "gV

"&gV
1 e Lg & 1 1

&Lg

On the other hand,

& 1
)1
%0

1 g
%0

%1
%0

1 g L
"

1
" 1 e "gV

1
1 e "gV

L 1 g 1
1 e Lg

Thus,

&
L 1 g e Lg

1 e Lg

With a given factor L, for particular (integer) values of &, this equation can be solved numerically for g, and for such
pairs L g, the preceding analysis will be valid. Simplifying further,

µ
1 g
&g

14

B Copying cost in the oldest-first collector

The analysis of the oldest-first collector is somewhat involved; we present it for the case of the exponential distribution,
which allows us to simplify the presentation by appeal to the memoryless property of the distribution: each time an
object is copied in collection, it is in effect, reborn. (For any other distribution, it is possible to formulate similar
equations involving infinite sums of integrals of the survivor function.) Our analysis is exact, but the result is not in
closed form, as it is a solution of a nonlinear equation.

%V

region logically moved region collected

copymove

gV (1-g)V

fV gV

before

afterallocation

Figure 8: Operation of the oldest-first collector.

The analysis will be made easier if we view the collector as in Figure 8, and first ask what is in the region of size
1 g V that is collected. The young region is of size gV , and it therefore shifts by an amount 1 g V on each
collection. On each collection, an amount %V of collected data is placed to the left of the shifted data; then an amount
fV of new data is allocated in the leftmost, free, region. This pair of areas fV and %V are moved rightwards by 1 g V
on each successive collection. It takes N g g

1 g collections for this pair to move entirely past gV , into the region
collected. In other words, if N is an integer, then in N collections this pair becomes precisely the region collected.
However, if N is not an integer, the analysis is more complicated. We first note that if g n 1

n
n

n 1 n , then
N g n.
With respect to the contents of the region collected, there are four possibilities to consider, illustrated in Figure 9. Let

y 1 N 1 g . Case 3 obtains when y 1 g, in other words when N is an integer. Otherwise, case 1 obtains when
f y, case 2 when f y, and case 4 when f y. In cases 1, 3, and 4, an %V region is wholly within the collected
region, and thus older data from an entire sequence of ranges of allocation time will remain together. However, in case
2, two parts of two different %V regions lie in the collected region; thus it matters which data are in these parts, and
which outside. In other words, it matters in which order the copied data are placed into the “to-space” on collection: in
a sliding implementation, it is the original order of the data.
We proceed with the analysis for the exponential distribution of object lifetimes, which allows a simpler treatment

of case 2, thanks to the memoryless property of the distribution.
Case 1. The collected region contains parts of two “new” areas, the younger of size f y V , and the older of size

yV ; and an area with survivors of a previous collection that happenedN fV ago. The live amount in the collected region
is

N fV

N 1 fV yV
e "tdt

N fV yV

N fV
e "tdt %Ve "N fV

1
"

e " N f 1 N 1 g V e" fV 1 %Ve "N fV

This live amount can be equated with %V , thus:

%V
1
"

e " N f 1 N 1 g V e" fV 1 %Ve "N fV

15

%V

=0.11%Case 4

gV (1 - g) V

fV

g=0.63 f=0.26

%V
%V

%=0.11Case 2

gV (1 - g) V

fV

g=0.65 f=0.25

%V

=0.096%Case 3

gV (1 - g) V

fV

f=0.24g=2/3

%V

Case 1

gV

fV
fV

(1 - g) V
region collected

f=0.31 %=0.15g=0.54

Figure 9: Operation of the oldest-first collector: contents of collected region (exponential distribution, L 2).

Using L V", we have:

%L 1 e N f L e N f 1 N 1 g L e f L 1

Finally, % 1 g f , and the equation, to be solved numerically for f , given L and g, is:

1 g f L 1 e N f L e N f 1 N 1 g L e f L 1

Case 2. The collected region contains one “new” area of size fV , and parts of two areas with survivors of previous
collections; one, of size N 1 g g V , from a collection N fV ago, and the other, of size %V N 1 g g V ,
from a collection N 1 fV ago. The live amount in the collected region is

N 1 fV

N fV
e "tdt N 1 g V gV e "N fV %V N 1 g V gV e " N 1 fV

1
"

e "N fV e " N 1 fV N 1 g V gV e "N fV %V N 1 g V gV e " N 1 fV

Again, this live amount can be equated with %V :

%V
1
"

e "N fV e " N 1 fV N 1 g V gV e "N fV %V N 1 g V gV e " N 1 fV

Using L V", we have:

%L e N f L 1 N 1 g L gL e N 1 f L 1 %L N 1 g L gL

or:

%L 1 e N 1 f L 1 N 1 g L gL e N f L 1 e f L

16

With % 1 g f :

1 g f L 1 e N 1 f L 1 N 1 g L gL e N f L 1 e f L

Again, this equation must be solved numerically for any given L and g.
Case 3. The fV region contains data with ages between N fV and N 1 fV , and the %V region contains data that

were last collected N 1 fV ago. The equation is then:

%V
N 1 fV

N fV
e "tdt %Ve " N 1 fV 1

"
e "N fV e " N 1 fV %Ve " N 1 fV

which, with L V", K N 1 1
1 g simplifies to:

1 K f L 1 e K f L Ke K f L e f L 1

This models a collector with K areas of equal size, which functions as a queue with K stations, similar to a train of
Ref. [Hudson and Moss, 1992].
Case 4. This is the case where the solutions for cases 1 and 2 coincide, at such points gN that f y. The equation

governing these points is:

N N 1 gN L 1 e N 1 N 1 gN L e N 1 1 N 1 gN L e 1 N 1 gN L 1

Once f is found, we compute % 1 g f , µ %
f , $ µ L 1 . Efficient computation first determines the values

of N of interest, corresponding to the interval n 1
n

n
n 1 , and for each N and L finds the point gN , within this interval.

To the left of gN , case 1 applies, and to the right of gN , case 2 applies.
As g 1 and L *, the performance approaches that of an ideal object queue, µ e L.

17

