
Efficient Composite Data Flow Analysis Applied to Concurrent Programs

Gleb Naumovich, Lori A. Clarke, and Leon J. Osterweil

email: naumovic clarke ljo @cs.umass.edu
Laboratory for Advanced Software Engineering Research

Computer Science Department
University of Massachusetts

Amherst, Massachusetts 01003

Abstract
FLAVERS, a tool for verifying properties of concurrent sys-
tems, uses composite data flow analysis to incrementally im-
prove the precision of the results of its verifications. Al-
though FLAVERS is one of the few static analysis tech-
niques for concurrent systems that has the potential to han-
dle large scale systems, it sometimes can still be very ex-
pensive to use. In this paper we experimentally compare the
cost of two versions of this approach for solving compos-
ite data flow analysis problems. The first version, product-
based, uses the more straightforward approach, and the sec-
ond, tuple-based, is built around the idea of reducing analy-
sis space requirements at the expense of analysis time. We
demonstrate experimentally, by analyzing properties of ac-
tual concurrent programs, that the tuple-based version is
comparable in time to the product-based version but for large
composite data flow problems it requires several orders of
magnitude less space.

Keywords
Static analysis, data flow analysis, concurrency

1 Introduction
With the rapid improvement of Web technology, distributed
and concurrent systems are becoming increasingly common.
Concurrent systems are more difficult to understand and rea-
son about than sequential ones because of their inherent non-
determinism. This non-determinism makes testing of such
software extremely difficult. One cannot, for example, safely
assume that two test runs using the exact same input will
necessarily produce the same result. Static analysis approa-
ches provide an important complement to testing approa-
ches, in that they are able to evaluate all potential executable

This work was supported in part by the Air Force Materiel Command, Rome
Laboratory, and the Advanced Research Projects Agency under Contract F30602-94-
C-0137.

paths for certain classes of faults, and can, therefore, often
demonstrate the absence of such faults.

FLAVERS [3, 10] is one such static analysis tool. It uses
data flow analysis to prove or disprove application-specific
properties of concurrent systems. FLAVERS provides its
users with the capability of specifying additional informa-
tion about the system. This improves precision of the analy-
sis but requires more computational resources.

In this paper we explore an optimization of the FLAVERS
approach that greatly reduces space requirements of the tool
without sacrificing its time requirements. The initial, intu-
itive implementation of FLAVERS forms a single structure
to represent both the property being checked and the addi-
tional information introduced about the system being ana-
lyzed. The second version avoids creating this structure,
which our experiments show can be enormous in size, by
using a tuple representation to keep track of each additional
component separately. This reduction in space is paid for
by using a more complicated internal representation of the
analysis information.

The two versions are compared experimentally. The re-
sults of this experiment indicate that not only are space re-
quirements reduced significantly by using the optimization,
but in addition no statistically significant execution time pen-
alty is incurred in the process. In addition, we demonstrate
that the tuple-based version is better suited for proving mul-
tiple properties simultaneously. The technique of improving
precision of data flow analyses by identifying spurious exe-
cutions has been explored before [5, 1]. Holley and Rosen [5]
also provide a comparison of several implementations of this
technique. The contribution of this paper is in the quanti-
tative evaluation of the two versions of the FLAVERS ap-
proach for verifying application specific properties of con-
current programs.

In the next section of this paper we present a high-level
overview of the FLAVERS approach, including a description
of the internal representations used by the algorithm and an
example illustrating the use of additional information to im-
prove analysis precision. After that we present formal defi-
nitions of the internal representations used by the two imple-
mentations, followed by the description of the product-based



and tuple-based versions. Then our experimental results are
presented. We conclude with observations about future re-
search directions.

2 FLAVERSOverview
FLAVERS (FLow Analysis for VERifying Specifications)
uses a more compact representation of the software system
than most concurrency analysis techniques and uses an effi-
cient fixed point data flow analysis algorithm to determine if
the model of the system’s behavior is always consistent with
the specified intended behavior. FLAVERS provides conser-
vative analysis results, in that it never claims that a property
is verified when it is not. To be conservative and efficient,
it over-approximates the executable behavior of the system.
Thus, like most static analysis techniques, FLAVERS may
report that a problem may exist when there is in fact no real
executable behavior of the system that would cause such
a problem. Such a report is known as a spurious result.
FLAVERS also produces a report that details the path(s)
along which all discovered problems might occur. By ex-
amining such paths users can often determine if a result is
spurious or not.

One of the strengths of FLAVERS is that it also provides
a flexible way for identifying spurious executions that can
be removed from consideration, thereby making the analysis
more precise. This is done by allowing the analysts to in-
troduce additional semantic information, called constraints,
about the system. The general approach of [5] is used to
limit the exploration of the program to only those paths that
satisfy the constraints. If these constraints are well chosen,
subsequent analysis runs will either verify the property or
expose a counter example that corresponds to real executable
behavior and, thus, violates the property.

Program
Translator State Propagation

Property
specification

Results
Program TFG

Property FSA

Property
Translator

Constraint FSAs

. . .

Product Automaton

Figure 1: The architecture of FLAVERS

This incremental incorporation of constraints leads to the
need to solve increasingly large and complex data flow prob-
lems, and this has led us to study techniques for optimizing
this approach. To understand the optimization technique that
we explored, some more details about the internal represen-
tations and algorithm used by FLAVERS are needed.

With FLAVERS, the analyst specifies the property to be
verified as a set of sequences of events. Currently FLAVERS

uses Quantified Regular Expressions language [12] to spec-
ify properties. Internally, properties are represented as finite
state automata (FSA), called the property automata. Simi-
larly each constraint is also represented by a FSA.

Software systems are modeled as Trace Flow Graphs
(TFG’s). For a sequential program, the TFG is similar to
a control flow graph. But for a distributed or concurrent sys-
tem all possible task interactions must also be represented,
as well as all possible interleavings of statements among the
tasks. Nodes that represent events that appear in the property
or constraint automata must be annotated with those events.

FLAVERS uses data flow analysis to compute whether all
system behaviors, as captured by the TFG and constrained
by behaviors described by the constraints, are contained in
the set of behaviors described by the property automaton.
Conceptually, the property automaton and the constraint au-
tomata are combined into a product automaton, which rep-
resents the cross product of the property automaton and all
constraint automata. Figure 1 illustrates the architecture of
FLAVERS.

During the analysis, the set of reachable product FSA
states is propagated along the TFG nodes until a fixed point
is reached. Thus, a state, , is in the annotation set at node

, if and only if there is a path from the TFG start node to
that encounters a sequence of node annotations that drives

the FSA to state when the path reaches . The activity of
deriving these node annotations is represented by the State
Propagation box in Figure 1. The outcomes of this anal-
ysis are divided into three categories of interest: 1) the set
annotating the final node of the TFG contains only accept-
ing states of the FSA, indicating that the property holds on
all executions of the program; 2) the set annotating the fi-
nal node of the TFG does not contain an accepting state of
the FSA, which means that the property holds on no execu-
tions of the program; and 3) the set annotating the final node
of the TFG contains at least one accepting state and at least
one non-accepting state of the FSA, which means that the
propertymay hold on some executions.

In the following we give an example that illustrates how
constraints are used and incorporated into the analysis. For
simplicity, we use a sequential program in this example, but
the general principle of specifying properties and constraints
holds for concurrent programs as well.

procedure Elevator is
ButtonPressed : boolean;

begin
ButtonPressed := GetButtonState;
if ButtonPressed then
WaitUntilNoObjectInDoorway;

end if;
RecordState;
if ButtonPressed then
Car.CloseDoor;

end if;
end;

Figure 2: Code for the elevator example



1

2

WaitUntilNo...

CloseDoor

WaitUntilNo...

WaitUntilNo...

CloseDoor
3 CloseDoor

Figure 3: Property FSA for the elevator example

Figure 2 contains pseudocode for an elevator controller.
Suppose that the safety property of interest is whether it is
possible that the car can close its doors without checking
first if there are objects in the doorway. Figure 3 gives an
FSA representation of this property. The program is suffi-
ciently simple that it is easy to see that this property holds on
all program executions. This is because both the check and
closing of the doors are done only if the value of the variable
ButtonPressed is true, and if we assume that the procedure
RecordState does not change the value of this variable. It
is important to note, however, that no information about the
values of the program’s variables is present in the TFG. This
causes FLAVERS to consider some unexecutable paths. For
example, the path on which the value of the variable Button-
Pressed is assumed to be false in the first if statement, and
true in the second, appears to violate the property. One ex-
ample of a constraint automaton that represents the behavior
of variable ButtonPressed is shown in Figure 4. Initially the
variable is in unknown state. The two transitions Pressed=t
and Pressed=f represent the query of whether this variable’s
value is true and is false, respectively. If the variable has
value true, the query of whether its value is false sends this
constraint in the violation state.

known

false

un-

Pressed=f
true

viol.

Pressed=t

Pressed=t

Pressed=f

Pressed=f

Pressed=t

Figure 4: Constraint for the elevator example

Figure 5 shows the TFG for this program, annotated with
the events used by both the property and the constraint. All
if statement branches in this graph are guarded by the nodes
with queries of the value of the variable ButtonPressed.
Now consider the unexecutable path through this graph in-
volving taking the false branch of the first if statement and
the true branch of the second if statement. At the first node
of this path, the initial node of the graph, the constraint au-
tomaton is at the start state unknown. After passing through

GetButtonState

Wait...

RecordState

CloseDoor

Pressed=t

Pressed=t Pressed=f

Pressed=f

(1, unknown)

(1, false)(1, true)

(2, true)

(1, false)
(2, true)

(1, viol)
(2, true)

(1, false)
(2, viol)

(1, true)

(1, true)
(1, false)

Figure 5: TFG for the elevator example

the successor of the initial node, marked with Pressed=f, it
takes the corresponding transition to state false. After pass-
ing through the node labeled with RecordState, which does
not affect the constraint, this state false of the constraint au-
tomaton passes through the node marked with Pressed=t,
at which point the transition to the violation state is taken.
Because of this FLAVERS determines that this branch is un-
executable as an extension of the current path.

FLAVERS currently provides automated support for
helping users model two specific kinds of constraints, namely
variable and task automata. Variable automata, similar to
the one in Figure 4, model the execution behavior of scalar
variables in the program and task automata model all possi-
ble orders of events allowed by the control flow in a single
task. In addition, an analyst can construct any arbitrary FSA
and use it as a constraint. This approach is very general and
allows an analyst to represent the external environment or
missing software components [10].

3 Basic Definitions
In this section we give formal definitions for the artifacts that
are used in the analysis described in this paper.

A Trace Flow Graph (TFG) is a labeled directed graph
initial final , where is a set of graph

nodes, is the set of edges, initial final are
unique initial and final nodes, is an alphabet of event
labels associated with the graph, and is a
function that labels the nodes of the graph with event labels
drawn from the alphabet. Synchronizations between differ-
ent tasks are represented explicitly in the TFG, making use
of interleaving semantics for the language in which the pro-
gram is written.

A Deterministic Finite State Automaton (or just automa-
ton or FSA) is a tuple , where is a set of states

, is the finite alphabet of events associated
with transitions in the automaton, is a total transition func-



tion , is a unique start state, and is a set of
accepting states .

A property automaton is an FSA
. A constraint automaton is an FSA

with an additional component, called a viola-
tion state, which is used by the state propagation algorithm
to detect that a constraint is violated. For any state
and any event , if and only if observing
event at state does not correspond to any legal behavior of
the constraint. The violation state is a sink, which means that
there are no transitions from this state to any other state in
the automaton. Intuitively a constraint specifies a set of de-
sired or expected state transitions, but also explicitly spec-
ifies which transitions are not permissible from the current
state.

In the following two sections we describe the two ap-
proaches to the implementation of the analysis of a single
property represented with a property automaton on the
TFG under constraints given by constraint automata

. We require that all events in the alphabets of
the property and all of the constraint automata be subsets of
the TFG alphabet: and .

4 Product-based Analysis
The product automaton for the property automaton and
constraint automata is defined as the tuple

, where

is the unique violation state

Note that the set of product automaton states is not neces-
sarily a full cross product of the set of states in the property
and the sets of states in all constraint automata. [3] contains
a discussion of some techniques that reduce the size of the
space of states of the product automaton. One such tech-
nique, for example, is merging all product automaton states
which have at least one constraint automaton violation state
as a subcomponent: if and
such that then .

We associate a function over states of the product au-
tomaton with each TFG node . Given a product automaton
state , generates another state obtained from by tak-
ing a transition labeled with the event associated with this
TFG node:

We generalize functions to introduce a function over sets
of product automaton states for each TFG node:

Note that the violation state is not propagated past the node
for which it was generated by the function for that node.

The lattice elements for this data flow problem are sets of
the product automata states, the join operation is set union

, and the functional space is based on all functions for
individual nodes in the TFG.

Once the solution of our data flow problem converges to
a join over all paths solution [8], we need to look only at
the final node of the TFG to determine whether the property
holds. We say that a property holds on all paths through the
program if after all violation states are discarded from the
final node of the TFG, only accepting states of the product
automaton are present there.

To illustrate the use of the product automaton for improv-
ing accuracy we return to the elevator example in Figure 2.
The product of the property automaton from Figure 3 and
the constraint automaton from Figure 4 appears in Figure 6.
Labels on the states of this automaton are pairs, where the

1, unknown

Pressed=t

3, unknown2, unknown

1, true

1, false

2, true 3, true

3, false2, false

Viol.

Wait...

Wait...

Wait...

CloseDoor

CloseDoor

CloseDoor

CloseDoor

CloseDoor

CloseDoor

Wait...

Wait...

Wait...

Wait...

Wait...

Wait...

CloseDoor

CloseDoor

CloseDoor

Pressed=t Pressed=t
Pressed=t

Pressed=tPressed=tPressed=t

Pressed=f

Pressed=f

Pressed=f

Pressed=f Pressed=f

Pressed=f

Figure 6: Product automaton for the elevator example

first number corresponds to the state number of the prop-
erty automaton from Figure 3 and the second label corre-
sponds to the state label of the constraint automaton from
Figure 4. This is the product automaton after compaction,
since all states in the full cross product with the constraint
automaton is in its violation state were fused into a single
violation state Viol. Note that most of the transitions to the
violation state of the product automaton are not shown in the
interests of clarity. Consider the unexecutable path through
the flow graph where the true branch of the second if state-
ment is taken after the false branch of the first if statement.
When we trace this path, using it to drive the product au-
tomaton in Figure 6, the following sequence of state transi-
tions is observed. From the initial state marked 1, unknown



the transition on event Pressed=f is taken to state 1, false.
After passing through the node markedRecordState, which
does not affect the product automaton, the transition on the
next event in the execution trace, Pressed=t, leads to the vi-
olation state for the product automaton, which signifies that
this execution trace corresponds to an infeasible path.

[2] proves convergence of this algorithm to the minimal
fixed point and reports the analysis complexity for concur-
rent systems as . In the worst case a task au-
tomaton needs to be constructed for each task. Since the
number of states in a task automaton is linear in the number
of nodes in the control flow graph for this task, it is obvious
that the property automaton can easily be exponential in the
number of tasks in the program, which can make the analysis
intractable.

5 Tuple-based Analysis
In this section we describe the more space efficient tuple-
based version. First we introduce the method informally by
suggesting the parts of the product-based version that have
to be modified, and then we give a formal description of this
version.

We begin by observing that most of the states in the full
product automaton are not used during the actual analysis.
Thus all the memory dedicated to storing these unused states
and their transitions is wasted. The tuple-based version over-
comes this problem by creating and storing only those com-
binations of product and constraint automata that are actu-
ally used by the analysis.

In this version we traverse all automata separately as we
traverse the TFG starting from its initial node. Initially all
property and constraint automata are in their start states.
When a node is traversed, its label is matched with the tran-
sitions out of the current state of each automaton. If this
label is in the alphabet of the property automaton, the cor-
responding transition is taken, and the property automaton
changes state. In the case of a constraint automaton, if a
transition on the node label leads to the violation state, this
means that the path through the TFG that is being considered
is unexecutable, and further traversal down this path will not
be continued. During data flow analysis TFG nodes are an-
notated with sets of tuples, where each tuple consists of a
state from the property automaton, and one state from each
of the constraint automata. The data flow analysis system
must generate a tuple set on exit from each node as a func-
tion of the tuple sets found at the exits of each of the node’s
predecessors. If a generated tuple has at least one of the
constraint automata in the violation state, the entire tuple is
removed from the analysis as it corresponds to an infeasible
execution of the program.

We now present a formal definition of tuple-based analy-
sis. A tuple is a collection of one state from each automa-

ton in the problem.

where and

Let be the set of all possible tuples:

The initial tuple is the tuple .
We associate a function over tuples with each TFG

node :

where

As in the product-based version, we generalize to a func-
tion over sets of tuples for each TFG node:

The lattice elements for this data flow problem are sets
of tuples, the join operation, as in product-based analysis, is
set union , and the functional space is based on the set of

functions for all TFG nodes .
Once the solution of our data flow problem converges to a

fixed point, we need to look only at the end node of the TFG
to determine whether the property holds. But now the tuple-
based version is different from the product-based version.
For each tuple in final we check the possible values of each
of its constraint automata to see whether all of these possi-
ble states are accepting states. If any constraint automaton
is left in a non-accepting state, we remove the entire tuple
from final. We say that a property holds on all executions
of the program if all tuples remaining in final contain only
accepting states of the property automaton.

This approach of representing information propagated
around the flow graph as tuples is reminiscent of K-Tuple
frameworks from [9]. An important distinction is that each
component of a tuple in K-Tuple frameworks corresponds to



a special edge kind in a graph. In our approach, an event as-
sociated with a TFG node can be present in alphabets of sev-
eral constraint and property automata and thus components
of tuples are not directly tied to disjoint sets of information
in the flow graph.

To illustrate the use of the tuple-based version to accu-
racy improvement we use the same example from Figure 2
that we used for the product-based version. We use the prop-
erty from Figure 3 and the constraint automaton from Fig-
ure 4. Figure 5 shows the TFG for this example annotated
with tuples that were formed during the tuple-based analy-
sis. We consider the traversal of the unexecutable path where
the true branch of the second if statement is taken after the
false branch of the first if statement.

A tuple appears next to the node if it is the tuple that was
observed at the exit from this node. Note that on the entry
to the first flow graph node on the true branch of the second
if statement, marked Pressed=t, the constraint automaton
component of the tuple is at state false, and so the event
Pressed=t triggers the transition to the violation state. This
means that the resulting tuple (1, Viol) will not be propa-
gated beyond the the node marked Pressed=t, and so the
traversed path is unexecutable. Since in all tuples associated
with the final node the property automaton is in accepting
state 1, the property holds on all executions of this program.

The tuple-based version is computationally not much
more complex than the product-based version. The only
difference arises from the different procedure for checking
for constraint violations. In the worst case the complexity
of the tuple-based version is , where

is the complexity of propagating tuples among
the nodes in the TFG. is the complexity of com-
puting functions for all nodes in the TFG. It follows from
the fact that an application of a function to a single tuple
involves computing transition functions, and at each
TFG node we apply its function to at most tuples.

The use of the tuple-based version also has the advantage
of being more flexible. For example, it is possible to check
several properties at the same time using the tuple-based ver-
sion, and to simultaneously improve the accuracy of all the
analyses through the use of the same set of feasibility con-
straints. This is done by simply extending the definition of
a tuple to include multiple property automata, one for each
property to be checked. Note that it would be possible to en-
able the product-based analysis to check several properties
at the same time too, but this would be much more com-
plicated as several kinds of accept states would be needed
in order to distinguish among the several property automata
used to synthesize the product automaton.

6 Empirical Results
We analyzed program-specific properties of several small
concurrent programs. For each program we selected one
commonly evaluated property. The specification of the prop-
erties is omitted here for lack of space.

Program Number of
tasks

Number of
constraints

Number of
experiments

Dining philosophers 4 4 11
8 8 37

Dining philosophers 4 4 11
with dictionary 6 6 22

8 8 37

Dining philosophers 3 5 5
with fork manager 4 7 8

5 9 12
4 4 11

Gas station 5 5 16
6 6 22
3 4 11

Readers-writers 4 5 16
5 6 56

Token ring 4 8 36
8 12 15

Milner’s cyclic 4 8 152
scheduler 8 16 134

Figure 7: Programs used in the experiment

The only kinds of constraints used in this experiment are
task and variable automata, since they can be built automat-
ically. For each possible combination of constraints we ran
each of the two versions of FLAVERS until the analyses con-
cluded. Depending on which constraints were used, the re-
sults of these analyses were either conclusive or inconclu-
sive. In this experiment we do not care which, since we are
interested in comparing performance of the two versions in
either case. Figure 7 identifies all programs used, giving the
number of tasks in the program, the number of constraints
available, and the number of experiments that use different
combinations of constraints. Note that the number of experi-
ments is less than the total number of possible combinations
of constraints since we only include runs where the product-
based version did not run out of memory. The combined
number of runs of each of the two versions for all programs
is 612.

In our experiments we did not use a full product automa-
ton, but rather an automaton produced by applying a stan-
dard reduction algorithm [7] and then the heuristics from [3]
to the full product automaton. To build this reduced prod-
uct automaton, the product-based version has to construct
the full cross-product of all constraint and property automata
for the problem and then reduce it. Thus, it is the size of the
unreduced version of the product automaton that limits the
problems we can actually solve with the product-based ver-
sion, but it is the sizes of the reduced product automaton that
are actually listed in the tables provided here.

We report the time and space requirements for the analy-
ses as measured by the UNIX time command on a DEC Al-
pha Station 200 4/233 with 128 megabytes of physical mem-



ory. The absolute values of time and space requirements may
seem staggering at first, but should be easier to accept in
light of two considerations. First, as noted earlier, the need
to model concurrency adds enormously to the complexity
of this problem, as it necessitates explicit representation of
all possible interleavings of the events in potentially concur-
rent tasks. Second, FLAVERS is a prototype analysis tool,
whose performance has not yet been fully optimized. In any
case, the subject of this paper is not the raw values of these
requirements, but rather the reductions achieved by utiliza-
tion of the tuple-based approach. We are confident that other
research will further reduce these raw values.

Figure 8 gives a graphical comparison between space re-
quirements for the two versions. In this figure, product-

 cpa-based
 tuple-based

|
0

|
140

|
280

|
420

|
560

|
700

|
840

|
980

|
1120

|
1260

|
1400

|0

|80000

|160000

|240000

|320000

|400000

|480000

|560000

|640000

|720000

|800000

 CPA states

 s
pa

ce
, M

b

Figure 8: Space requirements comparison

based analysis data points are denoted by triangles and tuple-
based analysis data points are denoted by boxes. The graphs
for both methods have been smoothed by 3-mean smoothing
to improve the viewability of the parts of the graphs that rep-
resent small product automata sizes. As is evident from this
figure, and as expected, the tuple-based version significantly
reduces the space requirements of FLAVERS and hence in-
creases the number and types of analysis problems that can
be handled by the tool.

To see where the current limits of the tuple-based ver-
sion lie, we ran several analyses for the gas station and con-
current writers programs, where we increased the number
of constraints used simultaneously. Since the product-based
version cannot handle problems of this size, we estimated
the number of states in the product automata for these analy-
ses. This comparison is shown in Figure 9. From this figure
there appears to be no apparent correlation between the data
flow problem size and the space requirements of the tuple-

Estimate of the number of prod-
uct automaton states

Tuple-based analysis space re-
quirements, Kb

3457 34368
60032 34368
44001 75520
48401 492032
52801 625536
484001 501696

Figure 9: Experiment with problems of larger size

based analysis. We believe that the explanation for this is
that as more information is added to the analysis, more paths
through the flow graph may be recognized as unexecutable
and thus the search space is reduced. This apparent prun-
ing of unexecutable paths does not seem to be a clear func-
tion of any obvious parameters of the analysis problem. In
general, the tuple-based version seems to handle programs
whose product automata would be two to three orders of
magnitude larger than what could be stored explicitly.

 cpa-based
 tuple-based

|
0

|
140

|
280

|
420

|
560

|
700

|
840

|
980

|
1120

|
1260

|
1400

|0

|75

|150

|225

|300

|375

|450

|525

|600

|675

|750

 CPA states

 ti
m

e,
 s

ec

Figure 10: Time requirements comparison

Figure 10 gives a graphical comparison between the
speeds of the two versions. From this graph it is clear that
improvement in space requirements for tuple-based analysis
is not paid for by speed degradation. It seems that the time
an analysis takes is of the same order of magnitude for the
two versions for all runs. This reflects the fact that the added
complexity of tuple propagation through the TFG, as com-
pared to the propagation of states for the product automata,
is offset by the time it takes to precompute the product au-
tomaton. On average, the tuple-based version has a better
time performance, with the mean difference being
sec.



We performed a number of statistical analyses to esti-
mate the statistical significance of our results. These anal-
yses support the hypothesis that, assuming normal distribu-
tion of the sample, for any large-sized sample of Ada pro-
grams both space and time requirements for the tuple-based
version will be lower than those for the product-based ver-
sion. In addition, it turns out that the ratio between the space
requirements of the product-based version and the space re-
quirements of the tuple-based version grows with increas-
ing the size of the data flow problem. In other words, the
tuple-based version scales better than the product-based one.
A more complete discussion of the results of this statistical
analysis can be found in [11].

7 Conclusions
We have shown how a carefully optimized implementation
of the FSA data abstractions can significantly reduce space
requirements for composite data flow analyses, while at the
same time noticeably improving the speed of these analy-
ses. The experimental results we obtained indicate that the
implementation using the tuple-based abstraction can solve
much larger data flow problems. This version also ran faster,
presumably because the additional propagation work done
by the tuple-based version is offset by the work this version
saves by not needing to build the potentially enormous prod-
uct automaton required by the product-based version.

We plan to explore a number of directions for further im-
proving the performance of FLAVERS composite data flow
analysis. For example, we shall evaluate representing vari-
ables symbolically during state propagation; removing the
need to create and store variable automata is likely to im-
prove the analysis performance. We also intend to comple-
ment the basic direction of this current work by exploring
ways to reduce the size of the TFG’s being analyzed. Cur-
rently, we model concurrency with TFG’s that contain enor-
mous numbers of edges needed to model all possible inter-
leavings of the statements of parallel tasks. Needing to con-
sider all of these edges slows the analysis of such programs
considerably. Partial order methods [4, 6, 13] may prove
useful in addressing this problem by reducing the need for
many of these edges. We expect these and other optimiza-
tions of composite analysis to improve both space and time
requirements of the analysis, thereby increasing the applica-
bility of this approach to a wider range of both concurrent
and sequential programs.

We hope that this work draws attention to the need to ex-
plore the balance between the practical complexity of flow
algorithms and the representation of data that they use. This
paper demonstrates that a shift in this balance can increase
the size of problems that can be solved by several orders of
magnitude. This alone should serve to greatly broaden the
scope of effective applicability of data flow analysis. The
significance of this work seems to us to go farther, however.
We have already indicated that the composite data flow anal-
ysis approach can also be used to solve multiple data flow

analysis problems simultaneously. Thus our work shows that
use of the tuple-based approach can materially facilitate the
solving of multiple problems simultaneously. Although we
have conducted this experiment in the context of FLAVERS,
we believe the results are more general and can be applied
to a range of optimization and analysis problems that utilize
data flow analyses.

8 Acknowledgments
We thank Matthew Dwyer, George Avrunin, Daniel Ruben-
stein, and Tim Chamillard for many helpful discussions
about this work. Furthermore, we are grateful for the in-
sightful comments from the anonymous reviewers.

References
[1] R. Bodı́k, R. Gupta, and M. L. Soffa. Refining data flow informa-

tion using infeasible paths. In Proceedings of the 6th European Soft-
ware Engineering Conference and the 5th ACM SIGSOFT Symposium
on Foundations of Software Engineering, pages 361–377, September
1997.

[2] M. Dwyer. Data Flow Analysis for Verifying Correctness Properties
of Concurrent Programs. PhD thesis, University of Massachussetts,
Amherst, 1995.

[3] M. Dwyer and L. Clarke. Data flow analysis for verifying properties of
concurrent programs. In Proceedings of the Second ACM SIGSOFT
Symposium on Foundations of Software Engineering, pages 62–75,
December 1994.

[4] P. Godefroid and P. Wolper. Using partial orders for the efficient veri-
fication of deadlock freedom and safety properties. In Proceedings of
the Third Workshop on Computer Aided Verification, pages 417–428,
July 1991.

[5] L. H. Holley and B. K. Rosen. Qualified data flow problems. IEEE
Transactions on Software Engineering, SE-7(1):60–78, January 1981.

[6] G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving
reduction strategies for reachability analysis. In Proceedings of 12th
International Conference on Protocol Specification, Testing, and Ver-
ification, INWG/IFIP, Orlando, Fl., June 1992.

[7] J. E. Hopcroft and J. D. Ullman. Formal Languages and their Relation
to Automata. Addison-Wesley, 1969.

[8] T. J. Marlowe and B. G. Ryder. Properties of data flow frameworks.
Acta Informatica, (28):121–163, 1990.

[9] S. P. Masticola, T. J. Marlowe, and B. G. Ryder. Lattice frame-
works for multisource and bidirectional data flow problems. ACM
Transactions on Programming Languages and Systems, 17(5):777–
803, September 1995.

[10] G. Naumovich, L. A. Clarke, and L. J. Osterweil. Verification of com-
munication protocols using data flow analysis. In Proc. of the Fourth
ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing, pages 93–105, Oct. 1996.

[11] G. Naumovich, L. A. Clarke, and L. J. Osterweil. Comparing im-
plementation strategies for composite data flow analysis problems.
Technical Report UM-CS-1997-043, University of Massachusetts,
Amherst, August 1997.

[12] K. M. Olender and L. J. Osterweil. Cecil: A Sequencing Constraint
Language for Automatic Static Analysis Generation. IEEE Transac-
tions on Software Engineering, 16(3):268–280, March 1990.

[13] A. Valmari. A stubborn attack on state explosion. In E. M. Clarke
and R. Kurshan, editors, Computer-Aided Verification, pages 25–41.
American Mathematical Society, Providence RI, 1991. Number 3 in
DIMACS Series in Discrete Mathematics and Theoretical Computer
Science.


