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Abstract

Industry is rapidly embracing distributed systems. Although there are many advantages to
distribution, such systems are certainly more difficult to understand and thus more
vulnerable to errors. Unfortunately,  insufficient thought is being given to how to ensure
the reliability of such systems. Whereas dynamic testing approaches provide increased
confidence in the reliability of sequential systems, for distributed systems even the
repeatability of a given test execution result cannot be counted upon. Alternative validation
approaches, such as formal verification and static analysis, are usually complicated to use
and often intractable. In this talk we describe a static analysis tool, called FLAVERS, that
addresses these limitations and offers a promising approach for validating distributed
systems..

FLAVERS was designed to be used by typical developers on real distributed software to
prove important user-defined properties about the behavior of such systems. Industrial
developers have been successful in applying FLAVERS to a diverse set of projects. But
these successes also indicated hurdles that remain before FLAVERS, or similar techniques,
can be expected to see wide acceptance. These hurdles, and our approaches for overcoming
them, will be described in this talk.
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Introduction

Increasing numbers of industrial systems are being implemented as distributed systems,
largely because distribution can improve execution speed and response time, can increase
robustness, and can provide the flexibility needed to facilitate component-based(plug and
play) approaches to software development. There has been considerable interest in
developing glue technology or middleware to facilitate interoperability (e.g., [2] and [12])
to support component-based development.  Unfortunately, there has been far less interest
in the critical issue of how these distributed systems are be validated to assure that they will
perform acceptably.

Because of non-deterministic computation and the potential for the parallel execution of the
statements in different threads to execute in various relative orderings with respect to each
other, it is extremely difficult to write such systems without inadvertently introducing
subtle errors, such as race conditions and deadlock. These characteristics also make it more
difficult to reason about such systems in order to gain Confidence  that  they will always
perform as required, and will never execute dangerous disallowed sequences of activities.
Testing is the usual approach to gaining such confidence.  But because distributed systems
may execute quite differently on two different runs using the same input data, a successful
test execution provides fewer assurances for a distributed system than for a sequential one
Thus, if distributed systems are to be widely and successfully used with confidence, better



methods for raising confidence in those systems must be developed and transitioned to
industry.

In this paper we describe FLAVERS [7], a system that helps verify user-specified
properties of sequential and distributed systems. FLAVERS performs a static, global
analysis of a system, using relatively efficient data flow analysis techniques, similar to
those used in optimizing compilers.  The goal of a FLAVERS analysis is to determine if a
specified property will hold on all or no executions of a system. If FLAVERS determines
that the property is valid, then the property is guaranteed to hold on all possible executions
of the system, for all possible input data. If FLAVERS cannot determine definitively that
the property holds, then the user is shown a path through the system, whose execution
would violate the property. If this path is executable, then FLAVERS has found an error
that the developer must fix. Sometimes, however,  the path does not correspond to a
legitimate execution of the system, in which case additional information can be supplied to
FLAVERS to help it to suppress consideration of this path.

FLAVERS has been successfully used in several research experiments as well as on  a few
industrial applications. Some of these experiments have shown how it can be applied to the
example (and contrived) programs that are used repeatedly in the literature [4]. Others have
demonstrated how it can be applied to communication protocols to verify properties that
require modeling the external environment [13]. Since FLAVERS works on a very generic
model of execution, others have been used to show that it could be applied to high-level
software architectures [15]. Industrial colleagues have demonstrated the successful
application of FLAVERS to Advanced Distributed Simulation systems and to the
verification of High Level Architectural (HLA) requirements [18].

One of our goals was to  develop a technique that could be used outside the research
laboratory. We wanted to develop an approach that was efficient and scaleable, that could
be applied to real programming languages (there are implementations for Ada and C++,
with support for Java underway), and that was easy enough to be used by the stronger
members of a typical industrial software development project. Although FLAVERS has
overcome many of the limitations of other verification approaches, and in many ways is
close to satisfying our goal, we have discovered that there are several other technical
hurdles that must be addressed before FLAVERS can be more readily transitioned to
industry. In the remainder of this paper, we first provide an overview of FLAVERS, so the
reader has a better understanding of how this approach works.  We then describe the
obstacles that we have encountered in our laboratory  or observed when working with
industrial users and outline our plans to remove, or at least diminish, these obstacles.

Related Work

Testing executes a program to determine whether its actual runtime behaviors conform to
its expected behaviors.  Since the number of possible program executions is usually
excessively large, it is impractical to use testing to demonstrate the absence of errors.
Moreover, for distributed systems, testing does not even guarantee that the system will
consistently work on the validated test cases. Formal verification employs mathematical
reasoning to prove the absence of errors by showing analytically that a program satisfies or
contradicts a given property.  Formal verification techniques can formulate and prove
intricate properties but require a significant amount of mathematical expertise, and hence
are human intensive and error prone.  Static analyses can also demonstrate the absence of
certain classes of errors without actually executing a program.  Unlike formal verification,
they entail little human intervention, making them less costly and less error-prone to use.



Static analysis of distributed systems is usually based upon reachability analysis, necessary
condition analysis, or data flow analysis.

Reachability analysis enumerates all possible execution states, which in the worst case is
exponential in the number of tasks [19].  Several approaches have been suggested for
optimizing such approaches [3, 5, 9, 10, 13, 14].  These approaches significantly improve
the feasibility of reachability methods, but in general are still prohibitively expensive to use
with industrial-sized distributed systems.

Necessary condition analysis encodes the property and the  necessary conditions for
execution as linear inequalities whose solutions determine satisfaction of the specification
[1].   While this technique has exponential bounds on its running time, it has been
successfully applied to a number of programs [6].

While the bulk of data flow analysis research has been aimed at optimization, recent work
has applied data flow analysis to the verification of distributed software [17,11]. Data flow
analysis is promising in that it usually has a low-order polynomial bound on the
computation time.   Most of the work in this area has been directed at the analysis of
restricted classes of behaviors, such as deadlock. Olender and Osterweil demonstrated how
data flow analysis  could be used to verify user-specified properties of sequential systems
[15]. FLAVERS extends their approach to distributed systems. In addition, FLAVERS
addresses one of the major limitations of static analysis techniques in that it provides a
systematic approach for sharpening the results.

Overview of FLAVERS

FLAVERS, Flow Analysis for VERifying Systems,  can be used to verify user-specified
properties about sequential or distributed programs. Using FLAVERS, an analyst must
first define a set of program events of interest and then formulates the properties to be
checked as sequences of those events. Properties are specified in the form of quantified
regular expressions (QREs)[8, 15]. These expressions consist of the alphabet of the
property, which is the set of events referenced in the property, an indicator of whether the
property should hold on all or on no executions of the program, and a regular expression
that describes the event sequences. After the analyst writes a property in the QRE language,
it is submitted to FLAVERS for a syntactic check and a translation into a deterministic finite
state automaton (DFSA) form. The reasoning component of FLAVERS only uses this
DFSA representation of the property, thus any specification language that could be
translated into a DFSA could be used to represent properties.

FLAVERS must determine if there are any executions of the program that could violate the
property specification. Thus, if a property specifies that a sequence of events should hold
on all executions of the program, FLAVERS needs to determine if there are any executions
for which this sequence does not hold. In order to determine what a program’s execution
sequences are, a graph model of the program is created where the nodes must be annotated
appropriately with events that come from the alphabet of the property. For example, if the
property is describing the order of inter-task interactions, any node in the program that
represents an inter-task interaction would need to have an annotation indicating which task
interaction occurs when the code associated with this node is executed. If we are interested
in the order that certain procedure calls could occur, then each node associated with such an
invocation would need to be annotated with an event that indicated that such a procedure is
called. By carefully modeling the program and selecting the granularity of the nodes, any
arbitrary action in the program could be associated with an event that is used in a property.
 .



Given a property  and a program  representation annotated with the  events  in the property,
FLAVERS uses data flow analysis techniques to determine whether the property indeed
holds. The results of an analysis may indicate that the property holds on all executions of
the program, no executions of the program, or some executions of the program. The first
two results are called conclusive, while the latter is called inconclusive. One of the reasons
for an inconclusive result is that an error has been found, and thus the property does not
hold over some executions of the program.  Another  reason, however, could be the
potential imprecision of the model of the program that was used during the analysis. As is
typically the case with static analyses, to assure that the results are always onservative, the
model of the program overestimates  the possible  executable behaviors of the program. If
the results of an analysis are inconclusive because the property holds on all real executions
of the program but does not hold on some infeasible executions of the model, then the
reported violation is spurious.

All static analysis approaches are hampered by spurious results. FLAVERS addresses this
problem by allowing the analyst to add control and data flow information incrementally to
the analysis to increase the precision. This information is added via feasibility constraints,
which are also represented by DFSAs.  Each feasibility constraint models an aspect of the
program behavior that is not captured precisely in the model of the program. For example,
the analyst might decide that the results are inconclusive because the value of some variable
used as the sentinel in a conditional statement affects the precision of the results. With the
help of automated tools provided by FLAVERS, the analyst  can build an automaton
representing the behavior of that variable. The resulting feasibility constraint is
incorporated in the next analysis run. Since the modeled behavior of this variable restricts
the set of all possible behaviors of the program, the overall program behavior is
represented with a greater degree of accuracy, thereby reducing the chance of a spurious
result. We have found that typically with a few iterations, analysts can find an error in the
program or successfully establish a conclusive result.

Feasibility constraints are a very general concept that can be used to extend our modeling
capabilities. Feasibility constraints can be used not only to improve the model of the
program but they can also be used to model aspects of the overall systems that are not
explicitly represented in the available code. For example, feasibility constraints can be used
to create assumptions about the behavior of the environment in which the program
executes. Or to represent the behavior of missing software components. When these
components become available, one should prove that each corresponds to the feasibility
constraints used to model its behavior. Thus, FLAVERS supports a natural compositional
approach to verifying large systems.

Hurdles to Adoption

Although static analysis approaches offer numerous advantages over the more traditional
dynamic testing approaches, success in applying static analysis entails meeting some
significant challenges.  In this section we identify some of these challenges and indicate
how we are addressing them.  These challenges must be met successfully in order to
expedite more widespread adoption of this promising, and increasingly essential, static
analysis approach to verifying properties of distributed systems.

Property specification.

Careful and precise specification of the property to be verified is clearly an essential part of
dataflow analysis.  As noted above, in FLAVERS the property is specified by means of a
QRE, a construct that offers sufficient semantic power to express a wide range of important



properties of concurrent and distributed systems.  Our experience, however, indicates that
it is difficult for novice (and even experienced) users to write QRE’s that precisely and
correctly express desired properties.  We have noticed that experienced users rather quickly
evolve idioms that are effective in capturing the nuances needed for precise specification of
properties, and that these idioms often are clearly described using structured natural
language.

Thus, for example, the property, “The elevator never moves with its doors open,” is
surprisingly tricky to express precisely and correctly using event sequence formalisms such
as QRE’s.  The desired behavior is that, for all execution sequences, once an “open door”
event occurs, there can be any sequence of events, except a “move elevator” or “close
door” event, followed by a “close door” event, which can then be followed by any
sequence of events except a “move elevator” or “open door” event, followed by a “move
elevator” event.  Translation of this natural language specification into the precise QRE
notation represents an additional challenge, and consequent adoption barrier.  In our work
we are identifying a structured natural language designed to support the use of the idioms
that we have found most useful, and that are particularly straightforwardly translatable into
QRE’s.  This work will build upon some recent work that is attempting to identity common
specification patterns for several different specification languages [8]. We plan to develop a
translation system based on generative grammars that will support the automatic translation
of comfortable natural language property specifications into precise and correct QRE’s.

System Annotation

Another obstacle to effective exploitation of static dataflow analysis is the need to correctly
annotate the graph representation of the system being analyzed with indications of the exact
locations at which all of the events of interest occur.  It is critically important that no event
locations be overlooked, as this might lead to erroneous analytic results.  It is also critically
important that all annotations reflect events that can actually occur and that they all be
correctly placed.  In general it is possible that an event of interest may potentially
correspond to an arbitrarily long and complex sequence of system code.  Thus, the
problem of unerringly identifying all possible events can be arbitrarily difficult.

Our experience, however, has indicated that many important properties are often expressed
in terms of events that are relatively easy  to identify from direct and straightforward
examination of source code.  Thus, for example, many of the properties that we have
studied are defined in terms of events all of which occur as procedure invocations.  Often
the procedure invocation itself is the event of interest. Sometimes invocation of a procedure
with a particular parameter is the event of interest.  In such cases it is easy to conceive of an
automated tool that can be of considerable help in assuring that the needed annotations are
carried out completely and correctly.

We are currently developing such a tool. Based upon the notion of a concordance, this tool
uses parsing technology to identify such syntactic tokens as keywords and identifiers in
programming language source text.  The tool then supports users in specifying simple
configurations of these tokens and identifying them with specific named events.  The tool
then works with our front-end technology to annotate the graph representation of the
source text with the events that correspond to the configurations that the user has specified.
While some types of annotations may be difficult or impossible to specify using our tool,
our experience, nevertheless, suggests that most will be automatable in this way.  This will
leave the user free to concentrate attention on a smaller number of annotations, thereby
increasing the chance that all annotations will be done correctly.  This should reduce user
worries about incorrect annotations undermining the accuracy of the analyses and,
therefore, reduce this obstacle to adoption.



Evaluating Data Flow Anomaly Reports

While the automatic generation of diagnostic reports is one of the positive features of static
dataflow analysis, the reports can, nevertheless, sometimes be cryptic and potentially
misleading.  Thus, recall that FLAVERS will report the possibility of an anomaly if the
property can be violated along some path through the graph representation of the program.
In addition, as noted above, the violation may be on a path that cannot be executed.  Thus,
reports of possible illegal executions must always be viewed with some skepticism, until
the path or paths causing them have been specified and studied for executability.   Indeed,
early dataflow analyzers tended to produce large quantities of reports of possible illegal
behaviors, and it was not unusual for many of them to have been based upon unexecutable
paths.  This was an obstacle to adoption of these early systems.

Thus, in our work we have attempted to augment FLAVERS with additional tools designed
to help the analyst separate such spurious results from real error phenomena.  Our first step
was to create a tool that generates paths along which illegal sequences of events occur and
makes specifications of these paths available to the human user.  Tracing one such path is a
straightforward, but not completely trivial task. The work of this tool is complicated,
however, by the fact that in most cases there are infinitely many such paths (arising, for
example, from the possibility of infinitely many different numbers of iterations of program
loops).  Identification of a small number of such paths that are “significantly” different
from each other seems to be a difficult task to which more work must be devoted.  But the
current tool has still proven to be of substantial help to analysts who wish to understand
how illegal sequences of events might possibly occur in their systems.

As already noted, obliging the human analyst to determine whether paths are unexecutable,
and therefore irrelevant to the analysis, has proven to be an irritant that has been an obstacle
to adoption of this technology.  While it is impossible to write a system that always
unerringly determines the executability of an arbitrary sequence of program statements (it is
equivalent to the Halting Problem), our experience has nevertheless indicated that it is often
quite straightforward to demonstrate the unexecutability of many of the paths in the sorts of
programs we have seen.  Thus, as has been described above, we have augmented
FLAVERS with feasibility constraint capabilities for pruning from consideration large
classes of unexecutable paths through our graph representations. Our early experience with
this capability suggests that iteratively adding additional information results in an
incremental reduction in the number of spurious reports.  Unfortunately, as more
information is modeled, the worst case bound on the analysis increases. In practice,
however, this additional information reduces the search space and thus often results in a
reduction, not an increase, in the execution time. The major hurdle, therefore, is to help
users view the paths that are associated with property violations and to help them formulate
effective feasibility constraints.  We expect that the availability of such capabilities will
result in significant reduction in the number of spurious diagnostic messages, with a
consequent lowering of this important barrier to adoption.

Understanding Data Flow Analysis

While the preceding discussion has identified specific technical issues that we are
addressing in order to reduce resistance to adoption of this technology, it has not addressed
a more fundamental difficulty, namely the widespread ignorance of the very nature of static
analysis as a complement to the more traditional dynamic testing approaches.  The first
prototype demonstrations of the viability of static dataflow analysis for program error
diagnosis were carried out nearly 25 years ago [16].  Yet, we have noted that surprisingly
few actual practitioners know about this technology.  Indeed, we have been startled to find



that practitioners often question the very possibility of this type of analysis.  It appears that
the dynamic testing paradigm is so deeply ingrained in many programmers’ consciousness
that it has become the fixed perspective from which all other quality determination
approaches are considered.  Because testing is aimed at identifying the presence of faults,
and is essentially incapable of being used to demonstrate the absence of faults, many
programmers seem to refuse to even believe that such demonstrations are even possible.

Approaches to addressing this fundamental problem seem to require going beyond the
devising of new tools and technologies.  We believe that the fundamental difficulty here
stems from lack of a clear grasp of the fundamental goals and requirements of testing and
analysis.  All too many programmers seem to view the running of test cases and
examination of results as goals unto themselves, rather than as means to an end.  All too
many programmers seem to have not even thought about what that end might be.  As a
consequence all too many testing activities are directionless, leaving testers unable to
articulate either what they have learned or established at the conclusion of a testing activity
or even what they were trying to learn.   It is our contention that programmers should be
attempting to demonstrate the absence of errors from their programs, and to establish that
their programs either do or do not have certain important properties and characteristics.
Dynamic testing can encourage and support such beliefs, but can generally not establish
them as proven truths.  Thus, we believe that educating those who must demonstrate
program quality about the value of establishing goals and requirements for testing will help
to increase interest in static analysis, and lead to eventual acceptance of this approach as a
viable complement to dynamic testing.

Integrating Static Analysis

Acceptance of static analysis as a complement may be a first step towards more widespread
adoption of static analysis, but adoption is not likely to come until its capabilities have been
effectively synergized as complements to those of dynamic testing.  Our experience with
static analysis has suggested strong synergies with dynamic testing.  Thus, for example,
we do not suggest that static dataflow analysis be the first diagnostic technique employed in
attempts to demonstrate the absence of errors from a program.  Dynamic testing should
generally be performed first, as the generation of rough preliminary test data sets, and
evaluation of results of test execution, is usually straightforward and effective in finding
many errors.   But, after incrementally thorough dynamic testing regimes have failed to
turn up errors, it is often the case that static dataflow analysis can and should be used to
demonstrate that errors are absent.  Correspondingly, as incremental modeling for the
purpose of sharpening dataflow analysis becomes increasingly difficult, it is reasonable to
consider the use of dynamic testing to explore the executability of paths along which illegal
event sequences have been determined.

As our understanding of the strengths and weaknesses of static dataflow analysis has
increased, it has become clear that it needs to be effectively integrated with dynamic testing.
In recent work we have started to study the definitions of specific testing/analysis
processes that cleanly and effectively synergize these two approaches.  By promulgating
definitions of these integrated testing and analysis processes, and demonstrating their
efficiency and effectiveness, we hope to be able to establish both the importance and the
practicality of static dataflow analysis, and to use these process definitions to lower barriers
to adoption still further.
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