

Architecting Processes are Key to Software Quality
Leon Osterweil

University of Massachusetts
Amherst, MA 01003 USA

413/545-2186
ljo@yquem.cs.umass.edu

ABSTRACT
In this position paper we explain why Architecting
Processes, namely processes for using architectures to
develop software, should receive more attention.
Architectures are viewed as software engineering artifacts
that can be used as the basis for developing superior
software products. But the development of these products
should still be accomplished with the guidance of processes.
The processes are themselves software artifacts that should
be developed in such a way as to demonstrably assure that
they achieve their goals and requirements. Architecting
Processes should be developed to demonstrably assure that
software products are of high quality. Different processes
will have different effectiveness in assuring this. Different
architecture definition formalisms will be of differing value
in supporting these different processes. The selection of an
architecture definition formalism should, therefore, be
strongly determined by the choice of Architecting
Processes, and the goals and requirements that they must
satisfy.

Keywords
Software process, software architecture, software quality

1 INTRODUCTION
There should be greater interest in the goals and purposes of
architecture. Currently most interest seems to be focussed
on the artifacts that comprise a software architecture. There
is considerable difference of opinion on what the nature and
variety of these artifacts should be. We believe that
disagreements on this are hard or impossible to resolve in
the absence of a clear sense of what the purpose of an
architecture is. We believe that different architecture
artifacts and representation formalisms are of differing value
in support of different goals and purposes. It seems agreed
that good software architectures can facilitate reuse, support
evolution, help in detecting serious errors early, and
generally help assure the quality of software products. But
it is far from clear that any given architecture representation
will be most effective in supporting all of these goals.
Thus, we suggest that more attention must be addressed to
the question of what architectures are for, then which
architecture representation formalisms are effective in
supporting which of the various goals for architectures, and

then how those representation formalisms can be used most
effectively to support the achievement of those goals.

The activities entailed in pursuing understood, specified
goals for an architecture are what we refer to as
“Architecting Processes.” It seems clear that superior
architecting processes can be of enormous importance when
integrated effectively into overall software development
processes, and are themselves software artifacts. In earlier
work we have suggested that “Software processes are
software too” [Osterweil 87, Osterweil 97]. That being the
case it is useful to consider the requirements, design, and
implementation aspects of Architecting Processes. From
this perspective, we see that the goals and purposes of
creating architecture artifacts are in fact Architecting Process
requirements. Specifications of the orderly, systematic
way in which one goes about achieving those goals are
what we refer to as Architecting Processes models and code.
Thus, our position is that the current preoccupation with
formalisms for specifying architecture artifacts should be
better balanced by increased attention to the issue of
developing Architecting Processes that use them. We
suggest that the study of Architecting Processes can provide
clear evidence of which architecture representations can be
used in which ways to effectively support the achievement
of which architecting goals. Further, the study of
Architecting Processes should also lead to understandings of
the ways in which existing architecture representations
could be improved to make them more useful.

As just noted, process development must begin with
specification of process requirements, and thus our
investigation of Architecting Processes should begin with
identification of architecting requirements. It is our belief
that one of the key goals and purposes of architecting is to
assure the quality of product software that is developed from
the architecture specified. Thus, to demonstrate the value
and applicability of our ideas we begin by establishing as a
goal the development of application software that is of
demonstrably high quality. We then indicate how
Architecting Processes can help in achieving that goal, and
how consideration of these processes can provide indications
of which architecture specification formalisms provide the
most effective support for processes that contribute most
strongly towards that goal.

There are a number of types of processes that can contribute
towards using architectures to achieve software product
quality. For example, some types of Architecting
Processes can be used to assure that the architecture
developed is sound, well-formed, and in keeping with
product software objectives. To these processes, the
architecture itself is an object of study and analysis and the
processes examine it to assure that it is indeed a reliable
guide to effective development. Other types of processes,
presumably executed subsequently, are used to assure that
the application software that is developed is indeed
developed in accordance with the architecture specification.
This then assures that the validated architecture is used
faithfully as a true guide in the implementation of software
that is then reliably known to have the quality
characteristics and properties that are desired. Still other
types of processes analyze explicit, formal representations
of Architecting Processes such as those that we have just
described, in order to determine how well these Architecting
Processes seem to support the achievement of state software
product quality objectives.

2 DETERMINING ARCHITECTURE QUALITY
As observed above, we believe that an architecture should
be considered to be an artifact, and that it is important to be
able to assure that it is of high quality. There are a variety
of different characteristics and properties that a high quality
architecture should be expected to possess. Among them
are consistency, completeness, responsiveness to
requirements, and implementability. Clearly some (perhaps
all) of these are difficult or impossible to determine
definitively. On the other hand it is reasonable and
important to consider that they can and should be
determined increasingly definitively with the help of
effective processes.

Thus, for example, the consistency of an architecture
specification can and should be studied. For example all
specified dataflows should be specified consistently, and
every hierarchical elaboration should be consistent with the
specification that it is elaborating. It is not difficult to
imagine the outlines of processes that are able to make
these kinds of consistency determinations, although the
specific details may vary considerably with the formalism
in which the architecture specification is expressed.

Processes for determining the degree to which an
architecture is responsive to requirements are harder to
conceive of. In particular, in this case it is not clear how
one would quantify the degree of responsiveness. Processes
that have this goal are more likely to need to be considered
to be iterative and open-ended.
Thus the spectrum of types of processes for determining
Architecture Quality is quite broad. Furthermore, their
effectiveness clearly depends in important ways upon the

kinds of semantic details that are expressible in the
architecture specification formalism itself. These
observations seem to reinforce our contention that it is
important to clearly and precisely state the goals and
requirements for processes. In this case, these goals and
requirements must address the dimensions and
quantifications of architecture quality that are to be
achieved. These in turn should presumably be derived from
corresponding software product quality goals and
requirements. Once these have been established, processes
for determining them can be devised. But the degree to
which such processes can be effective may often be
determined by the choice of architecture formalism.

This underscores our contention that the choice of
architecture formalism should be powerfully molded by
consideration of the Architecting Processes needed in order
to meet product quality goals and requirements.

3 ASSURING THAT IMPLEMENTATIONS
CONFORM TO ARCHITECTURES
Other processes seem important in determining how well
actual implementations adhere to the guidance and
specifications of the architecture. Here too, the question of
how to determine and quantify the notion of conformance is
not an easy one, as it has many facets. Thus, it is
important to determine, for example; that an
implementation achieves the functionality that an
architecture specifies, that the implementation’s structure is
as specified by the architecture, and that the modularization,
communication patterns, and control structures in the
implementation are those that the architecture has specified.
Indeed there are virtually limitless ways in which it might
be important to compare the actualities of an
implementation to the specifications of an architecture. For
each way, it is possible to imagine a variety of ways in
which the comparison can be done.

Here too, we see that there is a diversity of processes that
might be employed to make a particular type of
determination of conformance of implementation to
architecture. There is a diversity of types of conformance
that might be desired as well. The overall process for
determining the degree to which an implementation
conforms to its architecture is some sort of synthesis of
these component processes. These processes are also
Architecting Processes. They are Architecting Processes
that are aimed at demonstrating that the architecture
(presumably one that has already been shown to be of high
quality by earlier Architecting Processes) has indeed been
faithfully used as a guide to the actual implementation. We
might refer to them as Architecture-Based Implementation
Verification processes.
Here too, we note that any particular Architecture-Based
Implementation Verification process used to compare an
implementation to its architecture should be created in
response to clearly understood and stated implementation

evaluation goals and requirements. These goals and
requirements should be derived from overall product quality
goals and requirements. These Architecting Processes must
be designed to demonstrably deliver the product quality
assurances that are required. Different architecture
specification formalisms will support different of these
processes to differing degrees. Thus, here too we see that
the choice of architecture formalism should be strongly
guided by these considerations.

4 COMPARISON AND EVALUATION OF
ARCHITECTING PROCESSES
In the previous two sections we have argued for clearer
recognition of the importance of Architecting Processes.
While the attention of the software architecture community
is currently focussed primarily on software architecture
artifacts, there is a clear implicit recognition that these
artifacts are developed to be used for some software product
related purposes. We have emphasized that software product
quality is one such important purpose, and have indicated
how Architecting Processes are vehicles for using
architecture artifacts to achieve software product quality.

In these previous sections we have also emphasized that
these Architecting Processes are software that can and
should be developed to meet goals and requirements that
need to be made as clear and explicit as possible. It now
seems important to note that this implies that it is also
important to determine the quality of Architecting Processes
themselves. This quality is essentially the degree to which
the Architecting Processes conform to the requirements that
should have driven their development. Thus, for example,
if clean modularization of a software product is a
requirement, then Architecting Processes should be used to
demonstrate that the architecture driving the implementation
defines a clean modularization and that implementation of
the architecture adheres to the specified modularization.
Architecting Processes that make no attempt to do either or
both are then clearly poor quality processes. Architecting
Processes that incorporate effective techniques for
determining this characteristic are of relatively higher
quality.

We strongly advocate the use of process definition and
specification formalisms as the basis for definitively
making these process quality determinations. When these
process specifications are precisely defined using rigorous
formalisms, it is possible to adduce definitive arguments
about their quality--namely the degree to which they
support the achievement of product quality objectives.

It is important to note that process specifications must
incorporate specifications of the products upon which they
operate. In the case of Architecting Processes, the primary
artifact with which they are concerned is the architecture
specification. Thus we have just also argued for the
importance of rigorously defined architecture specifications.
As noted above, the particular architecture specification
formalism should be chosen to match the Architecting
Process that will use it.

5 SUMMARY
In summary, we note that 1) different product quality
objectives are supported by different processes, 2) the
quality of these processes can be demonstrated best through
argumentation about Architecting Process, 3) different
architecture formalisms are more or less suitable for use by
different Architecting Processes, and 4) different
formalisms are better vehicles than others for supporting
various of the objectives and demonstrations.

In short, architecture specification formalisms can and
should be evaluated in terms of how well they support the
specification of Architecting Processes that are
demonstrably superior in helping to meet specified software
product quality goals.

REFERENCES

[Osterweil 87] L.J. Osterweil, Software Processes are
Software Too, Proc. 9th Intl. Conference on Software
Engineering, Monterey, CA, IEEE Press, 2-13.

[Osterweil 97] L.J. Osterweil, Software Process are
Software Too, Revisited, Proc. 19th Intl. Conference on
Software Engineering, Boston, MA, ACM Press, 540-548.

