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Abstract

The steady state performance of a bulk transfer TCP flow (i.e. a flow with a large amount
of data to send, such as FTP transfers) may be characterized by three quantities. The first
is the send rate, which is the amount of data sent by the sender in unit time. The second is
the throughput, which is the amount of data received by the receiver in unit time. Note that
the throughput will always be less than or equal to the send rate due to losses. Finally, the
number of non-duplicate packets received by the receiver in unit time give us the goodput of the
connection. The goodput is always less than or equal to the throughput, since the receiver may
receiver two copies of the same packet due to retransmissions by the sender. In [9], we presented
a simple model for predicting the steady state send rate of a bulk transfer TCP flow as a function
of loss rate and round trip time. In this paper, we extend that work in two ways. First, we
analyze the performance of bulk transfer TCP flows using more precise, stochastic analysis. We
show that the predictions of the approximate model in [9] closely match the predictions of the
more precise model, thus validating the approximate model. Second, we build upon the analysis
in [9] to provide both an approximate formula as well as a more accurate stochastic model for
the steady state throughput of a bulk transfer TCP flow.
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1 Introduction

The steady state performance of a bulk transfer TCP flow (i.e. a flow with a large amount of data
to send, such as FTP transfers) may be characterized by three quantities. The first is the send rate
(SR), which is the amount of data sent by the sender in unit time. The second is the throughput,
which is the amount of data received by the receiver in unit time. Note that the throughput will
always be less than or equal to the send rate due to losses. Finally, the number of non-duplicate
packets received by the receiver in unit time give us the goodput of the connection. The goodput is
always less than or equal to the throughput, since the receiver may receive two copies of the same
packet due to retransmissions by the sender. In [9], we presented a simple model for predicting the
steady state send rate of a bulk transfer TCP flow as a function of loss rate and round trip time.
Note that in [9] used the term “throughput” to describe what we call “send rate” in this paper.

Here, we extend the work in [9] in two ways. First, we analyze the performance of bulk transfer
TCP flows using more precise, stochastic analysis. We show that the predictions of the approximate
model in [9] closely match the predictions of the more precise model, thus validating the approximate
model. Second, we build upon the analysis in [9] to provide both an approximate formula as well
as a more accurate stochastic model for the steady state throughput of a bulk transfer TCP flow.

Stochastic models of TCP have also been proposed in [5] and [8]. Our approach differs from
these works in several ways. The model proposed in [8] is a fluid model, and measures the SR of
the connection. The model does not take into account the effect of TCP timeouts. As a result, the
closed form solution obtained in [8] resembles the formula derived in [6].

In [5], stochastic models for predicting the throughput of OldTahoe, Tahoe, Reno and NewReno
flavors of TCP are proposed. The focus of the paper is on LAN-like environment with wireless
links. The packet loss process is assumed to be Bernoulli and the impact of round trip time is
not considered. In addition, timeouts are assumed to be limited to two successive backoffs. The
actual timeout backoff mechanism [11] allows for six backoffs, and places no limit on the number
of successive timeouts. The model, however, does take into account the impact of slow start and
fast retransmits, which our model ignores.

The rest of this paper is organized as follows. In Section 2, we present the stochastic model
for TCP-Reno, that predicts both the SR and the throughput of the connection. In Section 3, we
compare the SR predicted by this model to the SR predicted by the approximate model proposed
in [9]. Finally, in Section 4, we present an approximate formula, based on work in [9] that predicts

the throughput of a TCP connection.

2 A model for TCP congestion control and avoidance

We investigate the impact of loss rate, limited receiver window size and average round trip time
(RTT) on the long term, steady state SR of a TCP connection. We assume that the reader is
familiar with TCP Reno congestion control [4, 11, 12] and the approximate analysis in [9]. We



adopt most of our terminology from [4, 11, 12, 9].

We model TCP’s congestion avoidance behavior in terms of “rounds.” A round starts with
the back-to-back transmission of W packets, where W is the current size of the TCP congestion
window. Once all packets falling within the congestion window have been sent in this back-to-back
manner, no other packets are sent until ACKs are received for some or all of these W packets. We
assume that ACKs arrive in a burst, just as the packets are sent in a burst. This ACK reception
marks the end of the current round and the beginning of the next round. We assume that the
duration of a round is equal to the round trip time and that it is independent of the window size.
This assumption is also adopted (either implicitly or explicitly) in [6, 7, 8]. Note that we have also
assumed here that the time needed to send all the packets in a window is smaller than the round
trip time; this behavior can be seen in observations reported in [2, 10].

At the beginning of the next round, a group of W' new packets is sent, where W' is the new
size of the congestion control window. Many TCP receiver implementations send one cumulative
ACK for two consecutive packets received (i.e., delayed ACK, [12]). If W packets are sent in the
first round and are all received and acknowledged correctly, then W/2 acknowledgments will be
received. Since each acknowledgment increases the window size by 1/W, the window size at the
beginning of the second round is then W' = W +1/2. That is, during congestion avoidance and in
the absence of loss, the window size increases linearly in time, by one packet every two round trip
times.

To model TCP’s behavior in the presence of packet loss, we assume that a packet is lost in
a round independently of any packet lost in other rounds. This assumption is justified to some
extent by past studies [1] that have shown that periodic UDP packets that are separated by as
little as 40ms tend to be lost only in singleton bursts. We assume, however, that packet losses are
correlated among the back-to-back transmissions within a round: if a packet is lost, all remaining
packets transmitted until the end of that round are also lost. This bursty loss behavior, which
has been shown to arise from the drop-tail queuing discipline (adopted in many Internet routers),
is discussed in [2, 3]. Packet loss can be detected in one of two ways, either by the reception at
the TCP sender of “triple-duplicate” acknowledgments, i.e., four ACKs with the same sequence
number, or via time-outs. In the former case, the sender reduces its window by half, and continues.
In case of the latter, the sender waits for a retransmission timeout and reduces its window size
to one. If the following loss event is also a timeout then the retransmission timer is exponentially
backed off. See [12] for more details.

To model the impact of packet losses, it is useful to consider Figure 1. Consider a round in
which TCP’s window size is w. Let fi be the last packet in this round that makes it to the receiver.
Thus, packets fri1 ... fw are lost. The sender will receive ACKs for the first £ packets that made
it to the receiver. This will result in a subsequent “short” round, consisting of k packets. Assume
that m packets from this short round make it through. Then the sender will get m duplicate ACKs

for packet fr. If three or more duplicate ACKs are received, the sender reduces its window size by
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Figure 1: Packet and ACK transmissions preceding a loss indication

half and continues. Otherwise, it waits for a retransmit timeout and reduces its window to one.
We do not model certain aspects of TCP’s behavior (e.g., fast recovery) but believe we have
captured the essential elements of TCP behavior, as indicated by the generally very good fits be-
tween model predictions and measurements made on numerous commercial TCP implementations,
as discussed in [9]. Also note that in the following, we measure SR and throughput in terms of

packets per unit time, instead of bytes per unit of time.

2.1 The stochastic model

To formally model the behavior of TCP in terms of rounds, we define several sequences of random

variables that define the state space of the modeled system.

i {WZ}?iOa 1 <W; < Whag-

W; is window size for round 4, 1 =0, ... 00.

o {C;}2,, Ci=0,L1
C; allows us to model the increment of window by one every two rounds during no-loss period.
C; = 0 indicates first of these two rounds and C; = 1 indicates the second. We impose the
following constraint on the value of C;: If W; = Wy,44, then C; = 0. This captures the fact

that the window size cannot grow beyond W, 4.

o {L;}2,, 0<L;<W;_y.
L; is the number of packets lost in the (i — 1) round, i = 0,...00. We define Ly = 0.
If L; = 0 it is an indication that either no packets were lost in the previous round, or the

previous round was a short round and effects of packet loss have already been accounted for



via a triple duplicate event or a timeout event. L; > 0 indicates that this round is a short
round, and is a result of L; packets being lost in the previous round. For short rounds, Cj is

always equal to 0. In other words, if L; > 0, then C; = 0.

o« (T}, 0<T<T.
T; denotes whether the connection is in a timeout state in round ¢, 4 = 0...00. T; = 0 if
transmission of packets in this round was not a result of a retransmission timer expiration.
In other words, T; = 0 if a timeout did not occur as a result of packet loss in the previous
round. Moreover, T; = 1,...,7, if timeout did occur in the previous round, and the backoff

value was 1,2,4,...,64, respectively.

o {Ri};}i()a RTT < Ri < 64 * Tg.
R; denotes the duration of round 7, + = 0,...00. RTT denotes the round trip time, and Ty
denotes the base timeout value. During a timeout sequence R; can have value of Ty, 27Ty, . . . 64%

Ty, as explained earlier. All other rounds have a length of RTT.

i {Nl};,)im 1< N; < Whaz-

N; denotes the number of packets transmitted in round 7, i =0, ... cc.

* {Mi}éﬁo’o < M; < Winag-
M; denotes the number of packets transmitted in round i, ¢ = 0, ... co, that make it to the

receiver.

The sequence of random variables, {(W;, C;, L;, T;)}2, is a finite state Markov chain with
probability transition matrix, Q = [¢y q k,sw,c,,¢], Which we will soon calculate. Two states of this
MC are transient, namely: (1,0,0,0) and (1,1,0,0). This is because we assume that a TCP sender
starts with a window size of 1. However, once the window reaches size of 2, it is never reduced to 1
unless either a timeout occurs (7; > 0) or the previous round had size k and k — 1 packets got lost,
(Wi—1 = k,L; =k —1). As a result, there are no transitions fo these two states from rest of the
states in the MC. It can be easily seen, from the transition probability matrix defined later in this
section, that the remaining states in the MC form an irreducible sub-chain, and that this subchain
is aperiodic. Define set S as the set consisting of the states of this subchain. Consequently the
following limiting probabilities exist,

Twelt = im P(W; =w,Cy =¢,L; =1,T; =t), (w,¢l,t)eS

1— 00

and they satisfy

T=mQ (1)
Let r = (v,a,k,s) € Sandr' = (w,c,l,t) € S be two successive states in the sequence {(W;, C;, L;, T;) }52,.
Thus:

r'=r4+1



and
W,=v,Cr=a, Ly =k, T, =5, Wp =w, Cpy =c, Ly =1, T,y =1
The number of packets sent during this transition is denoted by N, and the time taken for the
transition is denoted by R,. Of the N, packets, M, packets make it to the receiver. Define the
conditional expectations:
Ny,a,k,s;w,c,l,t = E[NT‘|W7‘ =v,C.=a,L, = kT, = s,Wy = w,Cy =c¢, Ly =1, T, = t]
My,a.k,s;w,c,lt = E[MT‘|WT‘ =v,Cr=a, Ly =k, T, =5, Wy =w,Cp =c¢, Ly =1, Ty = t]
Tv,a,k,s;w,c,l,t = E[Rr|Wr =0v,C =a,L, =k, T, =s,Wy =w,Cp =c¢,Lpy =1,T, = t]

These conditional expectations, along with the transition probabilities gy 4k s;w,ct, capture the
behavior of TCP’s congestion control and avoidance algorithm. Define:

N = lim N;
i—00

M = lim M;
i—00
i—00

For given time ¢ > 0, define N; to be the number of packets transmitted in interval [0, ¢], and
M; to be the number of packets that make it to the receiver. Then the SR during that interval is
given by: N;/t, and the throughput by M,/t.

The long term, steady state SR of a TCP connection is then defined by:

. Ny
SR = lim —

t—oo t

E[N]

E[R]
§ Tv,a,k,s § Qu,a,k,s;w,c,l,tMv,a,k,s;w,c,l,t

(v,a,k,s)ES (w,l,c,t)€S

= (2)

E Tv,a,k,s E Qu,a,k,s;w,c,l,tTv,a,k,s;w,c,l,t

(v,a,k,8)€ES (w,l,c,t)€ES

Similarly, the long term, steady state throughput of a TCP connection is defined by:

. My
Throughput = lim —

t—oo

E[R]
Z Tv,a,k,s Z Qu,a,k,s;w,c,l,tTv,a,k,s;w,c,l,t

(v,a,k,s)ES (w,l,c,t)€S

= (3)

E Tv,a,k,s Z Qu,a,k,s;w,c,l,tTv,a,k,s;w,c,l,t

(v,a,k,8)€ES (w,l,c,t)€ES

We also need to formalize the “drop-tail” loss model. If the packet loss probability is p, then
each packet in a given round may be lost with probability p, until a packet s lost. All the packets
in the round, following the lost packet, are lost with probability 1. Losses in different rounds are
independent of one another.

We now calculate the transition probabilities and the conditional expectations of packets sent

in each round and time required to complete the round.



2.1.1 No packets are lost

When no packets are lost, the TCP window size increases by one every two round trip times. During

each such round, a window worth of packets are sent in one round trip time. Therefore:

qw,0,0,0;w,1,0,0 = (1-p)*, 1<w<Wha
Qu100w+1,000 = (1=p)" 1< w< Wy,
Gw,0,0,0;w,0,0,0 = (1-p)% w=Whna
T,0,0,0;w,1,0,0 = w, 1 <w < Whae
Tw,1,0,0;w+1,0,00 = W, 1 <w < Wi
7w,0,0,0;w,0,0,0 = w, w = Whae
(4)
My,0,0,0:w,1,0,0 = w, 1 <w < Wi
Mw,1,0,0;w+1,0,00 = W, 1 <w < Wi
My ,0,0,0;w,0,0,0 = w, w = Whas
T'1,0,0,0;w,1,0,0 = RIT, 1 <w < Wihas
Tw,1,0,0w+1,000 = RIT, 1 <w< Whas
Tw,0,0,0;w,0,0,0 = RITT, w = Wz

2.1.2 One or more packets are lost in a round

When one or more, but not all, packets are lost in a round, the following round is a “short” round,
as shown in Figure 1. This transition is accompanied by sending of a window worth of packets
in a round trip time. When all packets in a window are lost, there is no following “short” round,

instead, the sender waits for a retransmission timeout, and the window size goes to one.

Qw,c,0,050,0,1,0 = p(1—-p)¥ ", 2<w< Wy, ¢=0,1, 1<I<w
qw,c,0,0;1,0,0,1 = p, 1<w< Whas, ¢=0,1
Nw,c,0,0;w—1,0,0,0 = W, 2<w < Whaz, ¢=0,1, 1<l <w
nw,C,0,0;l,0,0,I = w, 1 S w S Wma;p, Cc = 0, 1
(5)
My ,c,0,0;w—1,0,1,0 w—1, 2<w < Whae, ¢=0,1, 1<I<w
mw,C,0,0;I,0,0,l 07 1 S w S Wma;p, Cc = 0, 1
T'w,e,0,05w1,0,1,0 RTT, 2<w < Whaz, ¢=0,1, 1<I<w
Tw,e,0,0;1,0,0,1 TO, 1 <w< Whae, ¢=0,1



2.1.3 One or more packets are lost in a short round

The loss of one or more packets in a short round, it affects the number of duplicate ACKs received
by the sender, as shown in Figure 1. If the number of packets that make it to the receiver is greater
than two, the sender will get at least three duplicate ACKs and it will reduce its window size to
half. Otherwise, it will wait for a timeout, and reduce its window size to one. Note that if the short
round consists of less than three packets, (w < 3), then timeout will always occur. Note that for
all the equations in (6), 0 <1 < Wiz, and 1 < w +1 < Winge-

Gw,0,1,0;1,0,0,1 = 1, I1<w<3
2
¢u,0,1,051,0,0,1 = Zp(l -p), 3<w < Winae
=0
w—1
Qw,0,1,0; (w+1)/2],0,00 = Z p(l-p)'+(1-p)*, 3<w < Wiaa
i=3
Nw,0,1,0;1,0,0,1 = w, 1<w<3
N4w,0,1,0:1,0,0,1 = w, 3<w+1 < Wiaa
Nay,0,1,0;| (w+1)/2],0,0,0 = W, 3 <w < Whae
(6)
m1,0,,0;1,0,0,1 = (1-p
mM2.0,1,051,0,0,1 = p(1-p)+2(1-p)?
2
Ma,0,1,051,0,0,1 = Zip(l -p), 4<w < W
i=0
w—1
May,0,1,0; (w+1)/2],0,0,0 = Z ip(l—p)' +wl—p)*, 3<w< W
i=3
Tw,0,1,051,0,0,1 = Ty —RIT, 1<w<3
Tw,0,1,0;1,0,0,1 = Ty —RIT, 3<w < Wige
Tw,0,,0:[(wtl)/2),000 = RIT, 3<w < Wiaa

2.1.4 Exponential Backoff

If a packet is retransmitted as a result of a timeout, the retransmission timer backs off exponen-
tially, but not exceeding 64 times the base timeout value. The timeout sequence ends when the

retransmitted packet is successfully ACKed.



41,0,0,i;1,0,0,min(i+1,7) = P 1< <7

41,0,0,i;2,0,0,0 = 1-—p, 1<i<7
71,0,0,;1,0,0,min(i+1,7) = 1L 1<4<7
11,0,0,i;2,0,0,0 = 1, 1<i<7
(7)
M1,0,0,i;1,0,0,min(i+1,7) = 0; 1<i<7
™mM1,0,0,i;2,0,0,0 = 1, 1<4<7
_ in(6,i—1 .
71,0,0,i;1,0,0,min(i+1,7) = omin(Gi—y - 1< <7
71,0,0,4;2,0,0,0 = RIT, 1<4<7

2.1.5 Completing the transition matrix

Define Q)" as the set of all elements of Q that have been defined in (4)-(7). Then:

Qu,a.k,s;w,c,lt = 0’ (U, a, k, 5)7 (’LU, ¢, l, t) €S and Qv,a,k,s;w,c,l,t ¢ QI (8)
This completes the formal description of our model. In the next section, we present a comparison
between this model and the model proposed in [9].
3 Comparison of Send Rates

The approximate model proposed in [9] leads to the following formula for computing steady state

sending rate of a long term TCP flow:

1—p Q(p,W(p))
R<%>1Z372TP=W§M§GWO HWp) < Wmaa
SR = (9)
1—p Q@ Wmaaz)
Ea T QZ— :;:Z: :2)—'— é; ?g,Wrria_ﬂﬂp)G(”)TO otherwise
where:
L N
Qp,w) = min (1, T2 0P 00 p)"0) (10)
G(p) = 14 p+2p? +4p® + 8p* + 16p° + 32p°

We can numerically compute the SR predicted by the stochastic model, using (1), (2) and
(4)-(8). We find that the predictions of the model match well with the approximate model. An
example is shown in Figure 2. The round trip time is 470 milliseconds, the base timeout value is
3.2 seconds and the maximum window size allowed by the receiver is 12 packets. The closeness of

the match validates the approximate model.
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Figure 2: Comparison of detailed and approximate models: Send rates

4 Comparison of Throughputs

The formula proposed in [9] calculates the SR. The same analysis can be easily modified to calculate
throughput. We start with a brief overview of the analysis in [9]. We model the behavior of TCP
by considering the dynamics of the congestion window size. We ignore slow start, and assume that
receiver sends delayed ACKs [12]. In the absence of packet loss, the congestion window size of the
connection grows by one every two rounds, until it reaches the maximum window size allowed by
the receiver, W4- In the absence of loss, the congestion window size then remains constant at
Winaz- If & packet loss occurs, it may be detected by receipt of triple duplicate ACKs (TD) or a
timeout (TO) [11]. In the case of a TD, the window size is reduced to half, while in case of TO,
the sender waits for the timeout period and the congestion window size is reduced to one. In the
case of successive TO events, the timeout period is backed off exponentially [11]. This gives rise to
a regenerating pattern shown in Figure 3. The steady state SR is then given by:
E[Y]+ Q * E[R]
E[A] +Q x E[ZT0)]

SR — (11)

where: E[Y] is the expected number of packets sent in each TO period, E[R] is the expected
number of packets sent during the TO period, E[A] is the expected duration of each TD period,
E [ZTO] is the expected duration of the TO period, and % is the expected number of TD periods
in the regeneration pattern. The analysis in [9] calculates each of these expected values under the
drop-tail loss assumption described in Section 2. It should be clear that to calculate throughput,

instead of SR, we only need to modify the numerator of (2). We need to calculate the number

10
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of packets that me it to the receiver in a TD period, (counterpart of E[Y]) and in the timeout
sequence (counterpart of E[R]). Let us define these to be E[Y'] and E[R'], respectively. We can

then define throughput as:

B[Y'] + Q + B[R
E[A]+ Q x E[ZT0)]
Since only one packet makes it to the receiver in a timeout sequence (i.e. the packet that ends it),
it should be clear that:

Throughput = (12)

B[R] =1 (13)

To calculate the number of packets that reach the receiver in a TD period, consider Figure 4. The
TD event is induced by the loss of packet o. Let the window size be W, when the loss occurs.

Then, the number of packets received by the receiver is:
E[Y'| = E[a) + E[W] - E[8] — 1 (14)

In [9], we have shown that: E[a] = 1/p and E[gG] = E[W]/2. From (13) and (14), along with the
analysis for E[W] and @ from [9], we get:

e W04 Q(p, W (p))

RTT(W (p)+1)+ L)@

Output = (15)
%+W+Q(1),Wmax)

R( Wyzaz +pv%/:niz +2)+ Q(p,Wrr;a_rcp)G(P)TO

it W(p) < Winaa

otherwise

where W (p), Q(p,w) and G(p) are defined in (10). In Figure 5, we compare the output predicted
by the approximate formula in (15) and the output predicted by the Markov model. The values of
RTT, Ty and Wy, are the same as used for plotting Figure 2, in the previous section. In addition,
we have plotted the approximate SR computed using (9), to allow easy comparison with Figure 2.
We can see that the output predicted by the approximate formula in (15) and the Markov model

are comparable.
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Appendix

A

Aggregation of States

Note that the number of states in this MC is equal to w + Wiar + 6. However, it is

possible to aggregate the states with L; > 0, so that the resulting MC has only 2W 4. + 7 states.
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