Learning Real-Time Strategies
for Binocular Vergence

Justus Piater, Krithi Ramamritham,
Roderic Grupen

CMPSCI Technical Report 99-06

February 1999

Computer Science Department
Lederle Graduate Research Center
University of Massachusetts
Ambherst, MA 01003-4601

{piater|krithi|grupen}@cs.umass.edu

Learning Real-Time Strategies
for Binocular Vergence

Justus Piater, Krithi Ramamritham, Roderic Grupen

Abstract— This report presents a method for learning real-time
strategies to verge a stereo pair of cameras such that their image
centers display the same world feature. The method makes use of a
foveal image representation in which image resolution decreases loga-
rithmically from the center towards the periphery. This representation
performs a significant image data reduction that reduces the compu-
tational cost of stereo matching, and is easily computed at frame rate
on a standard PC platform.

The algorithm is applied to vergence control in a 2-DOF stereo
pair. The resulting vergence controller is envisioned as one of sev-
eral control options available for generic, sensorimotor problem solv-
ing. These options compete for resources and are therefore subject to
a scheduler. The scheduler has access to a-priori performance esti-
mates as a function of the compute time available. For this setting,
a Q-Learning framework is defined for learning appropriate vergence
strategies that depend on the number of perception-action cycles avail-
able. The learned strategies are characterized in terms of probability
of success and accuracy.

This paper integrates issues from computer vision, real-time sys-
tems, and machine learning.

1 Introduction

In an integrated system that interacts with the real world, resources are
constrained, and components of this system compete for them. The most
apparent such resource is time: The world behaves according to its own
characteristics, and an agent interacting with it must act and respond within
appropriate time frames. This places constraints on the amount of time
available to individual subcomponents of the agent. Often performance char-
acteristics of such a component depend on the resources available to it. A
common example is a speed/accuracy tradeoff: If time allows, more compu-
tation can be expended or more servo cycles can be run to improve the result.
These dependencies can often be formally characterized. The allotment of
time slices to the individual components, based on such performance profiles,
is the task of a scheduler. Based on the time allotted to it, each component
must select an appropriate set of actions and should adhere to the schedule
and performance profiles in a predictable way.

Figure 1 shows a general real-time scenario consisting of several compo-
nents, each of which can perform a specific task. Each task utilizes a specific
set of resources, which may or may not be sharable. Each task has certain
performance characteristics associated with it, which may depend on the
resources available, as well as external factors.

There are several ways to make progress toward the goal, which are char-
acterized by various sequences (or simultaneous executions) of tasks. Each
such sequence has certain performance characteristics. In this paper, it is the
job of the scheduler to schedule the tasks appropriately such that progress
toward the goal is made. To support scheduling decisions, it can inquire
about each task’s performance characteristics, given a specific situation.

This paper focuses on one of these tasks and its performance characteris-
tics as they are relevant to the scheduler. The task is to verge a stereo camera
system such that the image centers of both cameras display the same world
feature. This is typical of many robotic control problems in that the result
depends on the available resources, and this dependency is not deterministic
and can at best be described in probabilistic terms. This work contributes a
vergence algorithm that provides an estimate of the reliability and accuracy
achieved at any point in time. A probabilistic characterization of the ver-
gence task in terms of these estimates can help a scheduler allocate resources
appropriately.

The technical details of the vergence task are described in the following
section. Section 3 discusses the task and its role in a real-time framework as

Scheduler

Figure 1: Real-Time scenario. Several tasks, coordinated by the scheduler,
cooperate to accomplish an overall goal. Constraints on the sequence of
tasks are indicated by arrows. The vergence system discussed in this paper
constitutes one of these tasks.

outlined above. Section 4 introduces a machine learning setup for learning
time-constrained vergence strategies, whose performance characteristics are
then analyzed in Section 5.

2 On-Line Binocular Vergence

In this work, vergence involves turning both cameras symmetrically such that
their image centers display the same point in the world (Figure 2). Figure 3
depicts the hardware setup. A pair of cameras mounted on a pan/tilt/verge
platform provides live video to the Pipeline Video Processor. Controlled by
the Host Computer, this grabs a pair of video frames and preprocesses it
to reduce the amount of data. The Host Computer then computes a stereo
match on the compact image representations, and determines an appropriate
symmetric vergence adjustment angle Af. This adjustment angle is passed to
the Motor Controller, which computes the joint-space trajectories and motor
torques applied to the camera actuators.

Like other typical computer vision systems, our setup is based on video
cameras that deliver 512 x 480 pixel frames at 30Hz. The resulting immense

/‘\"6

Q
object

pinhole camera
\ ~ CCD sensor plane
Figure 2: Symmetric vergence geometry.

T
"1
—_
4 r =
. I
i e

image pair

" “optical axis

motor commands

Pipeline Video Processor

- acquire an image pair

- subsample and convolve
to generate foveal representation

Motor Controller

- apply vergence adjustment
to the vergence motors

vergence adjustment

Host Computer
- compute stereo match

pair of foveal representations

- compute vergence adjustment

Figure 3: Simplified structure of the vergence task. The Host Computer
constitutes the schedulable resource; the other three components consist of

dedicated hardware.

data rate of 7372800 values per second is more than can be exploited by
today’s computing systems. Therefore, a tradeoff must be made between the
amount of data processed per frame, and the number of frames processed per
second. It is becoming increasingly popular to address this problem by using
a foveal image representation, with high resolution near the image center and
decreasing resolution towards the periphery. Various such schemes have been
proposed (Weiman 1994; C. Capurro and Sandini 1997; Young et al. 1998).
We generate a multi-resolution representation by successively subsampling
the image to half the (linear) resolution, and keeping the highest resolution
only in the center of the image. The resulting arrangement of the image is
illustrated in Figure 4.

1]
S

Figure 4: Logarithmic subdivision of an image using 4 levels of resolution.
Each level is represented as a 4x4 block. Each square within each block rep-
resents a vector of 6 features, which are the responses of 6 different oriented
Gaussian-derivative filters applied at this location.

Due to the low resolution in the periphery, little information is avail-
able for stereo matching between images. To compensate for this, we do
not simply retain a single gray value at each location, but a vector of 6
expressive features obtained by a local convolution with one of 6 oriented
Gaussian-derivative filters (Rao and Ballard 1995). The subsampling and
the convolutions are performed well within a frame time on the pipleline
video processor.

The resulting foveal representations of the stereo image pair are passed
to the host computer. Here, a symmetric column-wise stereo match is per-
formed as illustrated in Figure 5. The result is given by the best matching
column pair, which is characterized as the signed distance p (in full-resolution
pixels) of the column center to the image center. Then, an appropriate motor
command is generated to turn the two cameras by an amount of A = ©(p)
so as to bring the best-matching column into the center of both cameras,
i.e. to drive p closer to zero. The motor command is executed by the motor

controller. On completion, the next image pair is acquired and preprocessed
by the video processor. This procedure from image acquisition to completion
of the mechanical adjustment constitutes a full perception-action cycle.

J HHH i HHH J

©
P

Figure 5: Illustration of the symmetric matching process (here shown for 3
levels of resolution). The shaded areas indicate one pair of matched columns
at the highest resolution. A feature vector is constructed as the concatenation
of all feature vectors associated with all squares at all levels of resolution that
overlap the shaded area. The match score of such a column pair is given by
the normalized cross correlation between the corresponding feature vectors.
All symmetric pairs of columns are matched, as indicated by the arrows. The
result of this match is given by the column pair with the highest match score.

3 Real-Time Issues

For the purpose of this study, the schedulable resource is time on the host
computer (cf. Figure 3). The vergence system requires the host computer
to compute the stereo match and the corresponding vergence command A#f.
This process is then idle while the motor command is executed by the con-
troller, and until the next image pair is acquired and has been processed by
the pipeline video processor. This procedure can be iterated to improve the
result. If more cycles can be executed, the accuracy and reliability of the
resulting verge will generally increase. Thus, the vergence task consists of a
potentially unlimited number of subtasks O;, each of which is optional. The
relative importance of each task O; decreases as ¢ increases. This is an in-
stance of an imprecise computation (Liu et al. 1991) without any mandatory
subtasks.

Each task O; becomes ready after O, ; has completed, and the next

preprocessed image pair is available from the pipeline processor. The image
acquisition and preprocessing process is fully deterministic and takes a fixed
time to execute. The same is true for the computation of A6, if the host
computer is running a real-time operating system. However, the execution of
the motor command is not deterministic, since the mechanical plant interacts
with a nondeterministic physical world. This presents a challenge to a real-
time scheduler, since the precise ready times of future subtasks O; are not
known in advance.

However, in reality there is relatively little variability in the duration
of a perception-action cycle. A typical distribution of durations of cycles
is plotted in Figure 6, and minimum and maximum durations are listed in
Table 1. It is apparent from Figure 6 that there is a slight tendency for
larger adjustments to take longer, but there is no fixed relationship between
the two. While individual durations can be quite long, the total vergence
task turns out to be reasonably robust with respect to a reduced number
of perception-action cycles, as will be shown later. Therefore, a practical
solution would be to schedule a fixed number of cycles beginning at regular
intervals of about 0.7 seconds. Then, if the motor command following O; has
not completed when O, is scheduled, subtask O;,; can simply be dropped,
reducing the total number of perception-action cycles by one. Thus, the
vergence task constitutes an interruptible anytime algorithm as described by
Zilberstein (1996). In the remainder of the paper, the scheduled time is
expressed in terms of the number of available perception-action cycles.

Al 0.1 0.2 0.5 1.0 2.0 5.0
min 0.614 0.614 0.631 0.628 0.618 0.631
max 1.635 1.740 1.233 1.230 0.899 1.234

Table 1: Table of practically occurring minimum and maximum durations of
perception-action cycles in seconds, separated by the magnitude of vergence
adjustments.

If the number of remaining perception-action cycles is known in advance
to the system, it may choose ©(p) depending on this number. For instance,
it may prove useful to apply conservative A6 in the presence of noise, if there
are additional perception-action cycles left to bring the cameras fully into
their desired position. It is not trivial to specify an optimal ©(p) in this
sense. This research contributes a machine learning approach that learns to
maximize the expected vergence accuracy, given the number of remaining

7

0.1 deg
0.2 deg
0.5 deg
1.0 deg
2.0 deg
5.0 deg

o

0.6 0.65 0.7 0.75 0.8 0.85 0.9
Duration of one perception—action cycle [sec]

Figure 6: Histogram of practically occurring durations of perception-action
cycles, colored by the magnitude of vergence adjustments in degrees. The
apparent concentration at multiples of 33 msec is due to the fact that
perception-action cycles always begin at a discrete frame time.

perception-action cycles.

As outlined in the introduction, our vergence task is nonstandard among
real-time tasks, but typical of many robotics tasks in several ways because
a mechanical plant is involved which is subject to perturbations. Therefore,
no hard Quality-of-Service guarantees can be made for the system. The
quality of a verge achievable within a given amount of time can at best be
characterized in probabilistic terms. For a given verge, this quality is given
in terms of the final magnitude of |p| remaining after the task is completed.

This quality estimate is identical to the value optimized by the vergence
controller. It estimates the accuracy of the achieved verge, given that the
stereo match is correct. It makes no statement about the reliability of the
stereo match underlying the verge. A binary estimate of this reliability is
given by the index of the second best matching column p’ (cf. Figure 5): A
stereo match is considered reliable if the columns of p’ and p are adjacent. The
intuition behind this is that due to the wide spatial support of the convolution
kernels that produce the features used for matching, a good match should
extend over relatively wide areas. This is discussed further in Section 4.

The performance of a given vergence strategy can be characterized in
terms of the distributions of these two measures achieved in practice. This
information can be exploited by a scheduler in order to allocate an appropri-
ate number of perception-action cycles under given performance requirements

and overall constraints. When a particular task O; is activated, it should re-
ceive as a parameter the number of cycles remaining after its completion. It
can then choose that ©(p) which yields the best expected performance.

4 Learning Real-Time Vergence

The central task addressed in this work is the specification of a function ©(p)
that maps a column index p to the vergence adjustment Af. To determine
this function is a typical system identification problem that can technically
be solved to high accuracy by calibration techniques (see Section 5.2). On
the other hand, a A0 that is optimal in some appropriate sense may in fact
depend on factors other than p. For instance, in the presence of measure-
ment noise it may be better to use conservative vergence adjustments, i.e.
undershoot, rather than attempting to foveate by a single adjustment. This
will reduce jerky moves in response to outliers. If more than one perception-
action cycle is available for vergence, it is still possible to achieve good final
accuracy.

The traditional approach employs a closed-loop PD control model (Hansen
and Sommer 1996). The gains of such a controller are tuned in a simulated
environment to achieve robust and fast performance in the presence of sim-
ulated noise. However, one can do better than that. Note that the match
uncertainty arises from self-similar scenes where several good matches com-
pete, or more commonly, from poorly structured scenes that do not provide
enough information to yield a reliable match, or from highly non-stationary
scenes that degrade the predictable relationship between one image pair and
the next after a vergence angle adjustment. If the reliability of a particu-
lar computation of p can be estimated, A0 should clearly depend on this
estimate.

As it turns out, such an estimate is provided by the index p’ of the second-
best matching pair of columns: If and only if p and p’ are neighbors (i.e. the
best-matching and second-best-matching columns are adjacent), then p can
be taken as highly reliable. The reason for this is that due to the smooth-
ing characteristic of the convolutions we applied, the correlations between a
stereo image pair generally vary smoothly with location.

Consequently, a function O(p, p', s,), where s, is the number of perception-
action cycles remaining, should be superior to a function ©(p) in two ways:
It should be less susceptible to noise, and it provides a running estimate of
the reliability of the achieved result. The function ©¢(p,p’,s,) is learned

9

in a reinforcement learning (Sutton and Barto 1998) framework, which is
described below.

The performance of the learned strategies can be evaluated by running
them many times and gathering statistics. The variables of interest to the
scheduler are the probability of success (defined as p and p' being neigh-
bors, which is justified in Section 5.1), and the accuracy distribution given
successful vergence.

4.1 A Reinforcement Learning Problem

The problem of learning O¢(p,p’, s,) is expressed in the @)-Learning frame-
work (Watkins 1989), which learns values of actions taken in particular states
of a Markov Decision Process. The value of an action a taken in a state s is
denoted Q(s,a).

The state space has three discrete dimensions: |p| (0 is the center of the
visual field), p which is a binary variable indicating whether p and p’ are
neighbors, and s, € {0,1,...,4}, which indicates the number of perception-
action cycles remaining after completion of the current cycle. The total
number of cycles was limited to 5 for pragmatic reasons: Intuitively, the
utility of further cycles diminishes, and longer policies take longer to learn.

An action consists of issuing a specific reference Af € {0.1,0.2,0.5,1,2,5}
to the vergence controller. The angles are given in degrees. The direction
of the movement corresponds to the sign of p, i.e. the system is prevented
from diverging when the best matching columns demand convergence, and
vice versa.

Training is done on fixed-length trials, where a trial consists of s perception-
action cycles. At the end of each trial, the achieved accuracy is estimated by
acquiring a final image pair and computing p by performing a stereo match.
Reward is then given by —|p|; all within-trial rewards are zero. At the end of
each cycle, the (Q-value of the state at the beginning of the cycle is updated
according to the conventional non-discounting ()-Learning rule

AQ(s.a) = afr + max Q(s,) — Q(s,a)]

where s’ is the state the system has found itself in after performing action a in
state s. The @ function is represented by a table, indexed by |p|, p, s, |A6).
This table implicitly represents the vergence policy: Among all possible ver-
gence adjustments possible in a state s = (|p|,p, s,), the action a = Af is
selected that maximizes Q(s, a).

10

During learning, this greedy policy is followed only 90% of the time. The
other 10% of actions are selected randomly. This ensures that all actions
continue to be selected in all states, which is a necessary precondition for
the @ function to converge to the optimal one (Watkins and Dayan 1992).
For on-line learning systems, this precondition gives rise to the so-called
exploration/exploitation conflict (see below): Increasing random exploration
may speed learning, but impairs the utility of the running system while it is
learning.

This learning procedure learns the actions leading to a camera configura-
tion where the best-matching columns are in the center of each camera’s field
of view. If the viewed scene contains enough information to unambiguously
identify the best match, then this implies that the cameras are verged on a
common feature in the world. Note that this is a bootstrapping estimate of
the achieved accuracy: The same procedure is used to adjust vergence angles
and to assess the resulting accuracy. No ground-truth information about the
viewed scene is involved.

4.2 The Learning Procedure

Some care was taken to speed up the learning process. To begin, recall
that the remaining length s, of a trial forms part of the state description.
Therefore, the update of a ()-value for a length-2 trial depends on the value
of a length-1 trial. This structural dependency was exploited by search
space shaping: First, 1000 length-1 trials were run to determine length-1
@-values to some accuracy. One thousand length-2 trials followed, exploiting
the length-1 @)-values already learned. Next, 1000 length-3 trials were run,
etc.

Furthermore, the random noise was assumed to be stationary. Therefore,
for length-1 Q(s, a)-values the step size a was chosen such that all learning
experiences are weighted equally, without preference to more recent experi-
ences. This is achieved by setting a = 1/k, where k,, is the number of
updates of the particular @) value, including the current update. In con-
junction with the above learning rule, this ensures that Q(s,a) always is the
mean of all past rewards this state/action pair s, a received.

While this adaptive step size selection is optimal for length-1 trials, this is
not the case for longer trials. Counterexamples exist where equally weighted
experiences prevent convergence to the optimal) values. On the other hand,
if one assumes in our setting that the length-1 -values have converged before
training on length-2 trials commences, then the above optimality argument

11

carries over to length-2 trials, and likewise to longer trials. Therefore, for all
values of s the a values were selected in this manner.

At the beginning of each trial, the stereo head was pointed at a random
direction in space. At the end of a perception-action cycle, the motor com-
mands were selected according to an annealed softmax procedure (Sutton
and Barto 1998): In state s, action a is selected with Boltzmann probability

eQ(s:0)/7
Po=—FG0a77
> eQa)/T
where 7 = 1000-0.99%: is the “temperature” which depends on the number k,
state s has been encountered. Initially, each action is selected with roughly
equal probability, and as ks grows, the best actions are selected with in-
creasing probability. During evaluation, actions were selected greedily, which
corresponds to setting 7 = 0.
Figure 7 shows the learning curves for a sample training session consisting
of 9667 trials. As explained above, the first 1000 trials were all of length 1
perception-action cycle, the next 1000 trials were all of length 2, etc. Starting
at trial 5000, the length of each trial was randomly selected from [1,2,...,5].

5 Evaluation of the Learned Policies

To evaluate the learned vergence policies, a series of 8715 trials was run.
The length of each individual trial (given as the number of perception-action
cycles) was chosen at random. Vergence adjustments were always selected
greedily.

In principle, it is not necessary to perform separate training and test runs
as was done here. Due to the incremental nature of reinforcement learning,
the vergence system could be installed untrained and put into service right
away. Initial performance would be poor, but with increasing experience
it would improve. Likewise, performance estimates can be acquired and
updated as the system operates.

In this particular setting, the exploration/exploitation conflict can be
resolved in an elegant way: Since policies were trained only for a maximum
of five perception-action cycles, the system could use any excess time allowed
by the scheduler for exploration.

12

Learning curves for 5 policies

301
— — 1servocycle
~~~~~ 2 servo cycles
&% 29 * h “ ~~~~~ 3 servo cycles
© T S R IR 4 servo cycles
2 N — 5 5
= , : servo cycles
= 20 | Mgesr-——-—-—---
2|
w
[( A A SR LT S
Q151 )
GCJ illll. |'I"J”‘ |l '
2 ELAE W
g ) ,;‘l : i e
101 -
5 L
o 1 1 1 1 J
0 2000 4000 6000 8000 10000

Number of Trials

Figure 7: Learning curves for the five policies. Only the learning curves for
length-1 and length-5 policies are clearly drawn; the others are indicated by
dots.

5.1 Prediction of Success

In Section 3 successful vergence was defined as the two best matching image
columns being neighbors. Figure 8 illustrates that this criterion is in fact an
excellent predictor of success: The probability that the verge resulted in a
best column index of -1, 0, or 1 was 0.782 in the case of neighboring best
columns, and 0.095 in the case of non-neighboring best columns.

5.2 Characterization of Performance

The scheduler requires performance measures of the various learned policies.
These measures are provided in terms of the success rate r, which is the
proportion of trials ending with neighboring best-matching columns, and in
terms of the distribution of accuracies achieved, as measured by the index of
the best-matching column after completion of a trial. These distributions are
shown in Figure 9. While they are not adequately approximated by Gaussian

13



Best two matches are neighbors Best two matches are not neighbors

600

500

400

Count
w
o
o

200

100

0 0
-47-23-11-5 -2 -1 0 1 2 3 6 12 24 48 -47-23-11-5 -2 -1 0 1 2 3 6 12 24 48

Column index f of best match Column index f of best match

Figure 8: Histograms of best matching column indices p after completed ver-
gence. Clearly, neighboring best-matching columns are an excellent predictor
of a successful merge.

distributions, it may still be instructive to consider their standard deviations,
here denoted by .. These measures are summarized in Figure 10.

For the specialized length-£ policies (solid curve in Figure 10), the success
rate r increases with the number of available perception-action cycles, and
— except for the length-5 trials — 0. decreases monotonically. Hence, it is
beneficial to use more cycles if time permits. To explain the inferior accuracy
of the length-5 trials, it is reasonable to assume that the ) values for the
length-5 trials had not yet converged. Since learning of the length-£ values
relies on the learned values of the length-(k" < k) values, inaccuracies in the
(@ table accumulate as the trial lengths increase. Furthermore, the @ values
corresponding to shorter trials were updated more often. For instance, at
the end of the training run the length-1 values had been updated a full 8715
times (once at the last cycle of each trial), while the length-5 values had only
been updated at the beginning of each length-5 trial, of which there were
roughly 950.

Another question is whether it is advantageous to learn separate policies
for various lengths of trials. To answer this, a separate run of 805 length-5 tri-
als was run, while choosing greedy actions according to the length-1 Q)-table
at each cycle (see Iterated length-1 policy in Figure 10). The performance
of this policy is inferior to the specialized policies for £ > 1. We conclude
that the improvement of the iterated versus the non-iterated length-1 policy

14



300

250

200

150

100

50

600

500

400

300

200

100

600

500

400

300

200

100

Performance: 1 Cycle

-47-23-11 -5

-2-1 0 1 2 3 6 12 24 48

Performance: 3 Cycles

-47-23-11 -5

-2-1 0 1 2 3 6 12 24 48

Performance: 5 Cycles

0
-47-23-11 -5

-2-1 0 1 2 3 6 12

24

48

15

Performance: 2 Cycles
500—Mm ™ —————————

400

300

200

100

-47-23-11-56 -2 -1 0 1 2 3 6 12 24 48

Performance: 4 Cycles
600—Mm ™ ———————

500

400

300

200

100

0
-47-23-11-56 -2 -1 0 1 2 3 6 12 24 48

Figure 9: Histograms of accuracies (as
measured by the final best matching
column index p) achieved in the case
of success. The tails of the distribu-
tions become thinner as the number of
perception-action cycles increases, indi-
cating that the expected accuracy im-
proves.



Success rates of various policies Accuracies of various policies in case of success

0.9 \ ‘ ; 18
L —*— Learned policies
0.85} 3 o161 < —x— lterated length-1 pol.
© N —+—  Short-cut length-5 p.
0sl S 4l S O  Hand-calibrated ® m
NS S N $+ Hand-calibrated © s
2 c
© 0.75¢ 212
> 3
3 3
3] 07% < 10
3 . g
0.65 § 81
3
0.6} @ 6t
Y
0.55 4
1 2 3 4 5 1 2 3 4 5
# cycles # cycles

Figure 10: Performance variables. The solid curve in each graph represents
five individual learned policies, one for each number of perception-action
cycles. For example, the length-3 policy, applied iteratively for three cycles,
achieved a success rate r of just above 0.8. The other four curves show the
performance of a single policy, applied iteratively for the given number of
cycles.

is due to the fact that more perception-action cycles were available for con-
vergence, but the policy did not make maximum use of the additional cycles.
Specialized policies take more advantage of additional cycles, as shown by
both performance measures of the length-3 and length-4 policies, and the
success rate r of the length-5 policy.

An intuitive explanation for this behavior is that a length-1 policy will
use conservative vergence adjustments if best-matching columns are near
the fovea, but aggressive adjustments if they are not. This will maximize
the likelihood of achieving correct vergence in one shot, while minimizing
the chance that an already foveated target is lost. If additional cycles are
available, more conservative adjustments may perform better in the presence
of noise.

This suggests a possible improvement to the learning setup: Presently,
the state space includes information about the number of cycles to go. It
might be beneficial to also include information about the number of cycles
already executed. This would permit the emergence of a policy that “tries
something else” after running for a while with little success.

How is the performance affected if a vergence task cannot execute all

16



perception-action cycles it anticipated? To test this, we looked at the per-
formance variables after executing only the first 1,2,3, or 4 perception-action
cycles of the length-5 policy. The results (see Short-cut length-5 policy in Fig-
ure 10) clearly demonstrate the graceful degradation of all three performance
variables as the task is cut short.

How do the learned policies compare with a hand-calibrated system? To
test this, we calibrated our vergence axis to construct a table © : p — Af. We
constructed an inverse mapping © ! :  — p by acquiring a reference image at
6 = 0, and then turning the camera in small increments of # while computing
p values using the same matching procedure as described in Section 2, but
with respect to the reference image taken earlier by the same camera. We
ran this procedure multiple times to yield distributions of p column indices
as a function of . From these we read off two © tables: One, ©,,, turns the
mean of the p distribution into the fovea, and a more conservative O, turns
just the edge of the p distribution into the fovea.

The performance measures of these hand-calibrated parameters is shown
in Figure 10. The one-cycle O,, policy clearly outperforms the learned one-
cycle policy in terms of o.. The conservative ©, performs similarly to the
learned policy. However, the graphs show clearly that iterating these poli-
cies does not consistently improve their performance. As the number of
perception-action cycles increases, the hand-calibrated policies are outper-
formed by the learned policies by increasingly wider margins. This shows
that the optimal set of control parameters actually depends on the number
of available perception-action cycles. It is not obvious how to find optimal ©
functions for tasks where more than one perception-action cycle is available.
Here, the learning procedure found policies that do better than an iteratively
repeated optimal length-1 policy.

5.3 Learned Policies

Figure 11 shows the greedy policies corresponding to the learned @ function.
The greedy policy is given by the function

O¢(p,p, s,) = arg max Q(s, a),

where s = (|p|, D, s,) and a = Af as defined in Section 4.1.

The parabolic structure mapping large column indices monotonically to
vergence angles can clearly be seen. Furthermore, one can see that more
conservative vergence adjustments are chosen by the shorter-trial policies

17



when the matched column index is near zero. On the other hand, it is
quite obvious that the policies for the longer trials have not yet converged,
especially in the case of neighboring best-matching columns.

Non-neighboring best matching columns Neighboring best matching columns

> >
o) [}
S =
o) o2
<) S
) (]
> =1
0.l
4
A 07, 6
Cycles remaining 0 Column index p Cycles remaining Column index p

Figure 11: Decision surfaces implementing the policy. Vergence angles are
given in degrees. The two plots correspond to the two possible values of p.
The vertical axes give the reference vergence angle adjustment Af.

6 Discussion

This work contributes a machine learning approach to construct locally opti-
mal time-constrained action policies. Probabilistic performance characteris-
tics are estimated using experiences resulting from interactions with the real
environment. These characterizations can be used by a scheduler to allocate
an appropriate number of time slices to the vergence process, given certain
performance requirements and resource limitations. The learned policies are
designed to achieve maximal expected performance under the given schedule.
They are robust with respect to unexpected changes of the schedule.

The interaction of real-time schedulers with robotic systems is still an
open problem because of the unpredictable nature of the real world. For ex-
ample, in a closed-loop control system the number of control cycles necessary
to accomplish a task is only approximately known in advance. If the system
is subjected to hard time constraints, the predictability of success may de-
grade to a probabilistic estimate of a binary success/failure outcome, e.g.

18



whether a pick-and-place task will or will not succeed. This work describes a
task whose performance characteristics degrade gracefully in the presence of
time constraints, and is therefore more amenable to a real-time framework.

From a robotics perspective, this work demonstrated the feasibility and
usefulness of using a machine learning framework to learn control param-
eters of a mechanical system. This task is typically viewed as a system
identification problem and is solved by calibration techniques. In contrast,
this approach has the advantage that the control parameters are selected
with regard to characteristics of visual scenes actually encountered. In the
presence of noise (i.e. self-similar or poorly textured scenes that cause stereo
mismatches), this is likely to pay off in terms of gained accuracy. This was
not verified rigorously, but some anecdotal evidence is provided by a hand-
tuned system whose performance was inferior to that of learned policies if
more than one perception-action cycle is available.

An advantage of on-line learning systems like the one described here is
that such systems can be put into service without initial calibration. They
will improve their performance with experience, and — if a fixed minimum
step size parameter « is used — will adapt to changing environmental and
mechanical characteristics.

From a machine learning perspective, this work constitutes an example of
reinforcement learning applied to a real-world problem involving a mechan-
ical system. Such examples are still relatively rare because reinforcement
learning techniques typically require a large amount of training, and training
experiences involving a real environment are typically much more expensive
than simulated experiences. To address this problem, the size of the () table
was kept small by using coarse quantization and by exploiting symmetries,
and the learning performance was enhanced by shaping the exploration of
the state space.

19



References

C. Capurro, F. P. and G. Sandini (1997). Dynamic vergence using log-polar
images. Int. J. Computer Vision 2/ (1), 79-94.

Hansen, M. and G. Sommer (1996). Active depth estimation with gaze and
vergence control using Gabor filters. In In 13th Int. Conf. on Pattern
Recognition, Volume A, Vienna, Austria, pp. 287-291.

Liu, J. W. S., K. J. Lin, W. K. Shih, A. C. Yu, J. Y. Chung, and W. Zhao
(1991). Algorithms for scheduling imprecise computations. In A. M. van
Tilborg and G. M. Koob (Eds.), Foundations of Real-Time Computing:
Scheduling and Resource Management, Chapter 8, pp. 203—-249. Kluwer
Academic Publishers.

Rao, R. P. N. and D. H. Ballard (1995). An active vision architecture based
on iconic representations. Artificial Intelligence 78, 461-505.

Sutton, R. S. and A. G. Barto (1998). Reinforcement Learning: An Intro-
duction. Cambridge, Massachusetts: MIT Press.

Watkins, C. J. C. H. (1989). Learning From Delayed Rewards. Ph. D. thesis,
University of Cambridge, England.

Watkins, C. J. C. H. and P. Dayan (1992). Q-Learning. Machine Learning 8,
279-292.

Weiman, C. F. R. (1994). Log-polar binocular vision system. Technical Re-
port CR-188375, NASA.

Young, S. S., P. D. Scott, and C. Bandera (1998). Foveal automatic tar-
get recognition using a multiresolution neural network. IFEE Trans. on
Image Processing 7(8), 1122-1135.

Zilberstein, S. (1996). Using anytime algorithms in intelligent systems. AT
Magazine 17(3), 73-83.

20



