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Abstract

Many definitions of fairness for multicast networks assume that sessions are single-rate, requiring that each mul-
ticast session transmits data to all of its receivers at the same rate. These definitions do not account for multi-rate
approaches, such as layering, that permit receiving rates within a session to be chosen independently. We identify
four desirable fairness properties for multicast networks, derived from properties that hold within the max-min fair
allocations of unicast networks. We extend the definition of multicast max-min fairness to networks that contain
multi-rate sessions, and show that all four fairness properties hold in a multi-rate max-min fair allocation, but need
not hold in a single-rate max-min fair allocation. We then show that multi-rate max-min fair rate allocations can be
achieved via intra-session coordinated joins and leaves of multicast groups. However, in the absence of coordination,
the resulting max-min fair rate allocation uses link bandwidth inefficiently, and does not exhibit some of the desirable
fairness properties. We evaluate this inefficiency for several layered multi-rate congestion control schemes, and find
that, in a protocol where the sender coordinates joins, this inefficiency has minimal impact on desirable fairness prop-
erties. Our results indicate that sender-coordinated layered protocols show promise for achieving desirable fairness
properties for allocations in large-scale multicast networks.

1 Introduction
The current Internet has few internal mechanisms to regulate the rates at which sessions should transmit data. How
to achieve fairness within such a network, in effect allowing sessions to share bandwidth in a manner that satisfies
some set of network utilization criteria, remains a challenging research problem. The problem is further complicated
in networks that support both unicast and multicast delivery services. Current definitions of multicast fairness [17,
13, 3, 19, 6] typically assume that sessions are single-rate, requiring all receivers within a multicast session to receive
data at a uniform rate. However, layered multicast permits multi-rate transmission: different receivers within a session
can receive data at different rates. This is accomplished by layering data among several multicast groups and allowing
each receiver to independently determine the subset of layers (i.e., multicast groups) it joins. Protocols have used a
layered approach to support multicast applications ranging from live multimedia [11, 8, 9, 1] to reliable data transfer
[14, 18, 4]. These protocols have the appealing property that the transmission rate to each receiver is constrained
only by the bandwidth availability on the receiver’s own data-path from the data source, and is not limited by other
receivers’ rate limitations in the same session. The fairness literature does suggest intuitions about how layering might
increase the set of desirable fairness properties that hold for a particular fair allocation of receiver rates. What is
lacking, however, is a formal study that examines the impact that layering has on fair allocations within a large-scale
multicast network.

The goal of this paper is to contribute to the formal understanding of how layering impacts fairness in multicast
networks. In particular, we focus on how layering affects properties of multicast max-min fairness in an environment
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in which each session has a single sender. We have chosen to use max-min fairness as our fairness measure since
its formal definition is a well-accepted criterion for fairness, allowing us to proceed directly to an examination of the
properties of a fair allocation. We believe that with other definitions of fairness, layered approaches will yield similar
fairness advantages, and expect this work to stimulate interest in examining the impact of layering for these other
definitions.

We show that allowing multicast sessions to be multi-rate instead of single-rate “improves” max-min fairness
within a network. To do this, we identify four desirable fairness properties of a max-min fair allocation of unicast
sessions. One simple example of a property is that receiver rates should be equal for two receivers whose data trans-
mission paths from their respective senders traverse an identical set of links. We examine multicast max-min fair
allocations under the definition given by Tzeng and Siu [17], that requires that all sessions are single-rate, and find that
several of these fairness properties do not necessarily hold within the max-min fair allocation (the two receiver rate
example presented above is one such property). We extend the multicast max-min fair definition to permit multi-rate
sessions, and formally prove that, when all sessions in a network are multi-rate, all of our identified fairness prop-
erties hold for the max-min fair allocation. We also consider networks in which not all sessions are multi-rate (e.g.,
a session may have an application-specific requirement that requires it to be single-rate), and examine the effect on
fairness properties of the max-min fair allocation as single-rate sessions are “replaced” by identical multi-rate sessions
(i.e., same session members, same topology). We demonstrate, using our identified set of fairness properties and a
mathematical ordering relation of allocations that indicates an allocation’s “level” of max-min fairness, that increasing
the set of “replaced” sessions results in an increase in the “level” of max-min fairness and that more fairness properties
hold for max-min fair allocations.

Next, we consider several practical limitations encountered by sessions that use layering to achieve max-min fair
rates. We show that if each receiver’s fair rate is restricted to what can be obtained by joining some fixed set of
layers, a max-min fair allocation need not even exist. However, we do demonstrate that receivers can achieve an
average rate that matches their fair rate by using precisely timed joins and leaves. These joins and leaves must be
tightly coordinated among receivers in the same session (i.e., correlating their sets of received packets) in order to
prevent excess bandwidth utilization on a shared link. We introduce the notion of redundancy, a ratio of bandwidth
used in practice by a session on a shared link to the theoretical lower bound needed on that link to deliver fair rates
to downstream receivers, in order to quantify bandwidth usage. While several works have identified the negative
implications of redundancy, there has not yet been an analytical exploration of its magnitude, or of its effect on fair
allocations within a network. We show that increased redundancy leads to a decrease in the “level” of max-min
fairness, to a decrease in the number of fairness properties that hold for the max-min fair allocation, and, usually,
to a decrease in receivers’ fair rates. We examine how the ideas in [11, 8, 18], that coordinate joins of receivers
within a session, significantly reduce the negative effects of redundancy. The examination is performed via analytical
modeling and simulation of max-min fair congestion control protocols in which receivers join and leave layers based
on congestion observations. Within the model, we present three protocols that differ in the degree to which the layer
joins are coordinated among session receivers. We find that although redundancy is still not optimal, coordinated
joins reduce redundancy most significantly when the correlation in loss among receivers is high, and that a protocol
with sender coordination keeps redundancy at low enough levels to allow layered multicast to achieve non-bandwidth-
wasteful fairness within a multi-rate multicast network.

The paper proceeds as follows. Section 2 presents theoretical results for multicast max-min fairness with multi-rate
sessions. Section 3 introduces the notion of redundancy, and Section 4 examines the effects of join coordination in
several simple congestion control protocols. Related and future work is presented in Section 5, and we conclude in
Section 6.

2 Multi-rate Multicast Max-Min Fairness
In this section, we present the formal network model used to examine the max-min fairness of multicast sessions, and
identify a set of desirable fairness properties of max-min fair allocations for unicast networks. We then show that in
this network model, the max-min fair allocation in a multicast allocation can achieve all of these desirable properties
only if the sessions are multi-rate. For the reader’s convenience, a list of all the variables used is provided in Appendix
A. A session, , is a tuple of session members: is the session sender that transmits data
within a network; each is a receiver that receives data from . Each session contains exactly one sender and at
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least one receiver. We write to indicate that receiver is a member of session .1 We consider two types
of sessions:

If is a single-rate session, then data must be transmitted to all receivers in at the same rate.
If is a multi-rate, then receivers within can receive data at multiple rates.

A network graph, , consists of a set of nodes connected together by links in some arbitrary fashion. The links
are labeled . Each link has a capacity, , that limits the aggregate rate of flow it can transmit in either
direction between the two nodes it connects.2 We define a network, to be a tuple
containing a network graph, , a set of sessions, , a mapping, , that maps each member of each session
to a node in the network graph, and a second mapping, , that maps each session to its type. We write
to indicate that session is single-rate, and to indicate that session is multi-rate.

The mapping, , of a session onto the network graph has one restriction: no two members of a single session are
mapped to the same node. However, there is no restriction that forbids two members of different sessions to be mapped
to the same node. The network employs a routing algorithm, such that for each receiver , there is a sequence
of links that carries data from to . We refer to this set of links in this sequence as the receiver’s
data-path. The data-path for a session is defined to be the set of all links that carry data to any receiver within the
session.

For a network , we define to be the set of receivers in session whose data-path includes link , and
define to be the set of all receivers whose data-path includes link , i.e., . We account for the fact that
session might choose a maximum rate, , at which it will transmit data ( can be infinite). An allocation is an
assignment of receiver rates within a network. Once an allocation has been determined, we use to represent the
rate at which data is transmitted to receiver (that equals the rate at which the data is received by , barring loss).
We let represent an absolute measure of bandwidth (e.g., in bytes/sec) used by session on link to transmit
data to its receivers, and the amount of bandwidth used by all sessions across link , . We refer to

as the session link rate of for session , and simply as the link rate of . Since bandwidth for each flow is
non-negative, we have . We say a link is fully utilized if the total bandwidth used by all sessions across
the link matches its capacity, i.e., is fully utilized iff .

We require that whenever , i.e., any bandwidth received by a receiver must traverse its data-
path. In this section, we make an additional assumption that , which is the minimum
value for that satisfies the above requirement.3 In later sections, we examine the implications if is larger than
this value. The assumption also allows us to model a unicast session as either a multi-rate session with a single receiver,
or as a single-rate session with a single receiver. Thus, any results given in this section for networks containing a mix
of single-rate and multi-rate sessions also holds for networks that contain a mix of single-rate, multi-rate, and unicast
sessions.

An allocation is feasible if each receiver is assigned a rate , and all receivers can receive at
these rates without overutilizing any link’s capacity in the network, i.e., , and .4 The
additional requirement imposed on each single-rate session that all of its receivers’ rates must be equal means that
for any pair of receivers, , when , then holds. When is a single-rate session,
or a session of either type containing a single receiver (i.e., a unicast session), we can write the single rate at which all
receivers within the session receive data simply as .

Note that the feasibility of a particular allocation of receiver rates is a function of the link capacities of the network
graph, , the mapping , and also of the mapping . The dependence of an allocation’s feasibility on is important:
we will be examining how varying (i.e., varying sessions’ types between single-rate and multi-rate) affects which
allocation within a network is max-min fair.

Definition 1 (Max-min fairness) An allocation of receiver rates is said to be max-min fair if it is feasible, and for
any alternative feasible allocation of rates (where for each receiver we define as an alternative feasible rate),
where , there is some other receiver such that .

1We assume that each receiver is a member of a single session. A receiver that is a member of two sessions can simply be viewed as two distinct
receivers.

2Assigning capacity per direction is a simple extension: simply extend a bidirectional link into two unidirectional links.
3The reader that is familiar with layered approaches should see that if there is no restriction on the number of layers that a session can use, such

a session link rate is easily achieved using a layered approach.
4Hence, in this section, we require .

3



In other words, if any receiver ’s rate is increased beyond its max-min fair rate to obtain some other feasible
allocation, then there is some other receiver whose max-min fair rate is no larger than that of , and whose adjusted
rate (to account for the increase in ’s rate) must be decreased.

When all sessions within are single-rate (i.e., ), we say that is a single-rate network,
and the max-min fair allocation is called the single-rate max-min fair allocation. A similar naming convention holds
when all sessions are multi-rate. The definition of max-min fairness in [17] holds only for single-rate networks,5 and
involves a comparison of session rates rather than receiver rates as in our definition. It is easy to show that the max-
min fair allocation in a single-rate network is identical under both definitions. In a network that contains multi-rate
sessions, their definition is not well defined.

Just as there is always one and only one unicast max-min fair allocation [2] and one and only one single-rate
max-min fair allocation [17], there is one and only one multi-rate max-min fair allocation. In fact, for any choice of

, the network has one and only one max-min fair allocation. We show the existence of a max-min fair allocation for
a network with an arbitrary by constructing an algorithm that achieves a max-min fair allocation for that network.
The algorithm and the proof that the resulting allocation is max-min fair can be found in Appendix B; uniqueness is
given by Corollary 5 in Appendix C.

Let us first examine some desirable properties of a unicast max-min fair allocation, i.e., a max-min fair allocation
in a network where all sessions are unicast. It is well known that the following properties hold for a unicast max-min
fair allocation [2].

Unicast Fairness Property 1 (Unicast Max-min Fairness) For each session , , either , or else
there is at least one fully utilized link, , where for all (or, equivalently for the unicast
case, whenever ).

Unicast Fairness Property 2 (Unicast Same Path Receiver Fairness) If two unicast sessions, and , within a
unicast network have identical data-paths, then either , or , or .

Let us consider what makes these fairness properties desirable. To do this, we consider two perspectives of fairness
of an allocation. From a receiver perspective, an allocation should be fair to receiver rates: a receiver’s rate should
be as large as possible without “stealing” bandwidth from receivers with lower rates. This is guaranteed by Unicast
Property 1: there is no unused available bandwidth since some link on the receiver’s data-path is fully utilized. Since
there is a fully utilized link over which the receiver receives at as high a rate as any other receiver whose data-path
crosses the link, increasing its rate further would result in “stealing” bandwidth from these other receivers. From a
session perspective, a link’s capacity should be used “fairly” by sessions. In other words, a session’s allocation on a
link should be as large as possible without “stealing” bandwidth from other sessions that utilize the link.

For a unicast network, the receiver and session perspectives are identical because a session’s data-path is identical
to its receiver’s data-path, and the share of bandwidth used on each link by the session equals the receiving rate of its
receiver. This is not always true in a multicast network: a receiver’s data-path is only part of the session’s data-path,
and, in a multi-rate session, when two receivers within the session receive at different rates, there is some pair of links
that have differing session link rates for that session. Hence, an allocation might be “fair” from the session perspective
without being “fair” from the receiver perspective, or vice versa. One possibility is to only consider fairness properties
from a single perspective (e.g., [17] considers only the session perspective). However, in this section we will assume
that it is more desirable to satisfy fairness properties from both perspectives. We extend the properties of a unicast
max-min fair allocation, as described in Unicast Properties 1 and 2, to multicast networks from both a session and
receiver perspective.

Before presenting the desirable fairness properties for multicast networks, we introduce an example network that
we will use to illustrate these different properties. Figure 1 presents a simple network with three sessions; sender
in session sends to a single receiver, , in session , sender sends to two receivers and , and in
session , sender sends to two receivers, and . The receiving rate of a receiver, , is indicated to the
immediate right of the receiver. Each link has its capacity indicated next to the link labeling, separated by a colon
(e.g., means that ). Adjacent to the link labeling for each are the session link rates, appearing in the
form, .

5[17] also permits a multicast session to consist of distinct unicast connections. We model this inherently via separate unicast sessions. Such a
session differs significantly from a multi-rate session achieved through layering.
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Figure 1: A sample network

Fairness Property 1 (Fully-Utilized-Receiver-Fairness) A receiver’s rate is fully-utilized-receiver-fair if either
, or there is at least one fully utilized link, , where and for all receivers .

A session’s allocation is defined to be fully-utilized-receiver-fair if the rate for each receiver in the session is fully-
utilized-receiver-fair. An allocation of rates throughout the network is fully-utilized-receiver-fair if each session is
fully-utilized-receiver-fair.

Fully-utilized-receiver-fairness is the multicast extension of Unicast Property 1’s prevention of “stealing band-
width” from other receivers. For instance, link is fully utilized, and lies on receiver ’s data-path. Because

receives at a rate that is no less than any other receiver whose data-path traverses , its rate is fully-utilized-
receiver-fair. Because all other receivers’ rates in are fully-utilized-receiver-fair, session ’s allocation of rates
is fully-utilized-receiver-fair. Because ’s and ’s allocations are also fully-utilized-receiver-fair, the allocation (of
rates for the entire network) is fully-utilized-receiver-fair.

Fairness Property 2 (Same-Path-Receiver-Fairness) A pair of receivers and are same-path-receiver-fair
if their data-paths traverse the same set of links ( ), and either one receiver’s rate is
constrained by its session’s maximum desired rate (i.e., either or ), or else

.

Same-path-receiver-fairness states that if two receivers’ data-paths traverse identical links, then the receivers should
receive at identical rates. In Figure 1, receivers and are a pair of receivers whose rates are same-path-receiver-
fair. The reader should note that same-path-receiver-fairness is also a property of TCP-fairness [10]. If is a unicast
TCP session, then, in order for ’s rate to be TCP-fair, same-path-receiver-fairness must hold for these two receivers.

Fairness Property 3 (Per-Receiver-Link-Fairness) A session ’s allocation is per-receiver-link-fair if for each re-
ceiver , either 1) , or 2) there is a link that is fully utilized ( ), and for
other sessions . An allocation of rates throughout the network is per-receiver-link-fair if each session’s
allocation is per-receiver-link-fair.

Fairness Property 4 (Per-Session-Link-Fairness) An allocation is per-session-link-fair for a session if
for each receiver in or there exists a fully utilized link in ’s data-path where for other sessions .
A allocation of rates throughout the network is per-session-link-fair if each session’s allocation is per-session-link-fair.

Per-receiver-link-fairness requires that session gets a “fair share” of link rate along every path from sender
to its receivers. Per-session-link-fairness is a weaker version of this: a session must get a “fair share” of link rate on at
least one link in its data-path (i.e., along the data-path of at least one receiver). In Figure 1, session is per-session-
link-fair: on the data-path to receiver , link is fully utilized and session ’s link rate on is no less than the
link rates of other sessions on . It is also per-receiver-link-fair, because similar conditions hold on the data-path of
its other receiver, . Sessions and are also both per-receiver-link-fair and per-session-link-fair, making the
network allocation both per-receiver-link-fair and per-session-link-fair.

It is fairly easy to see that in a unicast network, Fairness Property 2 and Unicast Property 2 are identical, and the
remaining multicast fairness properties are identical to Unicast Property 1. We now proceed to establish properties of
max-min fair allocations in terms of the types of sessions (multi-rate or single-rate) within the network. Any non-trivial
proofs can be found in Appendix C.
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Theorem 1 A multi-rate max-min fair allocation satisfies the Fairness Properties 1, 2, 3, and 4. In other words, the
multi-rate max-min fair allocation is fully-utilized-receiver-fair, same-path-receiver-fair, per-receiver-link-fair, and
per-session-link-fair.

Theorem 1 tells us that if all sessions are multi-rate, then the max-min fair allocation satisfies all of our desired
fairness properties. We now introduce a mathematical ordering among allocations that allows us to comparatively
examine the “max-min fairness” of an allocation within a network:

Definition 2 We say a vector is ordered if for all . Let
and be ordered vectors. We write (and say is min-unfavorable to ) if no exists such
that , or for any where , there is some where .

Note that under the above definition, is reflexive ( ), non-symmetric ( ,
and transitive ( ). Furthermore, for any pair, and , of ordered vectors of identical
length, either holds, or holds, or both. Min-unfavorability is similar to alphabetizing two text strings
of the same length. Let represent the th character of the first string, and represent the th character of the second
string. Then if and only if or an alphabetization places before . A more general version of this
ordering has been applied specifically within unicast networks [5]. Let us now see how this ordering relation relates
to multicast max-min fairness:

Lemma 1 Let be the ordered vector of receiver rates in a max-min fair allocation in a network
, and let be the ordered vector of receiver rates for some other feasible

allocation in . Then .

Note that the network in Lemma 1 can have any arbitrary session type mapping, (i.e., some sessions can be
multi-rate, while others are single-rate). However, must be fixed when applying the lemma. Lemma 1 along with the
definition of min-unfavorability can be combined to show that the max-min fair allocation maximizes the minimum
rates in a network: since all allocations are min-unfavorable to the max-min fair allocation, there exists a threshold
rate such that for any rate , the number of receivers that receive at or below is minimal (smaller or equal)
within the max-min fair allocation. Furthermore, the number of receivers that receive at or below is minimized
(strictly smaller) within the max-min fair allocation. This result can be stated more formally as a general property of
min-unfavorability:

Lemma 2 such that and
.

Because the min-unfavorable relation is transitive, it gives a strict ordering among the feasible allocations for a
network, where the max-min fair allocation is the maximum under the ordering. Thus, one can quantitatively compare
the max-min fairness of two allocations and , where means that is “more max-min fair” than , and the
minimum receiver rates are larger in than in .6

2.1 Fairness limitations of single-rate sessions
Theorem 1 states that a multi-rate max-min fair allocation satisfies our four desirable fairness properties. Let us now
see where a single-rate max-min fair allocation fails to do so. The fact that single-rate max-min allocation is per-
session-link-fair is a direct consequence of the results in [17]. However, the single-rate max-min fair allocation can
fail to satisfy the other fairness properties. Consider the simple example in Figure 2, whose labeling is performed in
an identical manner to that of Figure 1. Here, we have a network with two sessions, and , whose respective
senders, and , are located at the same point in the network. We assume that the maximum desired rates are
large, , such that they do not bound receiving rates in this network. Session is a single-rate session
containing three receivers , session is a unicast session whose receiver is located at the same
point in the network as receiver . In the max-min fair allocation, receivers in session receive at a rate of 2 (since

6If one prefers to think in terms of utility rather use an ordering relation, it is fairly easy to construct a utility function, , for allocations within
a network, such that for any two allocations , it is the case that . For such a utility function, the max-min fair
allocation is Pareto-optimal [15].
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Figure 2: An example where a single-rate session would fail all but one of the fairness properties.

this fully utilizes link and all receivers must receive at the same rate in a single-rate session), the receiver in
receives at a rate of 3. Receivers and fail to achieve same-path-receiver-fairness, since they have the same
data-paths, but differing receiving rates. Receiver ’s rate does not satisfy fully-utilized-receiver-fairness, because
there is no fully utilized link along its data-path on which its rate is the largest compared to other receivers whose
data-paths cross the same link. It follows that fully-utilized-receiver-fairness does not hold for session , nor does it
hold for the network. Last, per-receiver-link-fairness fails to hold for session (hence for the network as well) on the
data-path to receiver , since no link on this data-path is fully utilized. Per-receiver-link-fairness also fails to hold
on the data-path to receiver , since link is the only fully utilized link on its path and the link rate for session
on that link is smaller than that of session . This example indicates that three out of the four desirable properties can
fail to hold for single-rate max-min fair allocations.

We have examined the extent to which our four desirable properties hold for networks in which all sessions are
the same type. Let us now consider these properties in the context of a network that contains a combination of multi-
rate and single-rate sessions. Single-rate sessions are likely to always exist due to application constraints, such as a
requirement that all receivers must complete receipt of data at approximately the same time.

Theorem 2 Consider a network in which session types can differ, i.e., there can exist
a pair of sessions, such that . Then, the following are properties of the max-min fair
allocation of :
(a) Fully-utilized-receiver-fairness holds for each receiver where .
(b) per-receiver-link-fairness holds for each session where .
(c) Per-session-link-fairness holds for all sessions .
(d) Same-path-receiver-fairness holds between any two receivers and where .
(e) If and , and and have identical data-paths, then either or

.

Theorem 2 states that, even with single-rate sessions within the network, all four desirable fairness properties
continue to hold for session link rates of multi-rate sessions, and for receiver rates of receivers belonging to multi-rate
sessions within the max-min fair allocation. Hence, multi-rate sessions maintain their desirable fairness properties
even when there are single-rate sessions within the network.

Let us also examine another way in which multi-rate multicast makes the max-min fair allocation for a network
“more max-min fair”. Recall that if an allocation is min-unfavorable to an allocation , then is “more max-min
fair” than . Let us now consider how the max-min fair allocations compare for any two networks, and that
differ only in their sessions’ types.

Lemma 3 Let and be networks where the set of multi-
rate sessions in is a subset of the set of multi-rate sessions in , (i.e., ). If is the
ordered vector of max-min fair receiver rates in , and is the ordered vector of max-min fair receiver rates in ,
then .

Proof: Since an allocation for a single-rate session is feasible for a multi-rate session, is a feasible allocation in .
Since is the max-min fair allocation in , by Lemma 1, .

7



Lemma 3 tells us that as we “replace” single-rate sessions with identical multi-rate sessions (i.e., the only difference
between the single-rate session and its replacement is the session type), then the max-min fair allocation is “more max-
min fair”. Hence, the “most max-min fair” allocation is the one in which all sessions are multi-rate:

Corollary 1 Let be a multi-rate network ( ), and let
be the single-rate version of , ( ). Let be the ordered vector of receiver rates for a multi-rate max-min
fair allocation within , and let be the ordered vector of receiver rates in . Then , and if , then

.

Last, let us consider how varying session types affects receiving rates on a session-by-session basis. We can prove
that if all sessions’ types are fixed except for session , then if is multi-rate, all of its receivers will receive at rates
that are no less than what they would receive at if is single-rate (see Lemma 9 in Appendix C). Unfortunately,
this result does not extend to the case when several sessions can switch types. In fact, it is rather difficult to say
what happens to receiver rates due to changes in the session type or the network topology. For example, one might
conjecture that removing a receiver from a session would only increase other receiver fair rates. Our intuition was
that since the removal frees up bandwidth that can then be used by other receivers whose data-path crosses ’s data-
path. However, the reallocation of bandwidth after the receiver is removed can cause receiver rates (both in session
and in other sessions) to vary in either direction.
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Figure 3: The change in max-min fair rates due to a removal of a receiver from a session.

To see this, consider the examples in Figure 3. Both networks contain three multi-rate sessions, , , and .
and each contain a single receiver, contains two receivers, the second ( ) is subsequently removed. The

max-min fair rates for receivers are indicated before and after this removal. Note that in Figure 3(a), ’s max-min
fair rate decreases and ’s rate increases as a result of the removal. In Figure 3(b), ’s rate increases and ’s
rate decreases. These figures demonstrate that removing receivers from sessions can have a nonobvious impact on the
max-min fair rates of the remaining receivers in the network. Additional results appear in Appendix D.

We now summarize the main results of this section. We have shown that if multicast sessions are multi-rate, then
the max-min fair allocation is “more max-min fair” than if the sessions are restricted to being single-rate. We have
demonstrated this by showing that there are four desirable fairness properties that hold in the multi-rate max-min
fair allocation that do not necessarily hold in a single-rate max-min fair allocation. We also examined networks in
which some of the sessions are single-rate, while the remaining are multi-rate. By examining fairness properties on a
per-session basis, we find that all of the fairness properties hold in general only in multi-rate sessions. Last, we use
the min-unfavorable relation to comparatively examine which of any two allocations for a network is “more max-min
fair”. We find that “replacing” single-rate sessions by multi-rate sessions makes the max-min fair allocation more
“max-min fair”, which means that when all sessions are multi-rate, the max-min fair allocation is the “most max-min
fair”.
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3 Achieving Multi-Rate Max-Min Fairness with Layering
In the previous section, we motivated the use of multi-rate sessions by showing that they yield more desirable max-
min fair allocations. One way to then obtain these rates in practice is to have the sender configure layers so that each
receiver can obtain its fair rate by joining some subset of layers. However, the number of layers can be as large as
the number of receivers in the session, making such an approach infeasible for large multicast sessions. Furthermore,
the number of layers and the rate per layer is often beyond the control of the session itself, due to application-specific
requirements, a limitation in the availability of multicast groups, or because it is too difficult for the sender to obtain the
feedback needed to appropriately configure the rates of each of the layers. In this section, we examine how receivers
can obtain their long term average max-min fair rates by repeated joins and leaves from multicast groups on which
data is sent at a restricted set of rates. We will see that such a mechanism will force us to reconsider our previous
assumption of how receiver rates impact link rates in the network.

Let us first discuss the implementation of a layered multicast approach. Data to be transferred is split into layers
by the sender, where layers are transmitted on separate multicast groups, each at some rate. The layers are ordered

, such that all receivers desiring transmission join the group containing layer , and any receiver that
joins the group containing layer must also join or already be joined to layer for all (henceforth, this is
implied when we say that the receiver joins the layer or joins up to the layer). A receiver joined up to layer receives
data from the sender at an aggregate rate equal to the sum of the rates of layers through . Joining layers increases
the aggregate rate, while leaving layers decreases the aggregate rate.7

Let us examine why receivers must join and leave layers to obtain their fair rates. An obvious alternative is
to require receivers to choose rates that can be obtained by joining up to a given layer and remaining at that rate
for the duration of the session. This makes a finite set of rates available to the receiver. However, if these lay-
ers cannot be configured to the needs of receivers for reasons described above, the max-min fair allocation might
not even exist! As an example, consider a simple network that consists of a single link with capacity , and let
there be two layered multicast sessions, , and that traverse this link. Each session contains a single receiver,
respectively denoted and . The sender for session provides three layers, and sends at a rate of per
layer. The sender for session provides two layers, and sends at rate per layer. The set of feasible allocations
is , where implies receiver receives at a rate
of . None of these allocations are max-min fair. For instance, is not max-min fair since

is feasible, and , but , hence there is no where 8 (contradicting
the defined requirement for max-min fairness). The reader can easily verify that none of the other feasible allocations
is max-min fair.

Although it is not possible to achieve a max-min fair rate allocation when receivers are restricted to joining a
fixed set of layers for the entire length of a session, it is possible to achieve long-term average max-min fair rates
through joins and leaves. The idea of using long term average rates also appears in current definitions of TCP-fairness
[10, 18, 3, 13]. We define the quantum, , to be the minimum amount of time over which a receiver’s average rate is
computed. We say that a rate of is obtained through a link during the th quantum if bytes pass through the link
between times and . We say that a link can support a capacity of if it is able to forward bytes
within each time quantum.

Let us now consider an idealized network where a receiver can use joins and leaves to obtain its fair rate. The
network is ideal in that we assume that network propagation delays and leave latencies are negligible compared to
and to packet inter-arrival times for each session. In this model, a packet traverses a link only if it is received by
some receiver . We also assume that all packets are of equal size, and for any receiver , let be its
fair packet rate (in packets/sec) within the network. Consider a single layer (multicast group), where the transmission
rate on the layer, . Receiver joins the single layer so that it receives the first
packets within the quantum,9 then leaves the group. This is clearly possible, since , and packets
are transmitted on the layer during the quantum.

In this scenario, for any link and session where , there is some receiver that receives
packets per time quantum. Hence, this is the minimum number of packets that traverse link

7We make the assumption that there is some utility in receiving at a faster rate, e.g., audio and video transmissions increase in clarity, reliable
data transmissions take less time.

8Or less formally, ’s increase in rate does not result in a decrease in any receiver’s rate whose original rate was less than ’s.
9If is not an integer, then it can elect to receive packets in each quantum, and periodically receive to come arbitrarily

close to .
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Figure 4: An example where a network fails to achieve session-perspective fairness properties due to redundancy.

for session per quantum. Transmitting exactly this number of packets requires that all other receivers
receive a subset of the packets that are received by per quantum. When this is not the case, .

Definition 3 We define the redundancy of a link for a session to be , where is
the long-term average link rate by session , and is the long-term average rate for receiver . We say a
session’s bandwidth utilization of a link is efficient for session if the link’s redundancy for that session is one, and
define a session ’s efficient link rate to equal .

Note that our assumption in Section 2 that amounts to an assumption that multi-
rate sessions are efficient (i.e., on all links in the network, a multi-rate session’s link rate equals its efficient link rate).
When there are multi-rate sessions that are not efficient, a multi-rate max-min fair allocation might not satisfy per-
session-link-fairness (and hence might not satisfy per-receiver-link-fairness). To show this, we consider the network
shown in Figure 4, whose labeling is similar to that of Figures 1 and 2. We again assume that the maximum desired
rates are large so as not to bound receiving rates, e.g., let . Here, session is multi-rate with a
redundancy of 2 over the shared link, . Since the maximum receiving rate for receivers in (all of whose data-paths
traverse ) is 2, . Since this is the only link that is fully utilized, and , per-session-link-fairness
fails. It follows that per-receiver-link-fairness fails to hold for session as well.

It is trivial to show that the fairness properties that do not compare session link rates, (specifically same-path-
receiver-fairness and fully-utilized-receiver-fairness), continue to hold even when sessions are not efficient.

To understand how important coordination between receiver joins and leaves is for redundancy, let us examine
what happens on a shared link when there is no implicit join/leave coordination. Assume each receiver within
session randomly chooses the packets it should receive within the quantum, with each packet having an
equally likely chance of being chosen as any other in that quantum. In this case, ,
where are the rates of receivers that are members of the set (derivation in Appendix E).
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Figure 5: Redundancy of a single layer with random joins

Figure 5 shows how the number of receivers within a session that utilize a link (i.e., ) impacts the redundancy
of a layer when each receiver randomly chooses the packets it receives within the quantum. The number of
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receivers is shown on the -axis, while the session’s redundancy is indicated on the -axis. The curves represent
various configurations of . For curves labeled All , ( , or ), each receiver’s is
respectively set to , and for each receiver. For curves labeled 1st rest , , and for

. Note that in each plot, the efficient link rate remains constant as the number of receivers is varied.
Note that for redundancy to be high, the ratio of efficient link rate to the transmission rate (i.e., )

must be small. In fact, the redundancy can only be as large as the multiplicative inverse of this value (e.g.,
yields a redundancy of 10), and asymptotically reaches this value with an increase in the number of re-

ceivers that share the link. In other words, for redundancy to be high, all receivers must require only a small percentage
of packets from a layer.

A second result is that for a fixed efficient link rate, redundancy increases most rapidly as a function of the number
of receivers when all receivers receive at the same rate of , equal to the efficient link rate. In other words,
an upper bound on how additional receivers impact redundancy is obtained by considering a network in which all
receivers within a session have identical fair rates.

These results gives a preliminary indication as to what impacts the magnitude of redundancy within a network.
We find that having additional layers often leads to a reduction in redundancy that is sometimes substantial, and that
it never increases redundancy beyond that exhibited for the single-layer case. Details of these results can be found in
Appendix E.

3.1 The impact of redundancy on fair rates
Let us now examine the impact that redundancy has on fairness within a network. We now demonstrate why sessions
with lower redundancy are “more max-min fair” than corresponding ones with high redundancy. We begin by relaxing
our assumption made in Section 2 that . We extend our definition of a session to be
a tuple that now includes a redundancy function . Here, maps a set (of arbitrary
size) of receiver rates to a link rate. Given an allocation of receiver rates, , session ’s link rate for link is computed
as . In Section 2, is simply the operation. Since must hold whenever

(for reasons discussed in Section 2), it follows that .10

Lemma 4 Let , and be identical networks, where each
session in is identical to in , except for their respective redundancy functions, and . Assume sessions
in exhibit higher redundancy than those in , (i.e., for each session and any set of real numbers,

). Let be the max-min fair allocation in and the max-min fair allocation in . Then .

Proof: First consider allocation in , and let represent receiver ’s rate under allocation . Since is max-
min fair, it is feasible in . Feasibility implies that for any link in , . Our

assumption for that for any set of real numbers gives us that

, which is the link rate for link for allocation in network . Since has
identical capacity in and , it must be that is feasible in , and by Lemma 1, we have .

Lemma 4 states the following: assume that sessions are “replaced” by sessions that are identical, except that the
session link rates required to support a given set of receiver rates are higher (e.g., the amount of coordination of joins
and leaves between receivers within a session is reduced). It follows that the resulting max-min fair allocation is “less
max-min fair” than the max-min fair allocation for the network with the sessions prior to the “replacement”.

We know that a redundancy greater than one produces max-min fair rate allocations within the network that might
not exhibit the session-perspective fairness properties, per-receiver-link-fairness and per-session-link-fairness. Also,
using the min-unfavorable relation, we have shown that increased redundancy might reduce the “max-min fairness”
of a max-min fair allocation. Let us now quantitatively examine how redundancy may impact fair rates. Consider a
set of sessions whose receiver rates are constrained by the same link, with capacity . Let of these sessions be
multi-rate with a redundancy of on link , and the remaining sessions have redundancy 1. Since we assume
that all receivers’ rates are constrained by link , their max-min fair rates are all equal to . Figure 6 shows

10Actually, must also be non-decreasing and continuous in the following sense: let and be sets of rates where , and let
be a bijection. Then if , then (non-decreasing). Also, such that if

(continuity).

11



0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10
No

rm
al

ize
d 

Fa
ir 

Ra
te

Redundancy

m/n=0.01
m/n=0.05

m/n=0.1
m/n=1

Figure 6: The impact of redundancy on fair rates.

the receivers’ rates as a function of the redundancy, . The -axis indicates , the various curves represent various
values of the ratio of sessions, , that exhibit redundancy . The -axis presents the fair rate normalized by ,
the fair rate for all the receivers in the network when all sessions are efficient.

Figure 6 indicates that even modest levels of redundancy can substantially reduce the fair receiver rates for all
sessions in the network. From this we can draw two conclusions: first, it is important to maintain low redundancy on
network links to keep fair rates high. Second, when multi-rate sessions make up a small percentage of sessions in the
network, they have less of an impact on the fair rates of sessions. Due to the current proliferation of unicast traffic
within the network, we expect that less than 5% of sessions within the network will be multi-rate. This means that low
levels of redundancy greater than one can be tolerated.

These results raise an interesting dilemma: should multi-rate protocols be used to achieve fairness from the re-
ceivers’ perspectives, even if it means failing to achieve per-session-link-fairness (a fairness property that holds when
all network sessions are single-rate and unicast)? We argue that yes, multi-rate protocols should still be used, because
the “unfair” additional usage of link bandwidth due to redundancy can be justified in that the session is transmitting
data to multiple receivers. A similar argument is used in [7] to allocate link bandwidth to sessions in a manner that is
proportional to the number of receivers within the session.

The reduction in rate due to redundancy can occur whenever a multi-rate session tries to achieve some form of
fairness using joins and leaves of layers. For example, in [18], receiver join experiments are coordinated within
a network where TCP-fairness is the fairness criteria. The coordination prevents “bottleneck bandwidth allocated
to [the] protocol instance [from] not being fully exploited.” This lack of “exploitation” is, in effect, an artifact of
redundancy.

4 Redundancy in Practical Congestion Control Protocols
In Section 3, we showed that a lack of join and leave coordination within a session increases the session’s redundancy
on links shared by that session’s receivers, which is likely to reduce their fair receiving rates. Our final contribution is
to show that redundancy can easily be kept quite low in practice. We show this by measuring the redundancy of several
Internet layered congestion control protocols that vary in the degree to which joins are coordinated among receivers.
In these protocols, receivers react to congestion by leaving layers, and probe for available bandwidth by joining layers.
We compute each protocol’s redundancy using analysis and simulation for simple network models. Because of the
simplicity of the models, there may be some differences between what we observe and what will actually occur in
practice. However, we do not expect these differences to alter results significantly enough to change our conclusion.

In each protocol, a receiver leaves the highest layer joined (unless only joined to one layer) whenever it observes
a congestion event: an indication that some part of its data-path is being overutilized. In practice, a congestion event
may be the loss of a packet by the receiver, or a bit set within a packet by the network used to indicate that the receiving
rate should be lowered [12]. If no congestion events are observed by a receiver within a sequence of packet arrivals, it
joins an additional layer (unless already joined to all layers). Using these protocols, a receiver repeatedly adjusts the
set of layers to which it is joined for the duration of the session. The protocols differ in the degree to which joins are
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coordinated within a session.

In the Uncoordinated protocol, there is no inherent coordination: upon receiving a packet, a receiver randomly
decides whether to join an additional layer.

In the Deterministic protocol, there is also no inherent coordination; a receiver joins an additional layer after receiv-
ing a fixed number of packets without loss since its last join or leave event.

In the Coordinated protocol, the sender indicates (e.g. through a field within its transmitted packet) when receivers
should join an additional layer. This is done in such a way so that when the field indicates that receivers joined up to
layer should join layer , it also indicates that receivers joined up to layer should join layer .

The additional details of the protocols (layer rates, join-period) are based on the choices made in [18]. For instance,
we require that the aggregate rate of layers 1 through equals , and that the expected number of packets received
by a receiver between a previous join/leave event to its join to layer equals .11 Because of these protocols’
similarities to the protocol in [18], we anticipate these protocols are suitable for the same set of continuous stream and
reliable bulk data transfer applications described in [18]. Due to a lack of round-trip-time dependence, these protocols
come closer to achieving max-min fair rates than TCP-fair rates. See Appendix F for a more precise description of
these protocols and how they differ from the protocol in [18].

We model packet loss (or equivalently, congestion marking of packets as a Bernoulli loss process. The reader can
consider the loss process to be fairly accurate for a network where the number of flows across links is large, so that
there is little correlation between the rate of an individual flow and the link loss rate [20]. Our model also assumes that
receivers’ reactions to coordinated events (shared loss, coordinated joins) take effect at the same time: two receivers
that see identical loss patterns would be joined to the same set of layers. Under these conditions, it can be argued that
these protocols come “close” to achieving the max-min fair rates, i.e., the expected rate does not exactly equal the
max-min fair rate, but the difference is fairly small.
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Figure 7: Network models for coordination experiments

Our experiments use modified star networks, as shown Figure 7, to examine how shared loss (i.e., loss on the
shared link abutting the sender) and independent loss (i.e., loss on the fanout links) impact redundancy. The initial set
of experiments uses the topology in Figure 7(a). Using Markov models of the protocols over this network, we examine
how different values of shared and independent loss impact the redundancy of a session on the shared link. The
details of these models appear in Appendix F We summarize the most important finding: redundancy is highest when
receivers experience the same end-to-end loss rates. This result follows intuitively from our observation in Section 3
that redundancy is highest when all receivers receiving rates are equal to .

Our Markov models are too computation-intensive to allow us to examine sessions with large sets of receivers.
Instead, we turn to simulation. Figure 8 shows simulations of the protocols using 8 layers with 100 receivers in the
session with identical end-to-end loss rates, configured in the modified-star topology of Figure 7(b). In Figure 8(a),
the shared loss rate is fixed to 0.0001 (i.e., very low shared loss), and the loss rate on each of the fanout links is given
on the -axis. Each curve shows the redundancy for the three protocols we consider.12 Figure 8(b) plots similar
results, but where the shared loss rate is .05. We see that for all protocols, redundancy remains fairly low (below 5)

11In [18], the number of packets received equals (i.e., it is a deterministic value).
12Each point plotted is the mean of 30 experiments where the sender transmits 100,000 packets, the variance is less than 1% with 95% confidence.
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Figure 8: 100 receivers, 8 layers

for reasonable loss rates. By having the sender coordinate joins as in the Coordinated protocol, redundancy remains
below 2.5, even when there are 100 receivers within the session, each of whose data-path contains the shared link.
We observed negligible changes in the results when we increased the number of receivers beyond 100. Since our
previous results indicate that redundancy is highest when all receivers have identical end-to-end loss rates, we can
conclude that sender-coordinated congestion control protocols can keep redundancy below 2.5. This is low enough so
that, in networks where multi-rate protocols make up a small percentage of sessions, multi-rate protocols will yield
fair allocations with sufficiently desirable fairness properties.

5 Related / Future Work
The application of layering, in the context of video transmission, to maximize usage of available bandwidth and
the benefits of coordination of receiver join events within a session are discussed in [11], and further explored in
[8]. Clever use of parity coding techniques extend layering’s applicability to reliable multicast [4, 18, 14]. Preliminary
experiments and definitions of various forms of fairness for layered approaches are explored in [8, 18], as well as in [9],
which discusses at a high level how using a layered approach can change the max-min fair allocation. An examination
that uses fairness metrics to compare various allocation strategies for layered multicast protocols is presented in [7].
There, the authors argue that link bandwidth should be allocated to sessions in some manner that is proportional to the
number of receivers in the session because doing so increases the average “receiver satisfaction”. However, none of
these works look consider how layered approaches affect fairness properties (in comparison to single-rate approaches)
throughout a large-scale network.

Much of the remaining work that deals with multicast fairness assumes that sessions are single-rate [17, 3, 19, 13],
and therefore compromise fairness from the receiver perspective, due to tight binding of receiver rates within a session.
There has been some work that discusses how one might choose a single-rate session’s rate in order to maximize a
measure of fairness on a per-receiver basis [6].

There are numerous issues that remain open with regard to using layering to achieve multi-rate max-min fairness.
The effects of layering on desirable fairness properties for other definitions of fairness is one possible avenue for
examination. We believe that many of our results can be directly applied to TCP-fairness by constructing a definition
of max-min fairness where receiver rates are assigned weights (i.e., a receiver’s rate is weighted by the inverse of
round trip time). It would also be interesting and useful to extend definitions of fairness to multicast sessions with
multiple senders. There are also many issues that deal with the practicality of using layering to achieve fairness. One
question that comes to mind is whether priority dropping schemes for layered approaches [1] might aid in reducing
redundancy by increasing coordination among receivers. Also, multicast routing technology must be improved to
make layered approaches practical for congestion control and fairness purposes. For instance, join and leave latencies
complicate coordination among various receivers within a session, which is likely to increase redundancy. We believe
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that long leave latencies will also increase redundancy (a link continues to receive at the rate prior to the leave, until
the leave takes effect, while the receiver’s rate reduces immediately). We expect that many such problems are solvable,
perhaps with the aid of active routing technology [16]. For instance, placing the decision to add and drop layers at the
active nodes, rather than at receivers, should increase the coordination of the joins and leaves of layers by downstream
receivers, thereby reducing redundancy. Such an approach would make a redundancy of one feasible for a layered
multi-rate session.

It is also unclear whether bandwidth can be shared fairly by sessions that measure fairness on different timescales
(i.e., use different quanta), especially in networks like the Internet where a session’s fair allocation may vary due to
startup and/or termination of other sessions within the network. Finally, our models contain numerous simplifications
of what exists in practice; they are merely used to illustrate concepts, identify challenges, and provide a basic under-
standing of what can be expected in practice. Extensive development and testing is still necessary to verify that our
hypotheses presented here do in fact occur in practice.

6 Conclusion
We have explored how multi-rate multicast, achievable using layered multicast approaches, can impact fairness within
a network. In particular, we showed that in theory, multi-rate sessions can achieve several desirable fairness properties
that cannot be achieved in general networks using single-rate sessions. In a practical environment, we demonstrate
how receivers can join and leave layers so that their rates are max-min fair over a long term average. Unfortunately,
this join-leave process has several practical difficulties. One difficulty that we address is redundancy: an excessive use
of bandwidth by a session over a link shared by multiple receivers in the session. High redundancy not only leads to
failure of several fairness properties from a session perspective (i.e., fairness of session link rates), but is also likely
to reduce most receivers’ fair rates. Our subsequent analysis shows, however, that based on the portion of network
sessions that are expected to be multi-rate, practical solutions can keep the amount of redundancy low enough such
that layering can be used to improve fairness within multicast networks.
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Appendix

A Summary of variables

A network graph with links.
The th link of
The capacity of link
The th session in
a mapping onto each session that indicates the session’s type ( = multi-rate or = single-rate)
The th of receivers in session
the single sender for session
A topology mapping that maps session members onto network nodes.
a network
The maximum desired rate for session
The set of receivers in whose data-path traverses
The set of receivers over all sessions whose data traverses
The data rate for transmission to receiver
The receiver in a unicast session
The data rate in a unicast or single-rate session
The link rate for session on link
The link rate for link (i.e., )

Defined in Section 3:
The aggregate rate of the “single-layer
A more general session link rate function

B Max-min fair construction and existence proof
The following algorithm constructs a max-min fair allocation for a network, . In plain English, the algorithm iterates
over a set of receivers, each step increasing those receivers’ rates uniformly as much as possible without overutilizing
any links in the network. A receiver is removed from this set once some link on its data-path reaches full capacity,
or, if the receiver is part of a single-rate session, the data-path of some receiver in the session contains a link that has
reached full capacity. We define

otherwise (1)

1.
2. While
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3.

4. . For all other .

5. .

6.
7.
8.
9. end while

10.

Step 3 the largest value that all receivers’ rates in can be incremented while maintaining feasibility of the
allocation. Steps 4 and 5 apply this increase to the “current” receiver rates and link rates respectively. Step 6 removes
any receivers from whose rates cannot be incremented any further, or else they would be larger than the maximum
session rate, or would cause overutilization of some link. Step 7 removes any receivers in single-rate sessions from

, given that some other receiver in that session has been removed (so that all receiver rates in this session remain
identical).

Lemma 5 The above algorithm’s resulting allocation is max-min fair.

Proof: The choice of in step 3 causes some link to be fully utilized, or causes some receiver to attain its session’s
maximum rate, so that , hence the algorithm must terminate. This choice also ensures that

for each , hence the final allocation must be feasible. Since ,
and . It follows that and .

Let represent the allocation produced by the algorithm, and let be another feasible allocation (using to
represent each receiver’s rate in ). Consider any receiver where . To show that is max-min fair, we
must show that there exists some other receiver where .

Let represent the iteration of the algorithm (i.e., the value of ) where , but . If is
excluded from as a result of step 7, then is in a single-rate session, and some other receiver in the same
session must have been removed in step 6. Because is single-rate, we must have that and
and thus . Hence, there is some receiver that was excluded from as a result of step 6
whose rate allocations in and are identical to those of . Hence, we can assume, WLOG, that was excluded
as a result of step 6. Because of this, and because , it must be that ’s data-path contains a link

that is fully utilized at the end of iteration . Thus, any other receiver is excluded from , so that
. Since is fully utilized and there is some receiver where to prevent

from being utilized beyond its capacity. Since this , we have .

C Multi-rate Max-Min Fairness Proofs
We now present proofs for several of the Lemmas and Theorems in the paper. To ensure that there is no circular usage
of proofs (e.g., Lemma A’s proof uses Lemma B, whose proof uses Lemma A), each proof uses only the lemmas,
theorems and corollaries that are proven previously. For instance, we do not establish that the max-min fair allocation
is unique until Corollary 5, so all proofs prior must assume that more than one max-min fair allocation may exist.

Lemma 6 A multi-rate max-min fair allocation is fully-utilized-receiver-fair.

We prove that a max-min fair allocation is fully-utilized-reciever-fair by showing for each receiver , its rate
in a max-min fair allocation is fully-utilized-receiver-fair. We begin by arbitrarily choosing the receiver .

If , then the proof holds trivially. Since in any feasible allocation, we need only consider when
. Let (i.e., an amount of bandwidth that is free on all links on ’s data-

path). Since is feasible, . We construct another allocation, , as follows. for any receiver
, and . Then is feasible, but if , then and there is no recever where
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, contradicting max-min fairness of . Hencem, we must have , which means there must
be some fully utilized link for which .

It remains to show that there is some link that is fully utilized where and for all
other . For all links ,, define , and let
( is well-defined since we have shown some link on ’s data-path must be fully utilized). Also define

. Since each and in a feasible allocation, we have that .
Note from its definition that only if .

We will now increase and decrease some receiver rates by to produce a feasible allocation that contradicts the
max-min fairness of (unless ). Let be this new allocation where , and whenever

, and otherwise. If a receiver’s allocation is smaller in than in , then its
allocation in is bounded below by , so all receiver allocations in are non-negative. We write for the link
rate of under allocation . Since only receiver ’s allocation is larger in than in , it follows that for any link

, if then . For , if , clearly . If instead , for , the
construction of gives that , and since only ’s allocation is increased in , we have .
If , then, by definition of , there is at least one receiver where .
Having ensures that , thus is feasible (no links are utilized beyond capacity).

If , then , and for each where , we have that . Hence, ’s
feasibility contradicts the max-min fairness of . Thus, , and it follows that . Thus, some where

. The definition of gives us that , and for all other . Hence, is
fully-utilized-receiver-fair.

Since was chosen arbitrarily, each receiver’s rate is fully-utilized-receiver-fair, making the allocation fully-
utilized-receiver-fair.

Corollary 2 A multi-rate max-min fair allocation is shared-path-receiver-fair.

Proof: Consider any pair of receivers and ( may or may not equal ) that have the same data path. By
Lemma 6, there exists a link where , hence . Lemma 6 also gives us that
there exists a link (perhaps even the same link) where , hence . It follows
that .

Lemma 7 In a multi-rate max-min fair allocation, for each receiver , either , or else there is at least one
fully utilized link, , where and for all sessions .

Proof: If , then the proof holds trivially. Assume . Then by Lemma 6, there is a fully utilized link
on ’s path from the sender where for all receivers . Hence

for each session, . In Section 2, we defined to be , making
.

Corollary 3 A multi-rate max-min fair allocation is per-receiver-link-fair.

Proof: Follows directly from Lemma 7.

Corollary 4 A multi-rate max-min fair allocation is per-session-link-fair.

Proof: This follows easily from Corollary 3.

Proof of Theorem 1: The proof is the immediate result of Lemma 6, Corollary 2, Lemma 7, and Corollaries 3
and 4.

Lemma 8 Let be a single-rate session in a network and . In a max-min fair allocation, there exists a
fully utilized link where and for all other sessions .

Proof: Let be the max-min fair allocation. Let , Since is feasible, . Let be
an allocation where for any receiver , and for all . Note that all
receivers in are reduced by an identical amount, so all receivers in continue to receive at the same rate. Since
the rate is increased only in session , a link ’s link rate increases by at most , and the increase only occurs when
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, so by the definition of , the link rate remains beneath . Then is feasible, and for the same reasons as
in Lemma 6, contradicts the max-min fairness of allocation unless . Hence, there must be some fully utilized
link for which for some receiver .

Let , and let . Also define
. Then let be an allocation where , and whenever , and

otherwise. Using similar reasoning as in the second half of the proof of Lemma 6, some must be 0, so that on link
for all other sessions .

Proof of Lemma 1: For each receiver , let be the receiver’s rate in allocation , and be the receiver’s
rate in allocation . We also write as the ordered vector of receiver rates in and
as the ordered vector of receiver rates in .

If then . Otherwise, some receiver’s rate must differ in allocations and . If all receiver rates
are lower in than in , then clearly . Now consider the case where there is at least one receiver where

. Let , and choose a (possibly unique) receiver from with the minimal
value of , ( ). Since is a max-min solution, and since , by Lemma 6
if , or by Lemma 8 if , there is a link that is fully utilized where . To prevent
link from being overutilized in allocation , there must be some other receiver where .
Furthermore, Lemmas 6, 8 give us that for all other receivers , hence .

Return now to our ordered vectors of and . Consider the smallest where (such a must
exist, since is allocated in ). If , then since equals the lowest rate assigned to any receiver
in allocation , making , and we have . If , then (by the choice of )

, which means there are receivers, each of whose rate satisfies . From
our choice of within , any receiver that satisfies must also satisfy . Thus we have
that each of these receivers has , and since each of these receiver’s rates in allocation satisfies

, we have identified a set of receivers whose rates in allocation are less than . Since
each receiver satisfies has , receiver (since its allocated rate in is , and its
allocation in is . Thus, including , there are at least receivers whose allocation in is less
than so .

For any where , there are at least receivers whose allocations in each satisfy ,
and hence (from the choice of ) each of these receiver’s rates satisfies . Since there are also at
least receivers that satisfy , we have that for at least receivers, which means that
there are at least receivers whose rates in allocation are less than , hence . Since (by choice of )

, it follows that for , thus for . We therefore have
for and .

Note that the proof makes no assumptions about the type of sessions in the network (unicast, multi-rate single-rate
multicast). Thus, the proof holds for a network with any combinations of types of sessions.

Proof of Lemma 2: Let .
If: Since , there must be at least one index where (otherwise all , and since

, for some ). Let , and let , so that .
Since , we have that . Thus, .

Any implies that , so that . Otherwise, if , since , there must be some
where , contradicting our choice of . Similarly, would contradict our choice of . Since

for all , clearly for any , and it follows trivially
that for any .

Only If: Define . Since by assumption,
, we have . This assumption also gives us that if , then , hence

implies that . It is also the case that when , then . To prove this, assume instead that .
This means that, . Furthermore, it is always the case that .
Thus, for , which contradicts the assumption that for all

. To summarize, . For , if ,
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because , we have . Furthermore, if , then . It follows that .

Corollary 5 (Max-min fair uniqueness) There is a unique max-min fair allocation for any network.

Proof: Let and be max-min fair allocations for a network, . Then by Lemma 1, and , hence
. For each receiver , let be its rate under allocation , and be its rate under allocation . Note

that equality of the ordered vectors does not imply that for each receiver . To prove this, define
. Note that because , our choice of gives us that for any receiver where

, then (this follows from Lemma 2 where .
Fix to be any (possibly unique) receiver where (one such receiver exists given the

construction of and the fact that ). Since is max-min fair, it is feasible, and from
our choice of , there is no receiver where . This contradicts the max-min fairness of .
Thus, for each receiver within the network, we must have .

Proof of Theorem 2: Since we have that the max-min fair allocation is unique, and that the algorithm in Appendix
B computes the max-min fair allocation, we can simply examine the allocation computed by the algorithm.

(a) A receiver where is removed in step 6. Hence, , or there is some fully utilized
link that led to ’s exclusion from for some . Following the argument in Lemma 5, is the largest
possible rate for any receivers whose data-path crosses .

(b) Apply the argument in Lemma 7, replacing Lemma 6 with (a)
(c) Per-session-link-fairness holds for each session where as a consequence of (b). For ,

at least one receiver must be excluded from for some by step 6. If , then since is single-rate,
for all . Otherwise, there is some link that is fully utilized and, again following the

argument in Lemma 5, is the largest possible rate for any receivers whose data-path crosses . Since for all
sessions , we have that , it follows that for all other .

(d) follows from (a) using an argument similar to that in the proof of Corollary 2. (e) follows from directly from
(a).

Lemma 9 If a single session switches from being single-rate to multi-rate, its max-min fair rates per receiver do
not decrease.

Proof: Let be the network where , and the network where , let be the max-min fair
allocation in , and the max-min fair allocation in . For an arbitrary receiver , let be its max-min fair
rate in , and be its max-min fair rate in . For , Theorem 2(a) gives us , there exists fully utilized link

where or for all . If , then to prevent from being utilized beyond
capacity, there must be some other receiver where . However, since ,

, so we have . Since is a feasible allocation in , this results in a
contradiction that is the max-min fair allocation. Thus, it must be the case for each that .

D Additional Properties of max-min fair allocations
We now expand on our discussion of the properties of max-min fair allocations. In Section 2, we showed how removal
of a receiver from a session can cause other receivers’ multi-rate max-min fair rates to vary in either direction (increase
or decrease), regardless of whether or not the receiver is in the same session as the removed receiver. We now present
results that prove that max-min fair receiver rates do not drop below the max-min fair rate of the receiver that is
removed, and hence, a single-rate session’s rate never decreases when a receiver is removed from a session.

Lemma 10 Let and be networks which differ only
in that session has one additional receiver, , than session . For each receiver , let be its max-min
fair rate in network , and (except for receiver , let be its max-min fair rate in network . If ,
then , and if , then .

Proof: Consider any receiver where , and apply the algorithm in Appendix B which constructs the
max-min fair allocation to both networks and . When applying the algorithm to , since , there
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exists such that but . Thus, no link whose full-utilization would prevent ’s inclusion in
can be fully utilized whenever . Furthermore, . Thus, the allocation to does not effect the
value of for any other receiver where . Thus, for , is identical over and . Since
is excluded from , we have that .

We now show that if , then . Let be the ordered vector of the allocation
of rates to receivers in , where each receiver ’s allocation equals (i.e., each receiver except receives
at the rate which is its max-min fair rate in ). Clearly, this is a feasible allocation for , so by Lemma 1, ,
where is the ordered vector of max-min fair receiver rates in . If , then

, otherwise , contradicting . If , then by Lemma 2, such that
and . Since

all receivers where implies , we have that . This means that if there is any
receiver where , then , which is a
contradiction. Thus, .

Clearly, Lemma 10 can be extended to any session , i.e., need not equal 1. The Lemma states that a receiver
’s max-min fair rate will not change due to the removal of a receiver from the network when is less than the

removed receiver’s max-min fair rate (prior to its removal). Furthermore, the max-min fair rate for a receiver can
only increase by removing a receiver when the two receiver rates are equal, prior to the receiver removal. This gives
an interesting result about single-rate session rates due to the removal of a receiver.

Corollary 6 Let be a network. If a session is single-rate, then if a receiver leaves the session, the session’s
max-min fair rate can only increase.

Proof: All receivers have identical rates. From Lemma 10, by removing a receiver, from the session,
since we have prior to the removal (in fact, they are equal), hence .

Corollary 6 gives us the following important result: a single-rate session’s max-min fair rate does not decrease (but
may increase) when a receiver is removed from within the session.

E One and Two Layer Expected Bandwidth with Random Joins
We compute the expected bandwidth for session on a link . For simplicity, we write , and denote the
set of receivers from session whose data-path utilizes this link (i.e., ) as , and let be the number
of packets that receiver must receiver per quantum.

Let packets be transmitted in a time quantum, and let be a random variable that equals 1 if any receiver is
joined when packet is transmitted, and 0 otherwise ( ). Let be a random variable that equals 1 if receiver

joins to receive packet , and 0 otherwise. Since we assume a receiver chooses the packets it is to receive from a
uniform distribution, we have .

Let us now consider the inclusion of a second layer. For simplicity, we present the formula when all receivers
require the same number of packets per quantum, . If is the fraction of packets transmitted on the bottom
layer, if , then any packet transmitted on the bottom layer has , and for a packet on the top layer,

. When , any packet transmitted on the top layer has , and for a packet on the
bottom layer, . This yields:
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Figure 9: Redundancy of a single layer with random joins

Let us consider the benefits of using multiple layers. Figure 9 examines how having two layers reduces redundancy
compared to having a single layer. The aggregate rate of transmission by the session is split between the two layers,
where the -axis indicates the fraction, , of packets that are transmitted on the bottom layer per quantum. Any
receiver whose fair rate is remains joined to the lower layer and randomly selects the remaining packets
per quantum from the upper layer. Any receiver whose rate is randomly chooses its packets per
quantum off the lower layer. Each curve represents a fixed number of receivers, each of which receives an identical
percentage of packets per quantum (from Figure 5, we know that identical percentages yield the highest redundancy).
When and , all packets are transmitted on a single layer, hence the redundancy is identical to when there
is only one layer available. For , redundancy is lower than in the single layer case, and equals exactly one
when and the percentage of packets needed per quantum by the receiver with the largest receiving rate are equal.

Using layers in this manner reduces the randomness in the packet selection process by a receiver. This increases the
correlation of packets chosen, hence having an additional layer decreases redundancy. However, since the maximim
percentage of packets received per quantum can vary from link to link within a session, it is difficult to choose an
optimal value for .

F Details of Congestion Control Approaches
The congestion control protocols used in Section 4 are based mainly on the ideas in [18], but vary in several respects
in order to increase the “history-less” nature of the protocol, simplifying its Markov model. Most of these differences
are discussed in Section 4. The one additional difference is that the sender does not transmit packets at a fixed rate on
each of the layers. Instead, it transmits on layer at an expected rate of 1 for layer 1, and at for each layer .
Hence, the expected rate for a receiver joined up to layer is simply . Hence, the expected
rates for the protocols used in Section 4 and the protocol presented in [18] are identical.

Let us now describe how the sender achieves an expected rate of 1 on layer 1 and of on layer where ,
when the sender transmits over layers. The sender transmits packets over all layers at rate . It places a packet
on layer with probability for , and with probability on layer 1.

F.1 Implementing the Coordinated Protocol
We now discuss implementation details of the Coordinated protocol. For a protocol that uses layers, a packet sent
on layer 1 requires a bit field to implement the coordination. Receivers join to an additional layer only when
receiving a packet transmitted on layer 1. Upon receipt of such a packet, receivers examine the value in this field. If
the value of the field, , is larger than the layer up to which the receiver is joined ( ), then the receiver joins
layer . The probability that the field is set to the value is . The probability that the field is set to
the value is . The conditional probability that a receiver, joined up to layer , receives a packet sent on
layer 1 given that it receives a packet on some layer is . The conditional probability that the packet causes the
receiver to join an additional layer, given that the packet arrives on layer 1 is . Hence,
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the conditional probability that the receiver joined up to layer joins an additional layer upon receiving a packet is
as desired.

F.2 Markov Model of 2-receiver session
We now describe the Markov models used to compute the expected data rates of the Uncoordinated and Coordinated
protocols for a session containing two receivers, configured in a modified-star topology (Figure 7(a)). The models give
the expected data rate on the shared link, as well as on each of the two fanout links. We first describe the models used
in the Uncoordinated and Coordinated protocols, since these models are quite similar. We then extend the model to a
Semi-Coordinated protocol; motivation for a Semi-Coordinated protocol is discussed there as well.

Consider a session that transmits over layers. We model such a session for Coordinated and Uncoordinated
protocols using states, where each state is labeled . The state labeled represents a session
configuration where receiver 1 is joined up to layer , and receiver 2 is joined up to layer . Define to be the
expected rate at which data is transmitted on layers 1 through layer . When in state , receiver 1 receives at
expected rate , receiver 2 at expected rate , and the shared link transmits data at expected rate .

A transition is taken from state whenever a packet is transmitted from the sender on any layer from 1 to
. We call such transmission a transmission event. After a transmission event, the new current state of the

Markov process is where if receiver 1 loses the packet, if receiver 1 does not lose the packet,
or gets the packet and decides not to add an additional layer, or if receiver 1 receives the packet and decides
to add an additional layer. Receiver 2 behaves in identical manner to determine whether or .
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i, j
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i, j+1
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Figure 10: A typical state and the transitions from that state in the 2 receiver Markov model.

Figure 10 illustrates the transitions that can occur for a typical state . States that are not typical are those
where or . In these cases, states where or and connecting
transitions are simply omitted.

The models for the Coordinated protocol and the Uncoordinated protocol assign different weights to the directed
transitions between pairs of states. Assuming the Markov process is ergodic, we can compute the steady state proba-
bilities, of residing within state . is the steady-state probability , receiver 1 is joined up to layer and
receiver 2 is joined up to layer when a transmission event occurs.

Let be a random variable indicating the time to a subsequent transmission event upon arriving in state ,
and define to be a random variable that equals 1 whenever some observer is joined up to the layer on which
the subsequent transmission event is sent, and 0 otherwise. Let be a random variable that equals the rate at which
observer obtains packets. Then

(2)

For each transmission by the sender, we define to be the event that a packet transmitted by the sender is sent on
some layer . Upon transitioning into state , the shared link carries the subsequent transmission event
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with probability 1, receiver 1 will observe the subsequent transmission event with probability , and
receiver 2 observes the this transmission event with probability .

Given that the sender sends packets at a rate of , the expected time until a subsequent transmission in state

(3)

We are interested in the expected rates of three “observers”: the shared link, receiver 1, and receiver 2. Define
and to be random variables that, upon entering state , equal 1 or 0 depending on

whether the shared link, receiver 1, and receiver 2 (respectively) are joined up to the layer on which the subsequent
transmission event is sent. Our definition of a transmission event gives us the following:

(4)

(5)

(6)

We now compute transition weights for the set of states in the Markov model. Let us consider a state and
assume that . The transition from this state when a transmission event occurs depends on the outcome of three
events First, we must consider whether or not receiver 2 is joined up to the layer on which the packet is transmitted
(we make the reverse consideration for receiver 1 when ). Next, for each receiver that is joined up to the layer
on which the packet is transmitted, we must determine whether the packet is dropped, either on the shared link or
on individual link. Finally, for each receiver that receives the packet, we must consider whether the packet causes
the receiver to join an additional layer. For this purpose, we define several events that are used in the calculations of
transition weights for all protocols. Recall that is the event that receiver 2 (joined up to layer ) is joined to the
layer on which the transmission event is transmitted. Let be the event that the path to receiver 1 is not congested.
When a transmission event is sent on a layer joined by receiver 1, if holds, then the packet is received, otherwise it
is lost. We define in a similar manner for receiver 2. Let be the event that a receiver joined up to layer joins
an additional layer if it receives a transmission event. Note that as defined, the event is independent of , and

. The same can be said for . Also, is independent of both and .

Table 1: State transitions and their weights for a state .
transition value

Table 1 gives the values for the weights for transitions from state where , in terms of
the probabilities of the events defined above. Weights for transitions of states where can be
computed in a similar manner (i.e., in that case holds for each transmission event, whereas may or may not hold).
Note that because , we have . Hence, we need not include terms that contain . It also follows that

, and .
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Table 2: Probabilities for join correlations for state .
Event uncorrelated value correlated value

0

Transition weights leading from states where or must be modified slightly: receivers never drop
layer 0, nor can they add a layer beyond . The easiest way to compute the weights for transitions from such states
can be done using the entries in Table 1: We demonstrate for the transition , whose weight is the sum
of table entries , , , and .

The Coordinated protocol and the Uncoordinated protocol differ only in the dependence relation between (the
join event for receiver 1) and (the join event for receiver 2). For the Uncoordinated protocol, these events are
independent. For the Coordinated protocol, recall that if , then event holds only if holds as well. We find
that for both protocols, for each state , the probabilities of various combinations of events and

holding and not holding can be written as functions of and . These relations are given in Table 2.
We conclude by listing the values of the other probability parameters in Table 1 for an arbitrary state .

.

and are defined explicitly for both protocols to be and respectively. is
defined to be .

F.3 Extending the model to the Semi-Coordinated protocol
We now extend our Markov model to include the Semi-Coordinated protocol. The Semi-Coordinated protocol behaves
similarly to the Uncoordinated protocol, except when receivers are joined to an identical layer after losing the same
packet. When this occurs, receiver joins are synchronized until one receiver drops a packet that the other does not.
The Semi-Coordinated protocol captures a feature of the Deterministic protocol used in the simulations in Section 4:
when two receivers join or leave the same layer at the same time, then all subsequent joins will occur at the same time,
until a loss event causes only one of the receivers to leave a layer.

We introduce additional states into the Markov model that we label through , where state
represents a session in which the two receivers both are joined up to layer and the prior loss observed by each is the
same.

The transitions for any state for are identical to those in the Markov model for the
Uncoordinated protocol, with the exception of those listed in Table 3.

F.4 Markov Model results
The protocols operating with two receivers over seven layers are evaluated via the Markov models. Figures 11 and 12
compare the redundancies of the two protocols under a variety of loss conditions. In each graph, we vary along the

-axis. The -axis gives the redundancy, curves represent the results for the Coordinated, Uncoordinated, and Semi-
Coordinated protocols. This Semi-Coordinated protocol attempts to capture differences between our Uncoordinated
protocol, and such a protocol where join events occur after a deterministic number of packets. In particular, the Semi-
Coordinated protocol captures the fact that when two receivers join or leave the same layer at the same time, then all
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Table 3: Transition differences between Semi-Coordinated and Coordinated
Transition Semi-Coordinated Value

0

same as Coordinated model’s

All other transitions are identical to the coordinated model
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Figure 11: Low shared loss (.001), 7 layers

subsequent joins will occur at the same time, until a loss event causes only one of the receivers to leave a layer. It is
possible, but pointless to implement the Semi-Coordinated protocol.

We consider four combinations of a low loss rate (.001) and a high loss rate (.05) for and . From the figures,
we conclude that the highest redundancy occurs when the independent loss rates are equal. This is depicted by the
peaks in Figures 11(b) and 12(b). The peak is due to the change in the receiver whose rate is used to calculate the
optimum expected utilization of the link (the higher rate always belongs to the receiver with higher loss). High shared
loss causes the greatest variation in Coordinated and Uncoordinated protocols: when shared loss is high, receivers
are more likely to drop layers at the same time, so the difference in redundancy due to the differences in sender
coordination is more pronounced. The Coordinated protocol’s redundancy tends to be smaller when at least one
receiver’s independent loss is very low. The Semi-Coordinated protocol’s redundancy is most often very close to the
redundancy of the Uncoordinated protocol, unless shared loss is very high and independent losses are very low, or
there is a significant difference in receivers’ independent losses. Hence, for most network loss scenarios, whether or
not the join period occurs after a random point in time or fixed point in time does not influence redundancy, as long as
the expected time to join is the same.

The most important point we draw from these graphs is that redundancy is mostly affected by the variation in
receiver loss rates, and is highest when these loss rates are identical.
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Figure 12: High shared loss (.05), 7 layers
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