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Abstract

    This paper presents a new approach to automatically build a dynamic and multi-resolution 360!

panoramic (DMP) representation from image sequences taken by a rotational and zoom camera. A
cylindrical panorama is generated by mosaicing the image sequence taken by a hand-held camera. A
multi-resolution representation is built for the more interesting areas by means of camera zooming.
The dynamic objects in the scene can be detected and represented separately. Although a simple (yet
stable) rigid motion model is used to estimate inter-frame motion parameters, the mosaicing
methodology presented in this paper enables precise mosaicing. Moving objects are detected and
separated from images based on motion information, and more accurate contours are extracted using
a modified active contour algorithm. The DMP construction method is fast, robust and automatic,
achieving 1 frame per second in a 266MHz PC. No camera calibration, feature extraction, image
segmentation or complicated nonlinear iterative processing is required in our algorithms. The
construction of the DMP representation can be used in virtual reality, video surveillance and very
low bit-rate video coding.

   Keywords: Image-based VR, panoramic representation, dynamic mosaic, multi-resolution, moving
object extraction
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1. Introduction

A panoramic representation of image sequences has a wide application scope, including virtual
reality (VR), interactive 2D/3D video, tele-conferencing, content-based video compression and
manipulation, and full-view video surveillance. For virtual reality, it has advantages of simplicity for
rendering, photographic quality realism, and 3D illusion experienced by users. For video analysis and
coding, it is superior to existing coding approaches in that it is a content-based representation with a
very low bit-rate. In the sense of advanced human-computer interaction (HCI), these two categories
could be merged into a more general approach of interactive video (e.g. virtual conferencing), which
adds the flexibility of synthesizing images with interactivity, selectivity, and enhanced field of view
and resolution. This is quite valuable for virtual and/or augmented video conferencing over the
Internet.

   A wide field of view (FOV) lens, e.g. a fish-eye [1] or panoramic lens [2-6], can be a solution for
generating panoramic presentations. Besides the expense of these specially designed image sensors,
the image obtained will have substantial distortions, and mapping an entire scene into the limited
resolution of a video camera compromises image quality. Constructing a panoramic representation by
mosaicing image sequences captured by ordinary cameras, on the other hand, meets the requirements
of applications such as virtual reality, wide FOV surveillance, content-based video manipulation and
advanced HCI, where high image resolution, low bit-rate, interactivity and photographic realism are
needed.

1.1. Related work

    Apple’s QuickTime VR [7] captures a 360-degree panoramic image of a scene with a camera
panning horizontally from a fixed position. The overlap in images are registered first by the user and
then “stitched” together by the software in a best match. Similarly in [8] mosaics were constructed by
registering and reducing the set of images into a single, larger resolution frame. However the final
image mosaic is not a full 360-degree view. Plenoptic modeling1 [9] adds ranges (using a disparity
map) to each panoramic image, thereby allowing reprojection from other viewpoints. The concept of
plenoptic function is further explored by light field methods [10,11], which attempt to fully sample
the plenoptic function within a subset of space. Clearly the generation of a full-view panorama is the
foundation of these methods. In order to construct a 360-degree panorama, a reasonably good

                                                          
1 The "plenoptic function" by Adelson and Bergen [26] is a parameterized function for describing everything that is visible from a
given point in space. McMillan and Bishop [9] use this plenoptic function for image-based rendering paradigms, such as morphing and
view interpolation. In fact it can be viewed as a panoramic or omnidirectional representation.
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estimation of the camera focal length is required a priori in Apple’s QuickTime VR [7] and
McMillan & Bishop’s method [9].

Shum & Szeliski [12] proposed a mosaic representation that associates a transformation matrix with
each input image, rather than explicitly projecting all of the images onto a common surface (e.g., a
cylinder). In particular, to construct a full view panorama, they introduced a rotational mosaic
representation that associates a rotation matrix (and optionally a focal length) with each input image.
However the decomposition of the projective transformation matrix into rotation angles and the focal
length is known to be very sensitive to image noise.

Kang & Weiss [13] analyzed the error in constructing panoramic images and proposed a technique
that has the advantage of not having to know the camera focal length a priori. However in order to
create a panorama, they first had to ensure that the camera is rotating about an axis passing through
the nodal point. To achieve this, they manually adjusted the position of the camera relative to an X-Y
precision stage (mounted on a tripod) such that the parallax effect disappears when the camera is
rotated about the vertical axis. The focal length of the camera cannot be changed throughout the
rotation.

Xiong and Turkowski [1] proposed a method to create image based VR using a self-calibrating
fisheye lens. The nodal point of the fisheye lens needs to be adjusted so that it lies on the rotation axis
of the tripod. They take four pictures by rotating the camera 90 degrees after every shot and formulate
the registration and self-calibration constraints as a single nonlinear minimization problem in which
34 parameters need to be determined.

Manifold projection [14] enable the fast creation of low distortion panoramic mosaics under a more
general motion than the exact panning. The basic principle is the alignment of the strips that
contribute to the mosaic, rather than the alignment of the entire overlap between frame. However the
issues of circular panorama, independent object motion and camera zoom are not considered in this
approach.

Static scenes are a common assumption in image mosaicing and image-based rendering [1, 7, 9-
14], with the exception of a dynamic mosaic approach proposed by Irani, Anandan & Hsu [15] to
describe dynamic events. However the accuracy of the contour of a moving object was not addressed,
which is important for synthesis of fine detail of the dynamic events based on the mosaic
representation. In our work we utilized a modified active contour method to extract the contour of the
moving object.

The concept of an active contour algorithms was first proposed by Kass, Witkin & Terzopoulos
[16] and many modified methods have been developed since then. Amini,  Weymouth & Jian [17]
proposed an algorithm to find the minimum of an energy function using dynamic programming. Their
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algorithm does not need to calculate the high order differentials and is easy to give a discrete
implementation. Lai & Chin [18] proposed a global contour model that could effectively describe
both global and local deformations by combining a stable shape matrix method with a Markov
random field approach. A line search strategy was presented that encompasses a large search region
without significantly increasing the search time.

In general, there are three critical issues for a successful active contour algorithm: iterative
convergence, automatic parameter selection and computational complexity. In the aforementioned
algorithms, only the intensity information was used. In order to detect and rapidly separate the
dynamic and deformable objects from the scene, both motion and shape information will be utilized
in our active contour method.

1.2. Overview of our approach

   Our goal the generation of realistic 2D/3D panoramas from video sequences with more general
motion of a hand-held video camera. The construction of a layered 3D panorama from a vibrating
translating camera previously has been reported in [19]. In this paper a new approach is proposed to
automatically build a Dynamic and Multi-resolution 360! Panorama (DMP), with good image quality,
from a video sequence taken by a hand-held camera undergoing 3D rotation, zooming, and small
translations. It should be noted that this is often the case for the general manual operation of a video
camera in a video program. For purposes of a realistic virtual environment, this requirement can be
easily satisfied. Though the description of the DMP construction algorithms in this paper is mostly
directed towards a scenario of virtual environment modeling, the same algorithms with slight
modifications can be directly used in video analysis and coding, and in video surveillance.

    In this paper, a cylindrical panorama is generated by mosaicing the image sequence captured by a
camera with a 360! panning angle as the dominant motion, but in the presence of uncontrollable
minor tilt, roll and translation movements. A multi-resolution representation is built for the more
interesting areas by using standard camera zoom. Dynamic objects in the scene are detected and
extracted using both motion and shape cues, and they are represented separately from the background
panorama. The DMP construction method is fast, robust and automatic; the computational
performance of image registration is approximately 1 pair of frames per second on a 266 MHz PC
without the speedup by available hardware accelerations of MMX coding. No camera calibration,
feature extraction, image segmentation or exhaustive iterative processing is needed. An experimental
system has been built and can be easily used by a non-expert.

This paper is organized as follows. In Section 2 the inter-frame motion model is derived and a
pyramid-based motion detection algorithm is described. This section also explains why a simple 2D



5

rigid transformation model can result in fine mosaicing of 360-degree panoramas. In Section 3 the
image mosaicing and rectification algorithm is presented in detail. The important issues of motion
parameter estimation and refinement, as well as automatic stitching of the full-view panorama, are
discussed in this section. The algorithm for moving object detection and segmentation from the
background is presented in Section 4. Interesting results involving the movement of a walking person
in a single mosaicing frame is shown. Section 5 describes how to distinguish the zoomed frames in
the image sequence, and how to build the multi-resolution representation for the selected “interesting”
regions. Experimental systems of DMP building and rendering are presented in Section 6 and a brief
conclusion and discussion are given in the last section.

2. Inter-Frame Motion Model

    Let us make a basic assumption that the scene is static and all motions in the image are caused by
the movement of the camera. The independent motion of other objects in the scene will be considered
in Section 3 and Section 4. A coordinate system XYZ is attached to the moving camera; the origin O is
the optical center of the camera (Fig. 1). UV is the image coordinate system whose origin is the
intersection of the optical axis with the image plane. The camera motion has 6 degrees of freedom:
three translation components and three rotation components. Since we use the camera as the reference
coordinate system an alternative view is that the scene being viewed moves with 6 degree of freedom.
Considering only an inter-frame case, we represent three rotational angles (roll, tilt and pan) by (!, ",
#) and three translation components by T= ),,( zyx TTT t.

    

Y Z

U
V

OX

W

Image Plane

!
" #

O$ (Tx, Ty,Tz)

Fig. 1.  Coordinate systems of the camera and the image

    With current frame at time t and the reference frame at the previous time t’, a 3D point X = (x, y, z)t

with image coordinates u = (u, v,1)t at time t will have moved from point X’=(x’, y’, z’) t in the
reference time t’, with the image point u’ = (u’, v’,1) t. The relation between the 3D coordinates is

TRXX "#$   
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where R is the rotation matrix
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and it can be approximated by the right-hand matrix for the rotation of successive frames. Suppose
the camera focal length f is f’ before the motion.  Under a pinhole camera model
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In order to construct the 360! panorama, panning must be the dominant motion of the camera. Under
pure 3D rotation (i.e. T = 0) , we have the following homogenous rotation transformation
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which is a special case of planar projective transformation. With four pairs of matched points in two
successive images, eight parameters ),,,,,,,( HGFEDCBA  can be solved from equation (3), and

two images can be registered exactly to generate a planar mosaic with a larger field of view.
However, the field of view is constrained to be less than 180! since the points in the direction of $90!

from the optical axis of the reference frame are mapped to infinity in the planar mosaic. A full-view
cylindrical panorama can be constructed by decomposing "! ,,, ’ff  and #  from the eight projective

parameters [12], but unfortunately the decomposition of the intrinsic and extrinsic parameters is very
sensitive to noise. Thus we look for an alternative way to achieve the goal more robustly and
efficiently.

2.1.  2D rigid motion model is plausible
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    If the rotation angle is small, e.g., less than 5 degrees, between the successive frames, equation (2)
can be approximated as (referring to equation(1))
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Fig. 2.  Mosaicing strips

   Under 3D rotation that is dominated by panning motion, possibly with zooming and small
translation, we have very small roll !, tilt " and )/,/,/( zTzTzT zyx . Therefore a 2D rigid inter-frame
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where  ’/ ffs ,  is a scale factor associated with zoom, and Z-translation; (Tu, Tv) , (-#f, "f) is the

translation vector representing (pan/X-translation, tilt/Y-translation); and ! is the roll angle. This
motion model is also plausible if the scene is far away. Given more than 2 pairs of corresponding
points between two frames, we can obtain the least square solution of motion parameters, s, Tu, Tv and
!, in equation (7).  The errors of approximation are especially small for the narrow vertical strip in
the center of each image that will be used in our image mosaic algorithm (Fig. 2). This observation
can be easily deduced by comparing equation (7) with equation (4) when ",0, u,0, and

 0)/,/,/( ,zTzTzT zyx . If the image size is 384%288 and the equivalent focal length of the camera is

384 pixels, numerical analysis shows that when all the three angles are less then 2 degrees, errors are
of only 0~2 pixels in the central strip (the width w < 16 pixels in Fig. 2). It satisfies the actual
situation for our image sequences where the camera focal length is about 8 mm. More detailed
analysis can be found in Appendix 1.

2.2.  Inter-frame motion detection algorithm

   The inter-frame image displacements are estimated by using a pyramid-based matching algorithm
[20]. The hierarchical algorithm consists of four steps: pyramid construction, hierarchical block
matching, match evaluation and robust estimation of motion parameters.

Step 1: Generating the pyramids for the current and the reference (preceding) images. For
computational efficiency, the final image displacements are only given for non-overlapping image
blocks of a given size, say 16%16, in the finest layer (i.e. original image) of the reference frame. The
matching process is carried out from coarse to fine resolution layers, starting from a layer with certain
image size, e.g. 2 times as large as the matching block size. The list of the blocks is represented by
their center coordinates {(u’i,v’i), i=0, ...,B-1} in the reference frame.

Step 2: Determining the image displacements.  For each block in a layer of the reference frame, the
absolute difference operation (a simple version of correlation) is carried out in an adaptive search
window over the current frame pixel by pixel. Matches with largest correlation values are determined
and the one with smallest displacement is selected as the best match. It should be noted that there may
be several best matches due to similar patterns within the search window. The initial size of the
search window is about half the image size in the first layer, but it is reduced in the finer layers. The
motion vectors for these blocks are presented by {(8ui, 8vi), i=0, ...,B-1}.

Step 3: Evaluating each match by combining a texture measure with the correlation measurement
to produce a confidence value. This step is important because we wish to have blocks with strong
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textures and high correlation peaks weighted more. The evaluation of the matching itself is calculated
from the normalized absolute difference of each block as
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the intensity values (0-255) in the reference and current frames, respectively. The texture is measured
as the normalized average magnitude of the gradient image of the reference frame inside a given
block i
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where < = 8.0 in our experiments.

Step 4: Robust estimation of inter-frame motion parameters. We use a weighted least mean
square (WLMS) method to iteratively estimate the inter-frame motion parameters = = (Tu, Tv ,!,s) in
equation (7).  This will severe as the inner iterative loop in the mosaicking process described in the
next section.

The objective function is
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assuming that the residuals can be modeled as a noisy Gaussian distribution (residuals for the non-
dominant components are the outliers). It has been pointed out in [22] that a median-based estimate
has excellent resistance to outliers. The iterative algorithm is given as follows.

__________________________________________________

(1): Initialize : k=0, ).0,0,0,0((-1) #=

(2): Find =(k) using WLMS method.

(3). Compute the distance || )1()()( ++#8 kkk === , and estimate the scale factor > based on the current
residuals.

(4). If  ?
=

=
'

8 ||
)(

)(

k

k
(e.g. 1.0e-3), or  ?> ' , or iterating count k > MaxK (e.g. 20), then stop; else update

the weights  )(k
i

w , assign k = k+1, and then go to step (2).

_______________________________________________

   The final result from this algorithm is the dominant motion of the points that satisfy the 2D rigid
motion. Those points that do not satisfy the motion model – e.g. those on an independent moving
object or mismatched - are treated as outliers by automatic reduction in the weights in equation (10).
Interested readers can find the difference between our approach and the approach in [22] in the
objective function. Our approach is based on residuals between the motion data and the parameter
model, rather than intensity difference between two images. A linear method is used instead of a
nonlinear iteration method (e.g. Gauss-Newton method [22]) so the computation is very efficient.
Instead of directly applying the Geman-McLure function as in [22], the weight function in our
approach combines the measures of block match reliability and the data-model difference.

3. Image Mosaicing and Rectification

The relation between two frames from pure rigid 3D rotation is a strict planar projective
transformation. However, if we use planar reprojection, the field of view is limited to be less than 180
degrees. In an initial study, we first utilized a direct linear method similar to that in [12] to estimate
camera parameters from projective transformation between two frames. The parameters include
relative focal length, nodal point, aspect ratio, and the three inter-frame rotational angles of the
camera. Theoretically it would be elegant if a cylindrical panorama can be constructed after the focal
length and the three rotation angles have been decomposed. However, experimental analysis has
shown that this decomposition is very sensitive to image noise and accuracy of the recovered motion



11

parameters. Since the motion we consider in our domain is not a pure rotation, which make this
difficult problem even harder, we adopt an alternative approach when the camera panning is the
dominant motion and the pan covers more than 360! around the viewpoint. The algorithm consists of
the following three steps: motion estimation, image mosaicing and cylindrical un-warping.

3.1 Estimating and Refining 2D rigid transformation between two successive frames

   This step consists of two embedded iteration cycles. The first (inner) iteration cycle is robust motion
estimation (Section 2.2) based on the current motion vectors from image matches. The 2D rigid
transformation between two successive frames is estimated using an iterative weighted least mean
square method. Notice that this iterative process is only carried out on the current motion vectors
without re-calculating them from the original images. The re-weighting process accounts for moving
objects and other mismatches that are not consistent with the estimated rigid motion model.

The second (outer) iteration cycle is for match correction and refinement. After warping the
current frame using the calculated motion parameters, the difference between the warped image and
the reference image provides residual errors for the motion model. If the residual is large then the
residual motion displacements are estimated between the warped frame and the reference frame, a
match correction or a refinement is needed. When motion parameters are significantly different from
the averages of the previous several frames, then a mismatch may occur. In this case, the initial inter-
frame motion parameters are assigned as the average of the previous several frames. Given that our
goal for image registration is to create an image mosaic using only a small portion of the full frame,
the weight function employed for the image difference is a 1D Gaussian function

2

2

2

2
1),( @A

A@

u

evuh # (12)

which favors those points near the center scan-lines of the frames that will be used in the mosaic
images (Fig.2). With the initial motion vectors of each block from the given initial inter-frame motion
parameters, the match process will start from a suitable intermediate layer in which the initial
displacements are detectable.

Even if no mismatch occurs, the refinement process is needed when the rotation angle ! is large
(notice that we use ! instead of sin ! in our motion estimation).  The refinement can be performed by
iteratively warping the current image and re-matching the warped image with the reference image.
We emphasize that a transform matrix Mt is used to warp the current image t as

ttt uMu ,$ (13)

where
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even if we still use equation (7) to estimate the motion parameters = (m)= (Tu, Tv ,!, s)|m, where (m)
denotes the iteration count, so that errors will be reduced with decreasing residual rotating angles. The
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The warping in the mth iteration can be expressed by
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while the objective function is modified as
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The final transformation matrix for the current frame t is

C#
m

m
tt

)(MM (18)

Since the residual motion displacements are reduced, the probabilities of mismatches will be reduced
hence the matching results will be improved. Experiments show that about two match cycles after
rectification can achieve rather fine registration results.

3.2.  Mosaicing the image frame by frame

   A frame (e.g. the first frame) is selected as the reference frame for the mosaic process, and the
accumulating transformation parameters between each frame and this reference frame are calculated
as

IPPMMP ####BD C
#

+ 0
0

1
)(   ;,...,1, Ft

t

j
ttjt

t
I (19)

Then images are warped and pasted frame by frame onto the final mosaic using the following
transformation

ttuPu # (20)
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where u = (u,v,1)t is the coordinate in the mosaic coordinate system, i.e. frame t =0, and ut = (ut,vt,1)t

in the current frame (i.e. time t). If only one narrow vertical strip in the center of each frame is
utilized, a 2D rigid transformation is sufficient to merge the successive frames. Moreover 2D rigid
mosaicing approximately maps the image to an “unfolded” conic surface, or sometimes an “unfolded”
cylindrical surface, depending on the orientation of the optical axis (Fig. 3). The principle behind the
conic mosaicing can be explained as follows. Suppose the central strip is represented in spherical
coordinates. Then the 2D rigid transformation in equation (13) more closely describes the 3D rotation
and zoom of the camera, even though error is introduced by the approximation of the circular arc by a
planar strip. If the roll and tilt angles are significantly smaller than the pan angle, then this error is
small since the distortion is mostly in the vertical direction (see also Appendix 1). It also implies that
the actual mosaic is an unfolded conic surface since the strip is planar. A true cylindrical panorama
can be obtained only if the optical axis is strictly horizontal (Ib in Fig.3 (a)). The cone is upward if the
optical axis of the reference frame is slightly downward looking and vice versa (Ic and Ia in Fig.3 (a)).

3.3 Rectifying the unfolded conic mosaic to an unfolded 360! cylindrical panorama

       Rectifying the unfolded conic mosaic to an unfolded 360! cylindrical panorama can be achieved
by finding the correspondence of a (virtual) vertical edge in the head and tail of the conic mosaic. The
correspondence is established automatically by matching the possible “connecting” frames in the
image sequence with the first frame through the same pyramid-based matching strategy and selecting
the frame with minimum difference with the first frame. To account for the illumination changes
between the connecting head and tail frames, histogram specification from the frame in consideration
to the first frame is performed. After the angle range, and the radii of inner and outer arcs of the
unfolded cone are computed from the head-tail match, the re-projection of the conic mosaic to the
cylindrical panorama can be determined (see Fig. 3(b)).
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(a) spherical and conic representation                   (b) unfolded conic mosaicing and rectification

Fig. 3. The strip-mosaicing geometry
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3.3.1. Head-tail stitching

   If the reference frame coordinate tvu )1,,(  is chosen as the first frame coordinate tvu )1,,( 11 , then the

relationship between the last frame t
EE vu )1,( ,  and the reference frame can be obtained by successive

rigid transformations from the first frame to the last frame from equation (19) (Fig.3 (b) ):
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The relation between the first (home) and the last (re-homing) frame derived from their match can be
expressed as
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where ME1 is defined in equation (14). For a point Tvu ),( 11  in the first frame, its coordinates in the

panorama frame are Q = tt vuvu )1,,()1,,( 11# . For its corresponding point in the last frame t
EE vu )1,,( ,

the coordinates Q$ in the panorama frame can be calculated as
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    By finding a vertical line segment PQ  across the first frame, the corresponding segment ’’QP can be
determined by using equation (23). This "vertical" line can be selected as the central column of the
first frame when the first frame is not bevel (see Fig.3(b)). The center of the circles of the unfolded
conic mosaic is the intersection point of PQ and ’’QP . For simplicity we choose the new coordinate
system xoy with the origin o at the center of the circles. Then the angle range of the unfolded cone is

10 === +# (24)

where

)(tan  ),(tan
’’
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+
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+

+
# ++ == (25)

Due to the change of the camera’s focal length and accumulating errors, we could have a “deformed”
cone with different radii in the head and tail of the conic mosaic, e.g.
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’’’ QPQP RRRRRR +#E+#  (26)

The height and the length of rectified cylindrical panorama are set as

=PQP RLRRR #+#   , (27)

So the relation between the conic mosaic (x,y) and the cylindrical mosaic (r,l) is

)sin,cos(),( lrllrl RRyx ==# (28)

where
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+""+"#

"#==
(29)

and  l = 0,…,L (left to right); r = 0, …, R (bottom-up). This process also eliminates the accumulating
errors from frame-to-frame registration.

              

(a) the current frame (Frame no. 245)    (b) the reference frame (Frame no. 0)

                
(c) difference image of inital matching   (d) difference image after re-matching

Fig. 4.  A match refinement example from the 246-frame original image sequence (panning
from right to left): the first and the last frame
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3.4. Experimental results

It should be emphasized that no camera calibration or intrinsic camera parameters are needed, and
the algorithm is completely automatic.  Fig. 4 shows the matching process of the head and the tail
frame from a 246-frame image sequence of the Library scene. The motion parameters from the initial
match are 07.49#uT , 72.13#vT , 00.1#s  and 00.0+#! , while the motion parameters resulting from the

second match are 05.48#uT , 74.13#vT , 00.1#s and 00.0+#! (These number are truncated after the

second numbers after the decimal point, so –0.00 means a very small negative value). The second set
of parameters result in a better registration result, which can be observed from the edges in the
difference images between the two frames, especially in the center strip of the image which will be
used for mosaic, e.g., the white lamp in front of the pine tree and the door near that tree.

           

(a) the current frame      (b) the reference frame

           

(c) difference image of inital matching  (d) difference image after re-matching

Fig. 5.  A match correction example from the 246-frame original image sequence

    Gross match errors can be detected and corrected by using the smoothness constraint on interframe
motion. If the displacement for the current frame is obviously much larger or smaller than the
previous ones (the average of several preceding frames), and the frame difference is quite large, a
mismatch will be assumed. Then the previous average motion parameters are used as the initial
estimates for the current match. Fig. 5 shows an example. The initial match obtained wrong motion
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parameters 35.206#uT , 84.19#vT , 99.0#s , 00.0+#!  due to repetitive patterns and the large

search window of the motion estimation algorithm (Note that the search range is the entire image at
the top of hierarchical match process at the beginning). The motion parameters are far from the
average of the preceding values, and the sum of absolute frame difference (SAD, average of the R,G
and B bands) is 17533 for an overlapping region of 1/3 of the image size. By using the match-
correction technique, the new motion parameters are 25.49+#ut , 01.11#vt , 00.1#s , 00.0#!  and the

SAD reduced to 3950. Form the difference images in Fig. 5 (c) and (d) , the improvement is quite
clear.

Fig 6(a).  Unfolded conic mosaic (13% display scale). The original color image is 3806 x
773x24 bits. Notice the curved and uneven boundary created by the up-tilted angle and

unstabilized motion of the hand-held camera.

Fig.6(b) Unfolded 360-degree cylindrical panorama (27% display scale; 1st row : 0~180!; 2nd

row: 180!~360!). The original true-color image is 3494x323 x24 bits.

    Fig. 6(a) and Fig. 6(b) show the panoramas before and after cylindrical rectification and head-tail
stitching. The original image sequence has 246 frames of 384 x 288 color images, so the average
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panning angle between two frames is about 1.5 degrees, which satisfies the small rotation assumption
in equation (4). The size of the rectified cylindrical panorama is 3494x323. If the compression ratio of
the panorama in JPEG format is 20:1, the total compression ratio between the JPEG panorama and the
original image sequence is about 500. Moreover new images of arbitrary viewing angles can be
synthesized interactively, which is essential for applications of virtual reality and content-based video
manipulation. When there are moving objects in the scene, median values of the corresponding points
in multiple frames are used to generate the conic panoramic background. The resulting image is
somewhat blurred since a wider strip is used in each frame (see Fig.  9b). The moving object
extraction is presented in the next section.

4. Moving Object Extraction

As the mosaic is being constructed, each difference image between the warped successive frames is
analyzed. The region in the panorama that corresponds to that of the current frame containing large
residuals in the difference image is labeled as a “dynamic hot spot”. The dynamic sub-images of
objects are coded separately, for example, using MPEG format.

    In practice, a difference image is calculated from three successive images for robustness. Then
region analysis is carried out to determine those regions that may contain moving objects. In order to
achieve the best figure-ground separation, the contour of the moving object in each region needs to be
extracted. We apply an active contour model to extract contours from a noisy image [16, 17,18]. The
basic idea of the active contour algorithm is to constrain the contour of an object onto a controllable
continuous spline. The task is to minimize an energy function that takes into account both input image
information and constraints on the continuity of the contour. Our modified active contour algorithm
uses both motion and gradient cues of the images, and the control parameters are adaptively adjusted
according to objects in the current image.

   The algorithm consists of the following four steps:

(1) A difference image is calculated from the current image and its predecessor and successor
frames in the sequence. Regions with large residuals are detected through a region grouping
algorithm. Then, in each region, the difference value is thresholded to a binary image, gaps and holes
are filled using a morphology-based method, and large scale grouping is used (if necessary) to
generate a single mask for each moving object; this mask is then used as an initial contour in the
following step.
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(2) Evenly spaced control points are placed on the initial contour, and curvatures at the control
points are estimated. The control points are evenly spaced and the space is adaptively changed
according to the size of the initial contour. Then the parameters used in the energy function are
automatically assigned according to the point spaces and the curvatures.

(3) The energy function is minimized using a dynamic programming approach to obtain the
resulting contour [17, 18].

(4) Each dynamic object is separated along its contour from the original frame and is labeled on
the corresponding location of the panorama, and the dynamic sub-images of objects are represented
individually.

                
(a) original image                                      (b) moving object

(c). dynamic mosaicing  (part of the cylindrical panorama)

Fig. 7.  Moving object detection and separation

Fig. 7 (a) and (b) show an original image and the extracted object (a person).  Fig. 7(c) shows the
dynamic mosaic with the walking person pasted onto the mosaic every ten frames.
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5. Multi-Resolution Representation

In VR applications we want the ability to zoom and pan (under controlled motions) to enhance the
visual realism; in image coding we need to handle the video sequence with zoom as well as pan.
Therefore, we introduce a multi-resolution representation for each user specified “interesting” portion
of the panorama. Each of those regions on the panorama is labeled as a “zooming hot spot”. This is
similar to the sparse pyramid in [15], but our representation is more purposive and compact. The
representation is constructed by physically zooming the camera when the more interesting regions of
the scene are viewed. The zoomed frames are separated automatically from the original panning and
zooming image sequence by observing the accumulating scaling (zoom) factor. An automatic
registration between two zoomed frames is achieved in a manner similar to that for the panned
frames, but the following step is to select representative frames as the components of a multi-
resolution representation (instead of mosaicing the frames). It should be noted here that it is more
difficult to accurately assess similarity in the zooming case than in the panning case, especially when
the scale change is large between successive frames (e.g. s > 1.1), since the scales of the match blocks
are not the same in the two images. In this case re-match processing after warping (i.e. re-zooming) is
vital for the accurate estimation of the scale parameter.

                     

(a) the current frame                                      (b) the reference (preceding)  frame

                       
(c) the difference image of initial matching             (d)  the difference image after re-matching

Fig. 8. Iteration matching after image warping (zooming).
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Frame 199 (cars parked at the road side); Frame 149 (many small moving objects); Frame 90 (large moving object)

(a) Several frames of the Main Building sequence with moving objects in the scene (the camera is panning
from right to left)

(b) Cylindrical panorama after eliminating the moving objects (image size:3498x303). Notice that the zoom
factor is changed.

  
(c) Three selected zooming frames. This “interesting” area is to the right of the first part of the panorama

Fig. 9. Multi-resolution panorama. The original image sequence has 561 frames, which
consists of 3 zooming segments among the panning sequence. There are many moving
objects (persons, bicycles) in the scene. Notice that most of the moving objects and noises
(e.g. horizontal lines in frame 199) have been successfully filtered out.
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Fig. 8 shows a matching example from the zoomed segment of the Main Building sequence shown
in Fig. 9. The motion parameters from the initial matching process are 7.29#uT , 52.0+#vT ,

03.1#s and 00.0#! , while the motion parameters from the second (final) matching process are
34.0#uT , 99.0+#vT , 12.1#s and 00.0+#! .  The second set of parameters results in a much better

registration of the frames, as can be seen by comparing Fig.8(c) and Fig. 8(d). The zoom factor
between Fig. 8a and 8b is 1.12.  The reason for successful match is that every iteration adjusts the
scale factor to approach to the real one.  Fig. 9(c) shows the selected zooming frames with 1.5
zooming factors between two selected frames for the Main Building image sequence. The rectangle in
each frame indicates the sub-region that corresponds to the next selected frame.

6. Modeling and Rendering System

We have built experimental systems for both DMP modeling and DMP rendering. The DMP
modeling system was built using Borland Builder C++ 3.0, and an interface is shown in Fig. 10. On
the top of the windows there are menu and buttons, and two image windows and a text windows are
shown in the interface. The two images may be the two successive frames, or the optical flow
superimposed on the left image, and the difference image shown in the left. The final mosaic results
are shown on a separate scrollable window.

Fig. 10. Interface of DMP modeling system
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An experimental system of DMP rendering was built using Netscape Plug-In and Java Interface.
Fig. 11 shown an example of image-based VR browsing of the Tsinghua Library. On the left of the
window is a layout of the locations that have panoramic images, both indoors and outdoors. The left
window is a user-controled view window to allow wandering in the virtual environment using a
mouse. We defined several kinds of hot spots on the panoramic images: a Hyperlink to a Web Site, a
media to a audio/video clip, and a Travel link to other panorama. Currently, traveling between two
panoramas is realized by mtaching the images of the multi-resolution  images in the two mosaics.

Fig. 11. Interface of DMP rendering system

7. Conclusion and Discussion

The construction of the DMP (Dynamic and Multi-resolution Panorama) is fast, robust and
automatic. The processing rate is about 1 frame per second for 384%288 color images using a Pentium
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II/ 266 MHz PC. A factor of 2 speed-up can be expected by algorithm optimization and MMX
utilization. Besides the most obvious applications such as virtual reality scene modeling and very low
bit rate video coding, the DMP and the algorithm is also useful in other applications such as
surveillance, change detection, video enhancement, indexing and manipulation. Ongoing and future
work includes the following topics.

1. Panoramic view morphing.  Seitz and Dyer[23] showed that two basis views of a static scene
uniquely determine the set of views on the line between their optical centers when a visibility
constraint is satisfied, and then a simple view morphing algorithm can generate the new images from
the set of views. We are extending this method to a discrete set of panoramic images to generate
scene appearance for a continuous range of viewpoints.  With a suitable view planning strategy for
collecting the discrete panoramic samples, a panoramic view morphing method can generate the
scene appearance with arbitrary viewpoints and viewing directions.

2. Layered panorama. By combining the layered representation [19,24] with the DMP, we are
generating a Layered and Multi-resolution Panorama (LAMP) for 3D scene modeling. This goal can
be reached by using a panoramic stereo vision method, which generates a panoramic disparity map
from two panoramic images constructed at two calibrated viewpoints. It can be also viewed as the
merging of the VRML model with the MPEG content-based video coding model.

3. Air-ground site modeling. By combining algorithms of the site modeling from aerial images [25]
and scene modeling from ground image sequences, we can generate a hierarchical site model for the
city and the scene. This approach will be useful for VR and surveillance applications because you can
fly over and walk-through the scene from air to ground, overcoming the difficulty in viewing aerial
reconstruction from ground level view points.

4. Real-time panoramic scene modeling and monitoring. We are considering a virtual stereo vision
system using two panoramic annular lens (PAL) cameras mounted on two separate platforms [6].
Work is currently underway to understand the geometric model and to find calibration algorithms of
the PAL camera system. Both cylindrical and perspective images can be generated from the PAL
image in real-time. Although the image sharpness and resolution is not as good as that of typical CCD
cameras, the real-time panoramic generation of the PAL camera is very attractive for fast scene
modeling. By using a high-resolution camera sensor, this drawback can be somewhat compensated
for. The PAL camera system is especially useful for virtual video conferencing and real-time wide
FOV video moving object tracking. Moreover, the combination of the full view property of the PAL
camera and the high resolution of the narrow view camera will lead to an algorithm for building the
dynamic and multi-resolution panorama more efficiently.
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Appendix 1. Error analysis

    For simplicity, we only consider the case of pure 3D rotation. When  0)/,/,/( ,zTzTzT zyx  and f

= f’,  subtracting equation (4) and (7) yields the following error terms

4
4
�

44
5

6

"+
"+

""+
,

"+
"+

+"
,

)( 

)( 

vu
fvu
fvuv

vu
fvu
fvuu

"#
"#

"!
F

"#
"#

#!
F

The errors in pixels are shown in the following table for the edge and central points along the central
strip and off the center strip with different rotation angles.

                     (|u|, |v|)
angles   (Fu|,|Fv|)

(0,0) (0,128) (192,128)

!="=0, #=2! (0, 0) (0, 0) (4.0, 3.3)

!="=#=2! (0, 0) (0.61. 2.03) (6.9, 5.3)

It is interesting to notice that there are no differences between equation (4) and (7) for the central
column if the tilt angle " is zero.


