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Abstract

     Flexible, reconfigurable vision systems can provide the richest sensing modality for
sophisticated multiple robot platforms. We propose a cooperative and adaptive approach
to vision applied to the problem of finding and protecting humans by a robot team in such
emergent circumstances, for example, during a fire in an office building. A panoramic
camera system plays an important role in this approach. This report presents the recent
progress on the development of vision algorithms based on a panoramic annular lens
(PAL) camera system. First, we give a brief survey of existing panoramic camera
systems, with an emphasis on geometrical properties of capturing panoramic images
from a single-viewpoint. Second, a mathematical model of the panoramic annular lens
(PAL) camera that we use is built, and then several issues about camera calibration and
image un-warping are addressed. An empirical method is given to roughly ‘calibrate”
the PAL camera system. Next, a panoramic virtual stereo (PVS) vision approach is
proposed, and the problems of self-calibration and real-time 3D estimation are
discussed. Finally, we present an experimental system that can detect and track multiple
moving objects in real-time using a PAL camera system. The panoramic vision algorithm
for moving object tracking also serves the initial step of the PVS approach.

   Keywords: Panoramic imaging, robot team, moving object tracking, cooperative virtual
stereo
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I. Introduction

A multi-objective system requires that the sensory algorithms should have enough

flexibility to support adaptation in unknown environments and to facilitate on-line dynamic

reorganization of algorithms and sensors in response to a given task. The approach by the

Computer Vision Lab, in collaboration with the Perceptual Robotics Lab, in the Computer

Science Department at the University of Massachusetts at Amherst, involves the

development of behaviors that embody cooperative closely-coupled interactions of the

resources across robot teams; this in turn allows virtual sensors to be assembled from

multiple, cross modal sensors to make spatial observations, detect key objects and events,

and to interpret context.

Our approach can be viewed as a methodology for development of Cooperative and

Adaptive Vision and other Sensing (CAVS) to provide a set of sensor processing

techniques that can fulfill both low-level and high-level objectives in an open environment.

The cooperative interaction of the members and elements of the robot team requires system

resources, including robot platforms, sensors, computation, and communication resources,

to be used effectively by the mission planner.

To achieve the desired robustness, our 3-robot team will be outfitted with a variety of

sensors and algorithms. Vision will be the primary sensing modality, but it will be

complemented by inexpensive infrared point sensors, sonar, and possibly acoustic sensors.

Multiple types of sensors will likely be placed on a single robot platform to allow flexibility

by the mission planning and resource scheduling systems in response to changing

conditions and goals. The sensors and algorithms are intended to support the following

functionality:

1. Detecting and tracking people and other moving objects;

2. Recovery of depth and acquisition of 3D topological models of the environment;

3. Obstacle avoidance and path planning;

4. Recognition of key objects such as entrances and passageways, and selected

landmarks to support landmark-based navigation;
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5. Recognition of key events such as fires, blocked doorways, etc.

In the current stage we have chosen to focus on vision sensing and algorithms as the

primary sensing modality.

1.1. Cooperative and Adaptive Vision (CAV)

Flexible, reconfigurable vision systems can provide the richest sensing modality for

sophisticated robot platforms. We propose a cooperative and adaptive approach to vision

applied to the problem of finding and protecting humans in such emergent circumstances,

for example, during a fire in an office building.  The primary vision sensors that we

assume during the following discussion are standard CCD cameras and special 360-

degree panoramic cameras; in addition, other sensors such as infrared motion sensors and

acoustic sensors will be utilized.  Thus, we will equip our robotic team with these sensors

and develop dynamic and cooperative algorithms for effectively utilizing the sensory

data.

Diverse sensory functionality will support the development of robust multi-robot,

multi-sensor behaviors involving tracking, 3D modeling, visual cooperation among

sensors on different platforms, and visual learning and adaptation. Each of these in turn

can be broken down into the structured application of a set of primitive operations. For

example, in dealing with moving objects, the processing is decoupled into five stages

(motion  detection, object extraction, moving object tracking, 3D localization and object

identification). Varying amounts of time and resources are needed for different stages,

but every stage can provide some useful information to the control system (which may

also be sufficient in a given context).

1.2  Cooperative Panoramic Vision and Behaviors Embodying Virtual Stereo Sensing

Real-time processing is essential for the dynamic and unpredictable environments in

our application domain, and it is important for visual sensing to rapidly focus attention on

important activity in the environment. Any room or corridor should be searched quickly

to detect people and fire. Field-of-view issues using standard optics are challenging since
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panning the camera takes time, and multiple targets/objectives may require saccades to

attend to important visual cues. Thus, we employ a camera with a panoramic lens to

detect and track multiple objects in motion in a full 360-degree view in real time.

We note that there is a fairly large body of work on detection and tracking of humans

[Bri98, et al; Har98, et al; Lip98, et al; Pap98, et al; Pen98, et al], motivated most

recently by the DARPA VSAM effort (part of the DARPA IU program)[DARPA98].

What is truly novel about our approach is the ability to compose cooperative sensing

strategies across the robot team to synthesize robust virtual stereo sensors. We briefly

discuss here a strategy for virtual stereo processing using multiple optical sensors of

different types.

Any fixed-baseline stereo vision system has limited depth resolution because of the

physical constraints imposed by the separation of cameras, whereas a system that

combines multiple views allows the planning system to take advantage of the current

context and goals in selecting viewpoints. This strategy can be implemented by a single

camera generating sequential viewpoints over time in an active vision paradigm [Alo93]

and/or as in traditional motion analysis [Kum92, et al, Saw93, et al; Ren98, et al].

However, there are significant time delays involved in moving the camera to another

position in the room. Instead we focus on cooperative behavior involving mutually aware

cameras on different mobile platforms to compose a virtual stereo sensor with a flexible

baseline. The sensor geometry can be controlled to manage the precision of the resulting

virtual sensor.

Critical issues in this approach include the dynamic self-calibration of the

combination of cameras on 2-3 mobile robots, which forms the dynamic virtual stereo

sensor. Several different scenarios must be considered in order to achieve the required

robustness to sensor availability and types. To perform calibration (a necessary precursor

to stereo recovery), a known target in the scene is needed, otherwise the motion between

two snapshots can only be determined up to scale factor. We are considering several

methods for calibrating the cameras across the team to alleviate accuracy problems

inherent in odometry. One method involves robot platforms in each other’s field of view;

recognition of each other could be facilitated by appearance-based models [Rav97]] of
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the robots, special features [Ris97 et al; Col98 et al; Hoe98 et al] on the bodies, active

signals such as visual beacons formed from flashing lights, etc.  The "mutual calibration"

strategy may be particularly effective with a pair of mobile panoramic sensors that have

the potential of always seeing each other. Once calibrated by looking at each other, they

can view the environment to estimate the 3D structure of the scene.

It can be seen that a panoramic camera system plays an important role in our CAVS

approach. This report presents our recent progress on the development of vision

algorithms based on a panoramic annular lens (PAL) camera system. The organization of

this report is as follows. In Section II, we give a brief survey of existing panoramic

camera systems, with an emphasis on geometrical properties of having panoramic images

with a single-viewpoint. In Section III a mathematical model of our panoramic annular

lens (PAL) camera is built, and then several issues about camera calibration and image

un-warping are addressed. Section IV gives an empirical method to roughly ‘calibrate”

the PAL camera system, which is sufficient in our application. A panoramic virtual stereo

(PVS) vision approach is proposed in Section V. The algorithms of self-calibration and

real-time 3D estimation are discussed in this section. In Section VI we present an

experimental system that can detect and track multiple moving objects in real-time using

a PAL camera system. The panoramic vision algorithm of real-time moving object

detection and extraction also serves as the base of the PVS approach. Finally we give a

brief discussion about our future work.

II. Panoramic Imaging System : a Survey

Using a fish eye lens, a set of planar mirrors, a conic mirror, a spherical mirror or a

paraboloidal mirror can obtain 360 degree omnidirectional images. The panoramic

annular lens (PAL) camera of Optechnology Co., designed by Pal Greguss (1986), can

captures its surroundings using a new design based on reflection and refraction of light.

The PAL-3802 system, a commercial system of this design, includes a 40 mm diameter

PAL and a built-in collector lens with a “C” mount. The virtual image, formed within the

PAL, is conveyed to the camera sensor using the collector. The field of view (FOV) is

360-degrees horizontally and -15 ~ +20 degrees vertically. However detailed materials
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about the geometrical model of the PAL-3802 are not provided by the manufacturer. In

the patent of Greguss (1986), a drawing is included, which depicts an arrangement

comprising a panoramic block followed by a tele-centric lens and a video camera. The

patent implies that the image is formed at the location where the pupil rays come to a

focus, i.e., at the exit pupil. Both reflective surfaces are paraboloidal in shape for

achieving nearly “faultless” imagery according to the specifications. Each of these

surfaces can be replaced, once again according to the specification, with a surface having

a radius of the best-fit sphere for a still acceptable image quality.

Powell (1994) reported the design of a similar panoramic lens, and stated that the

Greguss system would work better with spherical reflective surfaces than with

paraboloidal ones. In the actual system design, aspheric reflective surfaces are used to

further improve the image quality, and a relay lens are added to the Greguss(1986)

system. Each of the surfaces is a conicoid revolution, with its asphericity ranging from an

oblate spheriod to a hyperboloid.

For vision applications, it is desired that the fixed viewpoint constraint can be

satisfied, so that we can generate perfect perspective images from the panoramic image

by PAL camera. This property is valuable for robot navigation, virtual environment

modeling, teleconferencing, surveillance, where a large body of work in stereo vision or

visual motion algorithms under linear perspective projection are applied. However none

of the above designs mentioned this problem. In this report, we assume that the PAL-

3802 satisfies with single viewpoint constraint and two possible geometrical models will

be given. If it is not true for the PAL, we are designing a new single-viewpoint PAL!

Here we briefly list some of the useful conclusions on panoramic imaging. The

interesting readers can refer to the litterateurs (Nayar97, Baker98) for detailed

explanations.

1. Panoramic camera system using a pyramid with four planar mirrors and four cameras

(Nalwa96) has a single effective viewpoint (Fig. 2.1).
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P1

P2

Viewpoint of the
Virtual cam era

Fig. 2.1 Panoramic camera system using four planar mirrors

2. Panoramic vision with a conic mirror: (Yagi90, Zhu96/98): The locus of the effective

viewpoint is a circle (Fig. 2.2). The circle will shrink to a point if the pinhole moves

to the vertex of the cone, but the camera can only see the mirror in this case.

Fig. 2.2. Panoramic vision with a conic mirror

3. Panoramic vision with a spherical mirror: (Hong91): The locus of the effective

viewpoints lie on a sphere-like surface (Fig. 2.3). Single view point can be satisfied

only if the viewpoint and the pinhole coincide at the center of the sphere, when

observer can only sees itself.

viewpoint

pinhole
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Fig. 2.3.  Panoramic vision with a spherical mirror

4. Panoramic vision with an ellipsoidal mirror (Nayar97, Baker98): It satisfies the fixed

viewpoint constraint if the pinhole of the real camera and the virtual viewpoint are

located at the two loci of the ellipsoid respectively (Fig. 2.4).

Fig. 2.4. Panoramic vision with an ellipsoidal mirror

5. Panoramic vision with a hyperboloidal mirror (Yam 93, Baker98): It satisfies the

fixed viewpoint constraint if the pinhole and the viewpoint are located at the two loci

of the hyperboloid (Fig. 2.5).

pinhole

viewpoint

P1

P2

Intersection of
incoming rays are
along this lineLocus of

viewpoints
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Fig. 2.5. Panoramic vision with a hyperboloidal mirror

6. Panoramic vision with a paraboloidal mirror (Nayar97): For orthographic projection,

the solution is a paraboloid with the viewpoint located as the locus of the paraboloid

(Fig. 2.6). Orthographic projection makes the geometric mapping between the image,

the mirror and the world invariant to translation of the mirror. This greatly simplifies

calibration and the computation of perspective images from paraboloidal ones.

Fig. 2.6. Panoramic vision with a paraboloidal mirror

pinhole

P1

viewpoint

P2

P1

viewpoint

pinhole

P2
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III. Geometrical Model of PAL

3.1. Perspective model

The geometry of the PAL imaging system is somewhat complex since there are two

reflections and two times of refraction (refer to Fig. 3.4). However, if we assume the

large circular mirror is an ellipsoid and the small top mirror is a hyperboloid, and the

setup of the two mirrors and a pinhole camera satisfies conditions 4 and 5 in Section II,

we can obtain a rather elegant geometry of a single effective viewpoint under perspective

projection. If that is the case, the real system can be modeled by the single-viewpoint

geometry perfectly.

Fig. 3.1 Perspective model of PAL system

At first, we assume that a PAL image is generated by two reflections if we ignore the

refraction effects. Suppose the loci of the hyperboloid and the ellipsoid lie on the optical

axis of the real camera. One of the loci of the hyperboloid coincides with one locus of the

ellipsoid, and the optical center of the pinhole camera is at the other locus of the

hyperboloid. Thus, the viewpoint of the virtual camera is right at the second locus of the

ellipsoid. The camera can view the entire up-hemisphere scene, except that there is a

pinhole

viewpoint

P1

P2

ellipsoid

hyperboloid
B

v

H

E
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circular hole in the center of a PAL image. So the viewing angle is 360 degree

horizontally and 0o"#<90o vertically.

3.2. Orthographic model

We still assume that the large circular mirror is an ellipsoid. If the small top mirror is

a paraboloid, and the setup among the two mirrors and the pinhole camera satisfies the

conditions 4 and 6 in Section II, we can obtain a nice geometry of a single effective

viewpoint under orthographic projection.

Again, at first, we ignore the refractions, then the PAL image is generated only

through two reflections. Suppose the locus of the paraboloid coincides with one locus of

the ellipsoid, and the optical axis of the orthographic lens camera is along the long axis of

the ellipsoid. Thus the viewpoint of a “virtual camera” is just at the second locus of the

ellipsoid. Same as the perspective case, the camera can view the entire up semi-sphere

scene except a circular hole in the center. So the viewing angle is also 360 degree

horizontally and 0o"#<90o vertically.

Fig. 3.2 Orthographic model of PAL system

viewpoint

P1

P2

ellipsoid

paraboloid
B

v
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3.3. Two paraboloidal mirrors seem impractical

If the shapes of the two reflective mirrors are paraboloid, as suggested by Greguass

(1986), the incoming rays passing through the locus (v) of the first (circular) reflective

mirror will be reflected as parallel rays and reach the second mirror. These parallel rays

will diverge from the locus (B) of the second mirror.

Fig. 3.3 Two paraboloidal mirrors

34. Mathematical models

Considering the refraction does not add too much complex. We will use the pinhole

camera model in the following mathematical model development. The first refraction

through the ellipsoidal surface changes the vertical viewing range from [0o, 90o) to [–#1,

+#2], where 0o< #"< ##<90o, which is often desired for panoramic imagery (Fig. 3.4).

The second refraction through the planar surface just moves the converging point of rays

from the top mirror up a distance. Since this refraction may be compensated by the

collector lens, we will ignore the second refraction.

P1

P2

paraboloid

paraboloid
B

v
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Fig. 3.3. Mathematical models

We only consider the perspective case; the orthographic model has slightly simpler

relations. In Fig. 3.4, Define )(2,2,2 hehe ccVOcBOcVB $$$$ , and a 3D coordinate

system xyz with origin V and z axis as the optical axis of the camera. Denote

22 yxr %$ . Then we have the following equations to describe the surfaces of the

mirrors and the lines of rays.

1. Reflection Hyperboloid (H):

11)(1 2
2

2
2 $$$ r

b
cz

a h
h

h
  (3-1)

where 2ah and 2bh are the long and short axis of the hyperboloid.

2. Reflection Ellipsoid (E):

11)(1 2
2

2
2 $%$ r

b
cz

a e
e

e
(3-2)

where 2ae and 2be are the long and short axis of the ellipsoid.

p  p1

pinhole

P1

P ellipsoid

hyperboloid
B

V

H

E

O

R
r

z
%

#

#"

##
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3. Ray  pO:

)( eh
I ccz
f
rr $%$$ (3-3)

where f is the focal length of the camera, 22
III yxr %$ is the image point.

4. Ray  HE

)( e
eh

h cz
cz

rr $
$

$$ (3-4)

where (xh,yh,zh) is the intersection of ray HE with the hyperboloid, 22
hhh yxr %$ .

5. Ray  VR

z
z
rr
e

e$$ (3-5)

where (xe,ye,ze) is the intersection of ray VR with the reflection ellipsoid,

22
eee yxr %$ .

6. Refraction Ellipsoid

11)(1 2
2

2
2 $%$ r

b
cz

a R
R

R
(3-6)

where 2aR and 2bR are the long and short axis of the refraction ellipsoid, and 2cR is the

distance between two loci. Here we assume that upper locus of the refraction ellipsoid is

in the same location of the bottom locus of the reflection ellipsoid. Point (xR,yR,zR) is the

intersection of ray VR with the refraction ellipsoid, 22
RRR yxr %$ . The tangent line

at this point is

11))((1
22 $%$$ rr

b
czcz

a
R

R
RRR

R
(3-7)

7. Refraction PR

%& cos  cos $a   (3-8)
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where  & is the refraction coefficient.

3.5. Camera Calibration Problems

Camera calibration is related to the following mapping.

1. Image warping :

After the camera calibration, the mapping from an original PAL image to a unit sphere

is as follows

),,(),,(),,(),( zrzrzrr eehhI '''' &$&$&$

where '  is the orientation angle around z axis, (r,', z) is a point in the unit sphere whose

origin is V. Then spherical image can be easily un-warped to a cylinder.

2. Inverse Mapping:

Given a point in a PAL image, we try to define the corresponding ray PR. If two such

PAL cameras are used and are calibrated, then the 3D location P(X,Y,Z)  can be decided

by triangulation. The mapping from image point to the ray is

PRzrzrzrzrzrr RRRRRReehhI &$&$&$&$&$&$ ),,(,),,(,),,(),,(),,(),( '#'%''''

3.  Camera calibration

    Given a number of 3D point (Xi,Yi,Zi), and its image  (rIi,'), the calibration procedure

is try to find the following unknown parameters and points:

RRhheeRRRhhheee rzrzrzfcbacbacba ,,,,,,,,,,,,,,,

The question is to find an algorithm and a numeric solution for this non-linear parameter

estimations. Before we go further in this direction, we will stop and look at an empirical

solution to the calibration of the PAL camera system. We hope that we can verify our

assumption about the model of the PAL camera by carefully designed experiments, while

at the same time by-pass the hard problem of non-linear parameter estimations for model-

based PAL camera calibration.
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IV. Empirical Verification and Image Un-warping

4.1 Center determination

First, we adjust the camera to point vertically upward so that projections of vertical
lines in the world remain straight in a PAL image and they intersect at a single point in
the center of the PAL image (Fig. 4.1). So if more than two such lines are detected in an
original PAL image, this center point can be determined by their intersection.

Once we have the center (x0,y0) of the PAL image I(x,y), a cylindrical panoramic
image I(r'') can be generated (Fig. 4.2)

0

012
0

2
0 tan,)()(

xx
yy

yyxxr
$

$
$$%$$ $' (4-1)

4.2 Radius distortion rectification

Distortion exists in the radial direction due to the non-linear reflections of the 2nd-
order mirror surfaces. Notice the unequal widths of the black-white bars on the white
broad in Fig. 4.2 without eliminating the radial distortion, where the widths are equal in
the real board. In practice, we use an N-order polynomial to approximate the distortion
along radius direction:

R = v0 + v1 r1 + v2 r2 + v3 r3 + … (4-2)

where r is the radius in the original cylindrical image, and R is the radius in the rectified
cylindrical image. Fig 4.3 shows the rectification result using a 2nd-order polynomial
approximation. Notice the equal intervals of the black bars on the white broad.

4.3 Single viewpoint verification

Using a square broad placed vertically and then with an angle, we are designing an
experiment to verify the perspective geometry assumption, taking width-length ratio,
straightness, perspective effect, etc. into consideration.
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Fig. 4.1. Original PAL (Panoramic Annular Lens)  image (768*576)

Fig. 4.2.  Cylindrical panoramic image, without eliminating radial distortion

Fig. 4.3. Cylindrical panoramic image, after eliminating radial distortion

         (1) Para-perspective         (2)  single viewpoint            (3) viewpoint along a curve

Fig. 4.4. Single viewpoint verification
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Fig. 4.4 shows three examples of the possible camera geometry. If the viewpoint is
on a straight line or curve, the image of the vertically placed rectangle will be as Fig.
4.4(1) or Fig. 4.4 (3). The relation between the square (rectangle) and its image projected
into a plane from a cylindrical image is the planar projective transformation (Fig. 4.4(2))
if the single viewpoint constraint is satisfied. This step needs future work. Fig. 6.1 shows
some examples of the perspective images from a PAL image.

V. PAL Stereo and Motion: Self-Calibration and 3D Estimation

In the robot team task, an interesting scenario is that the team leader has a panoramic

camera, and one or two other team members are equipped with either panoramic cameras

and/or standard cameras. The advantage of panoramic and cooperative stereo vision in

tracking moving objects is clear: cooperative approaches solve or reduce the severity of

some of the difficult problems in calibration, correspondence, and 3D reconstruction.  If

the team leader can view the member robots, we can determine the baseline and use it as

the basis for reconstruction of the environment in the common field of view. This can

greatly simplify the recovery of the 3D motion of independently moving objects in the

scene (using tracking) as well as the recovery of 3D environmental structure (using point

and feature correspondences). The "mutual calibration" strategy is particularly effective

with a pair of mobile panoramic sensors that have the potential of always seeing each

other.

5.1.  Geometry of a Cooperative Panoramic Stereo System

Conceptually, suppose that we have two panoramic cameras and both of them are

subject to planar motion on the floor. If they can see each other and in the same time see

a target T, Then we can find the bearing and distance of the target without any priori

calibration of the two cameras. After the dynamic calibration, the distance of the target

can be calculated as

0

2

212112

212
1 sin

sin
)sin(

)sin(
(
(

''%%
'%

BBD $
$%$

$
$ (5-1)

where D1 is the distance between the target and the first camera, B is the distance

between the two cameras, '1 and '2 are the bearings of the target in image 1 and image 2
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respectively, and %12 and %21 is the bearings of the images of camera 1 in image 2 , and of

camera 2 in image 1 respectively.

Fig. 5.1. Panoramic Stereo Geometry (top view)

5.2.  Several practical approaches to estimate distance and angles

The following subsections only discuss the calculation by processing the image of the

second robot in the first camera. It is true vice versa, and the abundant information can be

used for double-check.

5.2.1. Each robot is a cylinder

If the optical axis of each panoramic camera lies in the rotating axis of the cylindrical

body of the corresponding robot, the baseline between the two panoramic cameras can be

estimated using the occluding boundary of one of the cylinders, i.e.,

Fig. 5.2. Find the orientation and the distance by a cylinder (top view)

x1

y1

O1

x2

y2

O2

T
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M12 M21
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(2
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P2
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)
2

(#RctgB $ (5-2)

where # is the angle between two occluding projection rays. The orientation angle (%21)

of O1O2 is simply the average of the bearings of P1 and P2.

5.2.2. The target attached to each robot is a set of vertical lines around a circle

Fig. 5.3. Find the orientation and the distance by vertical bars (top view)

If the target attached to each robot is a set of vertical lines around a circle, we can also
determine the bearing and distance of the second robot with at least 3 bars in the view of
the first camera. Notice that the calculation is different from the cylinder case, since the
bars in the view do not necessarily be the occluding boundary of the cylinder.

From Fig. 5.3 we have

2,1,
sin
sin

1 $$ ilB
i

i
i #

)  (5-3)

where

      2,1, $$ iRl ii *

ooo 360
2

90
2

90 21
21

2121 $%%$%$%%%% **
**

))##

so we have

121
21

2 )(
2

180 )##
**

) $%$
%

$$ o (5-4)

From equations (5-3) and (5-4) we have

R

P1

P2##

#" B

O1

O2B1

*"

*#

)"

)#

l1

l2

+

,#

%#"
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)sin(sin 1211 )#) %$ AA

where

2,1,sin/ $$ ilA iii #

2
21

21
**

###
%

%%$ (5-5)

so we have

#
#

)
cos

sintan
21

21
1 AA

A
$

$ $ (5-6)

Finally the baseline can be calculated by

+cos2 1
22

1 RBRBB %%$ (5-7)

where

2
90)

2
90()180(360 1

11
1

11
*

)#
*

)#+ %%%$$$$$$$ ooo (5-8)

The orientation angle %#" of the baseline is -O1B1%,#' where

B
R +

#
sinsin 1$$, (5-9)

5.2.3. The target attached to each robot is a rectangle with known size

If the target is a rectangle with known size and position related to the rotational axis
of the camera, then the distance and the orientation of the baseline can also be decided.
Suppose that the rectangle is placed vertically. Then the two vertical edges will be
vertical in a cylindrical image. Suppose that the heights of them in the image of the first
camera are h1 and h2 respectively. If the with and the height of the rectangle are W and H,
and the distances of these two edges to the rotating axis of the first camera O1 is B1 and
B2, then

2

1

2

1
h
h

B
B

$

so we have
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1
1

2
2 B

h
h

B $ (5-10)

Fig. 5.4. Find the orientation and the distance by a rectangle (top view)

From the cosine relation of

#cos2 21
2
2

2
1 BBBBW %%$

we have

#cos2 21
2
2

2
1

1
1

hhhh

Wh
B

%%
$ (5-11)

and the length of the baseline is

+cos2 11
2
1

2
1 LBLBB %%$ (5-12)
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The orientation angle %#" of the baseline is -O1P1%,#.

5.3.  What about rotating camera(s)?

A rotating camera can generate a 360-degree cylindrical panorama, so the 3D
geometry is the same as the panoramic stereo system. It does not matter which frame in
the image sequence is the reference.
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5.4.  Error analysis

Here we give an analysis on the error of estimating distance by using equation (5-1).

The error of D1 can be estimated by partial differentials of equation (5-1) as
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where B. is the estimating error of the baseline B, and (. is the average angle error.  The

smaller the angle (0 and/or B, the larger is the error.  Note that (0 and B have an inherent

dependency. Given D1 and D2, the distances between the target and the two cameras

(Fig.5.1), the change of (0 and B are in the same direction (increasing or decreasing).

VI. Fast Moving Object Extraction and Tracking

In the current DARPA-funded Active Software Composition (ASC) project at the
University of Massachusetts, initial results have been achieved. A fast moving object
extraction and tracking system by using a stationary panoramic vision system has been
developed. The system consists of the following steps.

1. Fast Image Un-warping

Look-up Table (LUT) technique is used to map a circular image into a cylindrical

image described by equation (4-1). The LUT technique guarantees the real time software

image transformation in order to be used in moving object detection. Cylindrical

panoramic image also provides a natural way for human perception in a friendly human-

computer interface.  Fig. 4.3 shows a cylindrical images of the sample image in Fig. 4.1.

2. Change Detection

Given a stationary camera, moving objects can be detected and maybe well extracted

by subtracting a background image from a current image. However, during a long

monitoring period, illumination of the background may change, either gradually or

abruptly. So frame difference is calculated to detect any change between the current

image and the previous image. Note that the difference of two successive images is

basically the difference of the images of an object instead the image of that object itself.
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However, the difference image of the successive frames do tell us the motion of the

object; there is very small inter-frame change in the background part. So we use this

difference image to judge if a region extracted from the subtraction of the current frame

from the background image is really a moving object instead of the dynamic change of

the background.

(1) 330c.tif: Current Cylindrical image, with bounding rectangles of moving
objects superimposed

(2) 330b.tif: Background image

(3) 330o.tif: object image of three people

       
(4) 330z0.tif, 330z1.tif, 330z2.tif:  Zoom perspective images

Fig. 6.1 Multiple object segmentation and virtual zooming
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3. Background Updating and Estimation

The background-updating algorithm has two modes: permanent mode and

instantaneous mode. In the permanent mode, an initial background is generated at the

beginning of the object detection process by estimating the median value of each pixel in

many frames (e.g., 30 frame). A good background image can be generate if there is no

moving object in a scene during the background initialization, or any pixel in the images

are not occupied by objects longer than half of that time period. Then the background

image remains unchanged until a “abrupt” change of the illumination (e.g. turn on/off the

light) occurs, or the old background image causes many false alarm. Then a new

background is generated.

In the instantaneous mode, moving object detection begins in the very first frame, and

an initial background image is the first frame when the detection starts. Then, the

background image is updated pixel-wisely by a weighted average of the existing

background pixel and the current image only in those non-object regions.  Note that

object regions are separated by the following object extraction step.  Fig. 6.1(1) shows

one frame in a detection example where 3 people walked in a room. The frame rate for

multiple object detection is about 5 Hz in a Pentium 300M Hz PC for 1080*162

panoramic images. Fig. 6.1 (2) shows the current background image that was generated

for the first 24 frames when all the three peoples were walking around, and then was

updated for each processing frame, i.e. 5 times per second.

4. Object Extraction.

This step separates the entire gray-level image of each isolated moving object from

the background. As mentioned above an object image Oi(x,y) is a function of the current

image Ci(x,y), previous image Pi(x,y), and background image Bi(x,y). First a difference

image Di(x,y) and a subtraction image Si(x,y) are computed

Di(x,y) = |Ci(x,y) – Pi(x,y)| (6-1)

Si(x,y) = |Ci(x,y) – Bi(x,y)| (6-2)

Then a connected- and close-region grouping algorithm is used to find the region of each

objects in an binarized subtraction image
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Bi(x,y) = 1 if Si(x,y) >= minD otherwise Bi(x,y) = 0 (6-3)

For each Region Rj (j=0,…), the system checks if there is enough change in the

difference image Di(x,y); if not, then delete that region. Then a set of moving object

regions MORj (j=0,…) is extracted. The object image is the image that copies the original

intensity value from the current image only for those regions with moving objects. Fig.

6.1(3) shows the object image of processing the image in Fig. 6.1(1). Note that three

people are almost completely extracted from the background; and the boundaries of the

people are smoothly along the contours of their bodies.

5. Virtual Gazing of Multiple Moving Objects.

 For each moving object, a perspective view image is generated where the object is

kept in the center of the window. All the views have suitable zoom factors to ensure the

certain sizes of objects (Fig. 6.1(4)).

6. Object Tracking

In the current implementation, multiple objects are tracked based on such features as
size, aspect ratio and position of each object. Fig. 6.2 and 6.3 depicts multiple moving
human object detection and tracking from demonstrations at a DARPA ASC site visit.
Multiple moving objects (4 people) were detected in real-time while moving around in
the scene in an unconstrained manner and the panoramic sensor is stationary. A
background image is generated automatically by tracking dynamic objects across
multiple frames. The number of frame depends on the number of moving objects in the
scene.

The four moving objects are shown in the un-warped cylindrical image of Fig. 6.2, a
more natural panoramic representation for user interpretation. Each of the four people
were completely extracted from the complex background as depicted by the bounding
rectangle, direction, and distance to each object.  The system tracks each object through
the image sequence, even if there are overlap and occlusion between two people. The
dynamic track, represented as a small circle and icon (elliptic head and body) for the last
30 frames of each person is shown in Fig. 6.3 in different colors. The final object image
is depicted at the end of the corresponding track. Notice that the humans reversed
directions, and that overlap and occlusion were successfully handled (see the blue and the
green tracks). The system can report a alarm signal when more than half of a current
image changes due to self-motion, change in the environment, illumination, and sensor
failure, while refreshing the background accordingly.
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(a) Before meet (s111c.tif ) current image, object regions labeled

(b) Meet (s115c.tif) : current image, object regions labeled

(c) After meet (s118c.tif) : current image, object regions labeled
Fig. 6.2.  Object tracking: Cylindrical images with bounding rectangles of moving
objects superimposed

(a) Before meet (s111t.tif) : track image

(b) Meet (s115t.tif ): track image (green merges into blue)

(c) After meet (s118t.tif) : track image (green comes out from blue)
Fig. 6.3.  Object tracking: three track images, each track is for the last 32 frames



28

7. Synopsis

Another way to visually represent the dynamic event of a moving people is a video
synopsis, which is a single image with the still background and all the images of the
moving people. Fig. 6.4 shows one of the examples, where each image of a person is
pasted on the background if it is not overlapped with the previous one.  A video synopsis
gives us a strong feeling of the person’s dynamic existence in the environment.

(a) 311c.tif: Current image with the bounding rectangle of a person superimposed

(b) 311b.tif : Background image after updating

(c) 311s.tif : Synopsis of the moving person

Fig. 6.4. Synopsis: showing activity in one image

VII. Future Works

Future work includes the following research topics: cooperative and panoramic
vision, appearance-based panoramic vision, and the moving object tracking in a crowded
environment.
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7.1 Cooperative and panoramic vision

In Section 4, we have proposed an approach to construct a virtual stereo vision
system by the cooperation of the two platforms. Critical issues include:

1. Detecting the geometrical features in each platform and use them in “mutual
calibration”.

2. Finding the correspondence of an object in the images of two cameras.

3. The communication burden between the two platforms.

4. Using a zoom camera to identify the moving objects (people, fire, screen,
curtain,…)

5. Moving object tracking in a crowded environment where occlusion occurs.

7.2.  Appearance-based panoramic vision

Appearance-based panoramic vision (Zhu98) is a combination the appearance-based
approach (Murse95) with the panoramic imaging. The basic idea is to build the relation
between each sampled panoramic image and the location. A PAL image is represented in
the eigen-space by using Principal Component Analysis (PCA) approach. There are
several advantages.

1) No image segmentation and feature detection is needed.

2) The panoramic image is rotation-invariant so that we do not need to worry about
the view angle problems as in the common appearance-based approach.

3) The representation is the manifold vectors over x-y grid. For simplicity, it is just a
Look-up Table with (x,y) indices.

4) Intermediate view can be generated by just interpolation between the sampled
images. So the localization problem is transformed as a matching and interpolation
problem.

5) Realistic scene image sequences may be synthesized using this representation.

However there are some limitations. In order that the robot works, a learning process
should be carried out in a given environment; it may be data extensive; the algorithm
requires that the robot know it absolute orientation, otherwise the algorithm should match
each rotating version of a panoramic image.

Research Issues include:
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1) Image-based environment modeling by PCA learning

2) Optimal view planning by eigen-vector comparison

3) Localization by eigen-space matching

4) Image synthesis for virtual environment
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