A Rigorous Approach to Resource Management
in Activity Coordination

Rodion M. Podorozhny, Barbara Staudt Lerner, Leon J. Osterweil

University of Massachusetts, Amherst MA 01003, USA

Abstract. System behaviors can be expected to vary widely depending
upon the availability, or shortage, of resources that they require. Thus,
the precise specification of resources required by, and resources available
to, a system is an important basis for being able to reason about, and
optimize, system behavior. Previous resource models for such disciplines
as management and workflow have lacked the rigor to support powerful
reasoning and optimization. Some resource models for operating systems
have been quite rigorous, but have generally been overly narrow in scope.
This paper argues that it is important to be able to optimize and rea-
son about the broad and complex resource requirements of modern dis-
tributed multi agent systems. This entails precisely modeling a wide
range of entity types, including humans, tools, computation platforms,
and data. The paper presents a metamodeling approach that can be
used to create precise models of a wide range of resource types, and pro-
vides examples of the use of this metamodel. The paper also describes a
prototype resource allocation and management system that implements
these approaches. This prototype is designed to be a separable, orthog-
onal component of a system for supporting the execution of processes
defined as hierarchies of steps, each of which incorporates a specification
of resource requirements.

Keywords

Resources, resource specification, process execution, process centered environ-
ments

1 Introduction

Much research in such areas as software process, workflow, multi agent schedul-
ing, and computer supported cooperative work focuses on devising mechanisms
for adequately specifying coordination of diverse activities to accomplish a com-
plex task. Most of this work incorporates approaches in which the overall task
to be accomplished is represented as a synthesis of lower level tasks. In addition,
different approaches incorporate, to differing degrees of formality, the specifica-
tion of the artifacts that these various tasks use and produce. Some approaches
also have mechanisms to specify the agents and resources that are to be used to
support task execution.

The differences in emphasis on these different components of activity coor-
dination specification are often clearly due to differences in goals. Some specifi-
cations are intended to be largely illustrative and advisory, being intended for
use in helping humans to come to common understandings. But many specifi-
cations are intended to be sufficiently rigorous and detailed that they can be
used as prescriptions for computer support and the application of tools. Some of
these more rigorous specifications are sufficiently rigorous that they can support
powerful reasoning about the activities, thereby allowing them to be used as the
basis for strong support of these activities, and for diagnosis and improvement
of the activities being represented.

Our own past work has this latter character and goal. We have concentrated
on developing and evaluating specification formalisms that are sufficiently rigor-
ous that they can be used to reason about such difficult and complex activities
as the processes used to develop software. Our goals have included being able
to provide strong tool and automation support to these processes, and also to
reason about how to support these processes most efficiently. This past work has
demonstrated the need for structuring the tasks that comprise larger overall pro-
cesses, and the need for being articulate and complete in specifying the artifacts
that these tasks use and produce. But our work has also increasingly shown that
it is essential to represent the use of resources in descriptions of processes. This
need is most acute in the case of processes that are to be carried out through
the coordination of multiple agents.

Operating systems research has long ago demonstrated the pivotal impor-
tance of reasoning about resources in parallelizing, coordinating, and optimizing
the execution of system processes. Clearly, the abundance of resources can en-
able execution of tasks in parallel, thereby speeding up accomplishment of larger
goals. This same phenomenon is also clearly observable in broader classes of ac-
tivity coordination. If a software design activity requires the use of a particular
design tool, then the various members of a design team are able to work in
parallel only if there are multiple copies of that tool available. Similarly, if the
design activity has been decomposed into separate parallel subtasks, the design
process may go faster, but only if more than one qualified designer is available
to work on the project.

Correspondingly, the lack of resources causes contention, occasions the need
for some tasks to wait for others to complete, and generally slows down accom-
plishment of larger goals. Often potential delays can be avoided or reduced by
using resource analysis to identify ways in which tasks can be parallelized. Thus,
for example, if only one design tool is available for use by two designers, delay
may be avoided or reduced by scheduling one designer to perform some other
task (e.g. requirements revision) while the other designer has use of the one copy
of the design tool.

Of course operating systems research has also long ago demonstrated that
it is all too easy to create such problems as deadlocks and livelocks if one is
not careful in the scheduling of the assignment of resources. These problems are
very real for the larger class of activity coordination problems as well. It is not

hard to devise a process in which a requirements analyst is awaiting the results
of a prototype activity in order to complete requirements specification, while a
prototyper is awaiting the completion of the requirements specification in order
to complete the prototype.

In our work, we are interested in creating activity coordination specifications
that are sufficiently precise and rigorous that they effectively support reasoning
of the sorts just indicated. We would like to be able to identify tasks that are
truly parallelizable so that we can schedule them in parallel. We would like to be
able to identify where deadlocks, race conditions, and starvation are possible, so
that we can assure that they do not occur. We would like to be able to infer when
additional resources could potentially speed up execution of the overall activity,
and when an activity has an excess of resources, some of which might potentially
be reassigned. We would like to be able to manage contention for resources that
are in high demand, and those to which access should be managed by disciplines
such as transaction mechanisms.

The preceding sorts of reasoning and controls seem to us to be impractical
or impossible unless the resources needed to perform tasks are specified. As
with most software analyses, these sorts of reasoning can be more powerful and
precise when the rigor with which needed resources are specified is more powerful
and precise. Thus, in this work we propose a powerful and precise resource
specification formalism, and indicate how it can be combined with a suitably
powerful and precise process formalism to provide a basis for the kinds of analysis
indicated above.

2 Motivation

In order to motivate our work we present an example of how it might be useful in
addressing a typical software development problem. To that end, we suggest how
the management of resources specified by our modeling formalism can improve
the effectiveness of a small software development team. We hypothesize that the
team has a variety of human resources, among which are three developers, one
of whom is both a qualified coder and designer, one of whom is a qualified coder
and tester, and one of whom is qualified to do design work, coding, and testing.
Non-human resources include one license for the Rational Rose design support
system, and one license for the Visual C++ tool.

Let us further hypothesize that the team is currently in the late stages of
development of a product, and is both completing implementation and also car-
rying out some redesign that is required in order to fix bugs that have been
detected in earlier work. Thus, some of the team’s activities entail recoding,
some requires redesign, and all of it requires retesting. It is not hard to also
imagine that the progress of the team is, from time to time, slowed by the lack
of availability of resources. In particular there are probably times when it would
be desirable to have more qualified designers or coders. More likely, however,
there are probably times at which progress could be expedited if the team had
available an additional Rose license and an additional Visual C++ license.

We see a number of ways in which the resource management capability that
we have developed could be of substantial benefit to this organization. A rea-
sonable scenario might be that the organization has money to purchase only
one additional license, and it would be important for it to have some way to
determine the best choice, a Rose license or a Visual C++ license. Our resource
specification capability is intended to be a facility for supporting informed de-
cisions of precisely this sort. It might be used as the basis for analysis of flow
time reduction achievable through one purchase or the other (or both). It might
be used to study increases in human resource utilization, or it might be used
to suggest ways in which the process itself might be altered to reduce flow time
without having to purchase new software licenses at all.

The capability we present here assumes that a process is represented as a
set of steps that are connected to each other by control flow and/or dataflow
dependencies, and that it supports the careful specification of potential parallel
activities. The capability requires that each step has attached to it a specification
of the resources that are required in order for the step to be executed. Attaching
such resource specifications to the various steps enables a process execution su-
pervisor to assure that steps have what they need before being executed. More
important, however, such specifications support determination of how much par-
allelization can be supported by the available resources, and which infusions of
new resources are most likely to be most useful, especially when exceptional
cases have arisen. Thus, in our example it may be reasonable to purchase an
additional design support tool, either because of the lack of availability of a
second designer, or because the set of tasks that are dictated by the process
does not require or allow parallel design activities. Precise process and resource
specification should help determine such things.

We now introduce a resource modeling and management approach and indi-
cate why it seems to us to be effective in dealing with problems such as these.

3 Overview

Our resource management component is intended to be one component of a larger
system that may be used to represent processes, support reasoning about real-
time systems, or be integrated into a planning system, for example. Since we be-
lieve that the need for powerful and precise resource management is widespread
we have designed this component to support the modeling of a wide range of
types of resources, from physical entities such as robots, to electronic entities
such as programs or data artifacts, and to human entities. The resource man-
agement component similarly does not prescribe specific protocols about when
resources should be reserved, acquired, and released, but rather leaves the defi-
nition of those protocols to the external system with which it is integrated. In
this section, we present an overview of our resource management component, and
introduce some key terminology.

A resource model is a model of those entities of an environment that
may be required, but for which an unlimited supply cannot be assumed. A

resource model is defined as a collection of resource classes and resource
instances. Resource classes are connected to each other using IS-A links to
define a resource hierarchy. This allows resources to be described and referenced
at various levels of details. Resource instances are themselves connected to the
model using IS-A links to identify which resource class(es) they are instances of.

In addition to IS-A links, resources may also be connected by Requires links
and Whole—Part links. A Requires link indicates that any use of a particular
resource also requires use of another particular resource. For example, a piece of
licensed software requires use of a computer configured to run that software.

A Whole—Part link indicates a relationship in which a resource can be
thought of as a single aggregate unit or may be decomposed into smaller pieces
that are separately managed. An example of this is a design team that can be
assigned a high-level design task, implying responsibility of the team members,
while allowing each individual design team member (part) to be assigned other
tasks.

There are four primary operations on a resource model:

— Identification of resources that can satisfy specific requirements.
Reservation of a resource for a specific start time and duration at some
point in the future.

A cquisition of a resource locking the resource for use in a specific activity.
Release of a resource so that it can be used by other activities.

The mechanism described here is quite general and would be used in differ-
ent ways by different types of systems. A simple process execution environment
might rely just on acquisition and release, greedily acquiring resources as neces-
sary. A planning system would reserve resources as the plan is being developed
and acquire and release them according to the plan created. Static analysis might
examine the resource requests being made by a system to determine whether the
necessary resources exist and where delays or even deadlock might arise when
resources are contended for. The resource model is also intended to be manip-
ulable by non-programmers. We therefore require both the static definition of
the resource model and its dynamic reservation and acquisition status to be
visualizable and easily manipulable through a GUI tool.

4 Defining the resource model

A resource model serves two purposes. First, it is a mechanism to describe and
organize the resources available within an organization. It is essential that a
resource modeling notation be expressive enough to capture the characteristics
of resources and relationships among resources that accurately reflect the actual
resource entities being modeled. Second, a resource model is used dynamically
to control concurrent access to resources, to schedule resources, to analyze the
impact of the resource environment on an organization’s ability to carry out
an activity. Thus, the dynamic modeling capability of a resource management
mechanism is also vitally important. In this section, we present the descriptive

features of the resource modeling mechanism, while in the next we present the
dynamic characteristics of our mechanism.

4.1 Resource Entities

A resource model is described as a collection of resource classes, resource in-
stances, and relationships between resources. A resource instance represents a
unique entity from the physical environment, such as a specific person, printer, or
document. A resource class represents a set of resources (other classes and/or
instances) that have some common properties. Resource classes are further sub-
divided into unschedulable resource classes and schedulable resource classes. A
schedulable resource class is one in which its instances are similar enough
that the person using the resource model might not care which instance is cho-
sen. For example, Printer would probably be a schedulable resource class. An
unschedulable resource class is more abstract and is intended more as an or-
ganizational convenience when defining the resource model. For example, Person
might be a sensible resource class, but is too general to be scheduled for a specific
task.

Each resource is described using a set of typed attribute-value pairs. There
is a small set of predefined attributes required of all resources. In addition,
the resource modeler can define user-defined attributes that are unique to the
specific type of resource. The attribute values of a resource serve to identify the
resource and distinguish it from other similar resources. For example, a printer
might have an attribute indicating whether it produces color or black output,
but that attribute would not be required of resources that are not printers. These
descriptive attributes have static values, that is, the values do not change as a
result of use of the resources.

There are three pre-defined descriptive attributes required of all resources: a
name, a textual description, and a set of criteria assertions. Criteria assertions
are membership tests used to ensure that the resources are placed in the model
consistent with semantic rules defined by the modeler. Criteria assertions are
described further in Section 4.3.

Schedulable resource classes and resource instances also have a capacity at-
tribute associated with them. Capacity is used to indicate the maximum rate
at which a resource can be used. The units by which capacity is measured are
specific to the type of resource. For example, a printer’s capacity would be mea-
sured in pages per minute, while a human’s capacity would be measured in hours
per week. Capacity is used to support resource sharing and is discussed further
in Section 4.2.

4.2 Relationships between Resources

The resource modeling mechanism supports the definition of three types of re-
lationships between resources: IS-A relationships, Requires relationships, and
Whole-Part relationships. IS-A relationships provide a hierarchical abstraction
mechanism. Requires relationships express functional dependencies between the

use of resources. Whole-part relationships allow resources to be manipulated at
either coarse or fine granularities and to allow refinement of resource usage over
time.

IS-A hierarchy The relationship between a resource class and its members is
expressed with an IS-A link. The resource classes and their IS-A links form a
singly-rooted tree. The root of the tree is the predefined resource class named
Resource. A resource instance may belong to multiple classes, thus the entire
resource model forms a singly-rooted DAG. Each child of an IS-A link inherits all
attributes of its parents. If the same attribute name appears in multiple parents
and is originally defined in separate classes (that is, not in a common ancestor),
the instance contains both attributes, qualified by the class name. For example,
suppose Amelia is an instance of both the Programmer class and the Translator
class. Suppose each of these classes has a language attribute. Amelia might have
Java and C++ as the value for the Programmer . language attribute and English
and Japanese as values for the Translator.language class. An example of an
IS-A hierarchy is presented in Fig. 1.

Resource

\

@ Hardware

Req Spec Rational Visual

Rose C++

‘Lisa ‘ ‘Frank ‘ ‘Dave ‘

Legend: Q resource class

— IS-A relation
() schedulable resource class

|:| resource instance

Fig. 1. IS-A hierarchy of an example environment

Requires Functional dependencies between resources are captured with a Re-
quires relation. A Requires relation denotes that one resource requires another
resource in order to perform any work. For example, a piece of software requires
a computer with a certain configuration or a delivery person requires a vehi-
cle. The fundamental property captured by the Requires relation is that any
conceivable use of one resource requires another resource. By capturing these
relations in the resource model, the dependency is permanently captured and
does not need to be repeated whenever the first resource is used. Arities may
be associated with the Requires relation to indicate how many instances of a
resource are required.

It is also possible to associate a capacity attribute with a Requires relation.
This is useful in situations in which a resource does not require exclusive use
of a second resource. For example, while a software package might require use
of a specific computer, it might be possible for multiple people to use the same
computer concurrently, if the CPU and memory requirements of that software
package are not excessive. When the computer is used for that software package,
the capacity available for other activities is reduced by the amount specified in
the Requires relation.

The Requires relation can exist between resource classes, resource instances,
or a combination of these. A Requires relation between resource instances es-
tablishes a tight, static binding between the resources. For example, a particular
software package might only be loaded on a specific computer. To use that soft-
ware package therefore requires use of that specific computer. A Requires relation
between resource classes establishes the dependency, but defers the binding of
which specific required resource is assigned. For example, a delivery person re-
quires a car, but it does not matter which delivery person uses which car in
general. A specific task to be performed by a delivery person might place addi-
tional requirements on the car. For example, the product to be delivered might
need to remain cool, so the delivery car would then require air conditioning.
Those additional requirements can be described in the context in which the
resources are being used.

An example of the Requires relation is presented in Fig. 2. The example
shows that a resource instance under schedulable resource class Coder requires
one resource instance Visual C++ which, in its in turn requires only one resource
instance under schedulable resource class Computer.

Whole—Part The semantics of the Whole-Part relation is that one resource is
logically or physically part of a second resource. The difference between Requires
and Whole-Part is subtle. Both the Whole and the Parts are modeled as resources
to indicate that the resource can be used as a whole, or parts of it can be used
individually. Arities and capacities can also be associated with the Whole-Part
relation. An example of a Whole-Part relation is that a team is a Whole whose
Parts are the team members. The team can be given an assignment, implying
a joint assignment to the team members. The assignment can be refined later,
giving parts of the assignment to the individual members. This capability does

1 . 1
Visual
Coder Pl oee T Computer

resource instance

Q schedulable resource class

- = Requires relation

Legend:

Fig. 2. Requires relation example

not exist for resources connected with the Requires relation.

The Whole-Part relation can be between resource classes or between resource
instances. A Whole-Part relation between resource classes specifies a typing rela-
tion that must hold for all Whole instances. For example, a Team resource class
might have a Whole-Part relation with a Member resource class with an arity
of 3-5. Such a relation implies that any Team instance must have a Whole-Part
relation with 3-5 Member instances. Thus, when a Whole instance is added to
the resource model, it is imperative that the corresponding Whole-Part relation
be created to identify the specific team’s members. This differs from the Requires
relation in which the binding between resource instances can be deferred until
the resources are used, if desired.

An example of Whole-Part relation overlayed on the IS-A hierarchy is pre-
sented in Fig. 3. The figure shows that resource instance Teaml is an aggregate
of resource instances Frank and Dave.

4.3 Criteria assertions

A resource class may define a set of criteria assertions. A criteria assertion is
a boolean expression over the attribute values of the resource. These assertions
serve as membership criteria for all the resource classes and resource instances
that are children of the resource class. The additional assertions introduced at
a child resource class may not contradict those of a parent resource class. While
this is not checkable in general, such contradictions would make it impossible to
populate the resource class with instances. Therefore, the resource classes farther
from the root along a certain path of IS-A relations have more membership
criteria to satisfy and thus represent more specific classes than those closer to
the root.

Resource

\

@ Hardware

Rational Visual
Rose C++
‘ Lisa ‘ ‘Frank ‘Dave ‘
Legend:
il — theIS-A relation Q resource class

C) schedulable resource class
|:| resource instance

Fig. 3. IS-A and Whole-Part relations

- == the Whole-Part relation

As an example, one might define a resource class FastPrinter as a child of the
more general Printer class. The FastPrinter class might have associated with it
an assertion that its capacity is greater than 12 pages per minute. Each resource
class or instance below it must satisfy this criteria. Failure to do so indicates
that the model does not satisfy the semantics that were intended.

The resource manager checks the criteria assertions after any changes to the
criteria assertions, to the attribute values of a resource, or the addition of any
resources connected (transitively) with IS-A links.

4.4 Modifying the Resource Model

We expect a resource model to be a relatively static entity. Many resources rep-
resent physical entities, such as people and equipment. These types of resources
change relatively infrequently. As such, we expect these resources to be added
to a model by a human resource modeler. We provide a GUI tool to facilitate
the creation, reorganization, and visualization of these resource models.
Additionally, we expect some resources to be created, or perhaps destroyed,
dynamically during the execution of some activity. For example, a software en-
gineering process produces artifacts, such as design documents, implemented

classes, test cases, etc. Each of these could be modeled as a resource. To facili-
tate this, we provide an API that allows tools to dynamically create, reorganize,
and examine the resource models.

5 Using the resource model

Once a resource model has been defined, it can be used to control resource
sharing, to plan future resource usage, or to reason about whether activities
could be performed in less time by increasing the number of resources available.
In this section, we describe the operations provided by the resource manager
that allow such reasoning to be performed. It is important to keep in mind that
the activities for which the resources are used are defined and controlled from
outside the resource manager. The responsibility of the resource manager is to
provide information about the types and availability of resources and to track
their usage.

5.1 Identifying Needed Resources

The first step in using a resource model is to determine what resources exist
and how well they match the needs of the activity to be performed. To do
this, a resource user specifies the name of a resource class and a query over
the attribute values contained by resources of that class. The resource manager
then returns a collection of resource instances that match that resource class
and query. To find matching resources, the resource manager finds all instances
connected transitively via IS-A links from the named resource class. The query
is applied to each instance to see if it satisfies the necessary conditions and, if
so, that instance is added to the set to be returned.

5.2 Acquiring Resources for Use

The resource manager controls the use of resources by keeping track of bindings
to activities that are using them. The resource manager has only an abstract
notion of the activities that are using them. An activity requests use of a re-
source by specifying either a specific resource instance by name, or a resource
class and query to identify a resource to acquire. If the resource manager can
successfully identify a matching resource, the resource is locked for use by the
given activity. If more than one resource matches, the resource manager selects
one. The acquisition request may also indicate a capacity of the resource that is
going to be used if exclusive use of the resource is not required.

If the acquisition request is for a resource that requires another resource,
the acquisition only succeeds if all transitively-required resources can also be
acquired. Similarly, if the resource is a Whole, the corresponding Parts must
also be available for the acquisition to succeed.

Note that in general, the resource manager is not actually able to prevent
unauthorized use of the resources as their use is done externally to the resource

manager. For example, a person can be given an assignment without the resource
manager being informed. While this cannot be prevented, it does compromise
the resource manager’s ability to assist in planning and scheduling.

5.3 Reserving Resources for Future Use

Acquisition results in immediate locking of a resource for use. Reservation sup-
ports the ability to plan future use of a resource. As with acquisition requests,
reservation requests must specify the resource instance to reserve or a resource
class and query as well as the capacity required. In addition, a reservation request
must identify the time in the future that the reservation is for and the duration
of time that it is for. If there is exactly one matching resource instance available
at that time, that resource instance is reserved. If there is a schedulable resource
class for which all its resource instances satisfy the query, the reservation is made
at the level of the schedulable resource instance. In this way, the selection of a
specific resource is deferred until acquisition time. This has the potential to in-
crease the overall utilization of the resources since a later request might require
a specific resource and by not binding a specific resource instance at reservation
time, it is more likely that the more specific request can be satisfied.

The resource manager creates schedulable resource classes dynamically to
allow late binding of reservation requests even when the matching resource in-
stances do not wholly comprise an existing schedulable resource class. For ex-
ample, suppose our resource model had a class named Printer and all printer
instances in the building were direct children of the Printer class. A printer
reservation request might use a query that stipulated a specific value for the
location attribute. If there was a single printer at that location, that instance
would be reserved. If there were multiple printers at that location and at least
one printer at a different location, a schedulable resource class would be cre-
ated dynamically to represent the co-located printers and a reservation would
be placed on the class.

Reservations automatically reserve required resources and part resources in
a manner similar to acquisitions.

In order to use a reserved resource, an acquisition request must be made
identifying the reservation that is to be converted into an acquisition.

5.4 Releasing Resources

If a resource is acquired or reserved, it can be made available again for others
to use by releasing the resource. A reserved resource is automatically released
if the duration of its reservation expires and it has never been converted to an
acquisition.

5.5 Refining Usage of Part Resources

In general, a resource cannot be reserved or acquired if there is insufficient capac-
ity available given its current reservations and acquisitions. An exception to this

is in the use of Part resources. The main purpose of the Whole-Part relation is
to allow a Whole resource to be reserved/acquired resulting in all its parts being
similarly reserved/acquired, but then to allow the initial reservation/acquisition
to be refined to a collection of reservations/acquisitions on the Parts. For ex-
ample, imagine a project management tool that assigns the design of a software
system to a team of designers. This ensures that each member of the team is
reserved for that task. As the design progresses, the large design assignment will
be refined into more specific tasks, each of those given to a smaller team or an
individual.

To support refinement, Parts may be reserved/acquired within the context
of an existing reservation/acquisition of the Whole. In these cases the reserva-
tion/acquisition are made with respect to the capacity already reserved by the
Whole reservation/acquisition and not with respect to the generally available
capacity of the Parts.

Note that unlike aggregation found in object-oriented design notations, our
Whole-Part relation does not denote that the part is entirely owned by the
Whole. In this way, an individual might devote 50% of their time to one team
and 50% of their time to another team, for example.

6 Related work

Other resource modeling and specification work has been done in such resource
sensitive application areas as software process, operating systems, artificial in-
telligence planning and management. The approaches in these areas have some
similarities to our own work, as they concern themselves with such similar prob-
lems as the coordination of activities that can span long time periods.

6.1 Related work in software process

There have been a number of software process modeling and programming lan-
guages and systems that have addressed the need to model and manage re-
sources. Among the most ambitious and comprehensive have been APEL [10],
and MVP-L [15], both of which have attempted to incorporate general resource
models and to use resource managers to facilitate process execution. APEL’s
approach is similar to ours in that APEL deals with resource management as a
separate issue that is orthogonal to other process issues. APEL provides a way
to specify an organizational model that includes human resources and their ag-
gregates (teams). It also introduces the notion of a position that is very similar
to our notion of a class in that it tags human resources according to their skill
sets. APEL’s roles define the capacity in which a resource is used by a specific
activity. APEL’s resource modeling approach, however, seems to be less general
and comprehensive than our model of resources. In addition it does not seem to
incorporate any provision for support of scheduling.

There are a number of other process languages that provide for the explicit
modeling of different sorts of resources. Merlin [6], for example, provides rules for

associating tools and roles (or specific users) with a work context (which may be
likened to a Little-JIL step). Some others that offer similar limited capabilities
are ALF [5], Statemate [9], and ProcessWeaver [1]. In all of these cases, however,
the sorts of resources that are modeled are rather limited in scope.

6.2 Related work in operating systems

The problem of scheduling resources has been extensively studied in the field of
operating systems (for example, [4], Chapter 6.4). The most common resources
in this problem domain include peripheral devices and parts of code or data that
require exclusive access. The differences between the needs of resource manage-
ment in operating systems and software engineering (or artificial intelligence)
arise from the fact that operating system resources:

— are used for much shorter periods of time (hence, more elaborate notions of
availability are not usually needed).

— are generally far less varied (e.g. Humans are not considered to be resources
in operating systems)

— resource usage is much less predictable. Independent programs compete for
the same resources and are executed at unpredictable times.

Operating systems research on resource management per se usually focuses
on scheduling techniques of a specific resource (such as a CPU or a hard disk as
in [7] or [17]). The similarities in purposes of resource modeling between software
engineering and operating systems fields appear only in research on admissions
control ([3], [2], [16], [13]) which is more in the domain of networks research.
For instance, both of these fields require a resource environment abstraction
that can model several kinds of resources. They also require a way to satisfy
a general resource request (as opposed to the request for a specific instance).
This means that a search mechanism is needed in both cases. The resource
modeling approaches in the field of networks research are somewhat similar to
our approach in that they also often introduce a hierarchy of resources and
provide some functionality (i.e., operations for search, reservation and acquisition
of resources). It is interesting to note that the authors of [3] and [2] also saw the
need to make the resource model independent from the model representing tasks
(applications in their terminology). Resource models in this domain, however,
seem to lack flexibility and generality.

6.3 Related work in Al planning systems

Probably, the closest resource modeling approach to ours is suggested in the DI-
TOPS/OZONE system. OZONE is a toolkit for configuring constraint-based
scheduling systems [18]. DITOPS is an advanced tool for generation, analysis
and revision of crisis-action schedules that was developed using the OZONE
ontology. The closeness is evidenced by the fact that OZONE also incorporates

a definition of a resource, contains an extensive predefined set of resource at-
tributes, uses resource hierarchies, offers similar operations on resources, and also
resource aggregate querying. We believe that our resource modeling approach
places a greater emphasis on human resources in the predefined attributes and
allows for an implementation that is easier to adapt to different environments.
The Cypress integrated planning environment is another example of a resource-

aware Al planning system. It integrates several separately developed systems (in-
cluding a proactive planning system (SIPE-2 [20]) and a reactive plan execution
system). The ACT formalism [12] used for proactive control specification in the
Cypress system has a construct for resource requirements specification. It allows
the specification of only a particular resource instance. The resource model does
not allow for resource hierarchies and the set of predefined resource attributes
is rigid and biased towards the problem domain (transportation tasks).

6.4 Related work in management

An example of a resource modeling approach in a management system is pre-
sented in the Toronto Virtual Enterprise (TOVE) project [8]. This approach
suggests a set of predefined resource properties, a taxonomy based on the prop-
erties and a set of predicates that relate the state with the resource required by
the activity. The predicates have a rough correspondence to some methods of
our resource manager. It is very likely that our resource manager would satisfy
the functionality requirements for a resource management system necessitated
by the activity ontology suggested in the TOVE project.

6.5 Related work in other distributed software systems

The Jini distributed software system [19], which is currently being developed by
Sun Microsystems, seems to employ a resource modeling approach that seems
somewhat similar to ours. The Jini system is a distributed system based on the
idea of federating groups of users and the resources required by those users. The
overall goal of the system is to turn a network into a flexible, easily administered
tool on which resources can be found by human and computational clients. One
of the end goals of the Jini system is to provide users easy access to resources.
Jini boasts the capability for modeling humans as resources, allows for resource
hierarchies, provides ways to query a resource repository using a resource tem-
plate that is very similar to resource queries in our suggested approach. Because
information about Jini is limited it is difficult to say what kind of a resource
model is used. It is also difficult to see how easily Jini’s resource model can be
adapted to new environments.

7 Evaluation and Future Work

In an earlier paper [14] we describe some of the experience we have had in ap-
plying this resource management system. Most of this experience has come from

integrating this system with the Little-JIL [11] process programming system,
and using that integrated system to program processes for robot coordination,
data mining, and negotiation, as well as software engineering processes such as
collaborative design and regression testing. This past experience has confirmed
that the features of the system we have developed are of substantial value, and
that the approaches we are taking seem appropriate. Our experiences have re-
sulted in the creation and modification of our initial notions and decisions. For
example, the Whole-Part relation was incorporated into the resource modeling
capability after the need became apparent in trying to address the problem of
programming the design of software by teams. These experiences have served to
reinforce our commitment to further experimentation and evaluation, which we
believe will lead to further improvements to this system.

Our experiences have also encouraged us to continue to enhance the features
of this system. We are planning to focus more effort on the design and imple-
mentation of better languages for the definition of the resource model and the
specification of resource requirements. Currently we rely primarily on the use of
Java for these specifications, and we seek languages that will be more accessible
to non-programmer users.

We would also like to see the creation of a simulation system that would
use the process and resource specification systems we have developed to draw
inferences about projected resource needs and utilization. A simulation system
of this sort would enable users to gauge the gains and losses that would be likely
to result from making changes in resource availability, or from making changes
in the process itself.

We would also like to see the resource management system enhanced with a
capability for modeling the skilling-up of humans as a result of their execution
of certain process steps. Our current system assumes that agents have fixed skill
levels. But clearly humans will learn as they go through a lengthy process. As a
consequence their skill levels should go up. This is clearly a desirable modeling
feature and should be incorporated in a future version of our system.

As a more distant goal we see the addition of a best match resource querying
mechanism. Ideally, it should be able to find a closest match to a resource query
based on the user specified criteria. Currently, the query is satisfied by returning
all the matching resources. For such a mechanism to operate we also need to
devise metrics that would allow to measure “distances” between resources (to
be exact, their attribute values) and resource queries.

Finally, we need to gain more experience in the use of the resource manager
in support of other systems. To this end, we intend to continue the development
of processes that use resources, to evaluate how well the resource management,
system addresses the needs of the process execution environment and specific
processes, and to determine how well the resource management system can fa-
cilitate planning and analysis activities.

8 Acknowledgments

This research was partially supported by the Air Force Research Laboratory /IFTD
and the Defense Advanced Research Projects Agency under Contract F30602-
97-2-0032. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or
endorsements either expressed or implied, of the Defense Advanced Research
Projects Agency, the Air Force Research Laboratory /IFTD, or the U.S. Govern-
ment.

References

1. C.Fernstrom. PROCESS WEAVER: Adding process support to UNIX. In The
Second International Conference on the Software Process, pages 12-26, 1993.

2. S. Chatterjee and J. Strosnider. A Generalized Admissions Control Strategy for
Heterogeneous, Distributed Multi-media Systems. In Proceedings of ACM Multi-
media 95, San Francisco, CA, November 1995.

3. S. Chatterjee, J. Sydir, B. Sabata, and T. Lawrence. Modeling Applications for
Adaptive QoS-based Resource Management. In Proceedings of the 2nd IEEE High-
Assurance System Engineering Workshop, Bethesda, Maryland, August 1997.

4. H. M. Deitel. An Introduction to Operating Systems. Addison-Wesley, Reading,
Massachusetts, 1984.

5. G.Canals, N.Boudjlida, J.-C.Derniame, C.Godart, and J.Lonchamp. ALF: A
framework for building process-centered software engineering environments. In
A. Finkelstein, J. Kramer, and B. Nuseibeh, editors, Software Process Modelling
and Technology, pages 153—-185. Research Studies Press, Ltd., Taunton, Somerset,
England, 1994.

6. G.Junkermann, B.Peuschel, W.Schéfer, and S.Wolf. MERLIN: Supporting co-
operation in software development through a knowledge-based environment. In
A. Finkelstein, J. Kramer, and B. Nuseibeh, editors, Software Process Modelling
and Technology, pages 103-129. Research Studies Press, Ltd., Taunton, Somerset,
England, 1994.

7. P. Goyal, X. Guo, and H. Vin. A Hierarchical CPU Scheduler for Multimedia Op-
erating Systems. In Proceedings of the Second Symposium on Operating Systems
Design and Implementations (OSDI’96), pages 107-122, Seattle, Washington, Oc-
tober 1996.

8. M. Gruninger and M. S. Fox. An Activity Ontology for Enterprise Modelling.
Submitted to AAAI-94, Dept. of Industrial Engineering, University of Toronto,
1994.

9. D. Harel, H. Lachover, A. Naamad, A. Pnueli, M.Politi, R. Sherman, A. Shtull-
Trauring, and M. Trakhtenbrot. STATEMATE: A working environment for the
development of complex reactive systems. IEEE Trans. on Software Engineering,
16(4):403-414, April 1990.

10. J.Estublier, S.Dami, and A.Amiour. APEL: A graphical yet executable formalism
for process modelling. In Automated Software Engineering, March 1997.

11. B. S. Lerner, L. J. Osterweil, J. Stanley M. Sutton, and A. Wise. Programming
process coordination in Little-JIL. In V. Gruhn, editor, Proceedings of the 6th
European Workshop on Software Process Technology (EWSPT ’98), number 1487

12.

13.

14.

15.

16.

17.

18.

19.

20.

in Lecture Notes in Computer Science, pages 127-131, Weybridge, UK, September
1998. Springer-Verlag.

K. L. Myers and D. E. Wilkins. The Act Formalism. Working document: Ver-
sion 2.2, SRI International, Artificial Intelligence Center, September 25 1997.
http://www.al.sri.com/ act/act-spec.ps.

K. Nahrstedt and R. Steinmetz. Resource Management in Networked Multimedia
Systems. IEEE Computer, pages 52—64, May 1995.

R. M. Podorozhny, B. S. Lerner, and L. J. Osterweil. Modeling Resources for Ac-
tivity Coordination and Scheduling. In Proceedings of the Third International
Conference on Coordination Models and Languages. Springer-Verlag, 1999.

H. Rombach and M.Verlage. How to assess a software process modeling formalism
from a project member’s point of view. In The Second International Conference
on the Software Process, pages 147-159, 1993.

S.Floyd and V.Jacobsen. Link Sharing and Resource Management Models for
Packet Networks. IEEE Transactions on Networking, 3(4):365-386, 1995.

P. Shenoy and H. Vin. Cello: A Disk Scheduling Framework for Next-generation
Operating Systems. In Proceedings of ACM SIGMETRICS’98, June 1998.

S. F. Smith and M. A. Becker. An Ontology for Constructing Scheduling Systems.
In Working Notes from 1997 AAAI Spring Symposium on Ontological Engineering,
Stanford, CA, March 1997.

J. Waldo. Jing Architec-
ture Querview. Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA
94303, 1998. http://www.javasoft.com/products/jini/index.html.

D. E. Wilkins. Using the SIPE-2 Planning System: A Manual for Version 4-17.
SRI International Artificial Intelligence Center, Menlo Park, CA, October 1997.

This article was processed using the ITEX macro package with LLNCS style

