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Abstract

Knowing when and how to communicate and coordi-
nate with other agents in a multi-agent system is an
important efficiency and reliability question. Contex-
tual rules governing this communication must be pro-
vided to the agent, or generated at runtime through
environmental analysis. In this paper we describe how
the TAEMS task modeling language is used to encode
such contextual coordination rules, and how runtime
diagnosis can be used to dynamically update them.

Overview

Communication and coordination is an essential compo-
nent of most complex multi-agent systems. Contention
over shared resources, the desire to employ remote in-
formation and the need to coordinate interrelated activ-
ities may each require some sort of information transfer
between agents to be resolved. To this end, individual
actors in a multi-agent system must be able to explicitly
or implicitly communicate requests and results, desires
and beliefs, to make the system an efficient and cohesive
unit. Thus, a set of situation-specific guidelines must
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exist which give the agent knowledge about the types of
inter-agent communication which should be performed,
when the communication should take place, and which
other entities the agent should interact with.

A range of alternatives exist for providing or creat-
ing these contextual rules. If the agents operate in a
stable and well understood environment, the most effi-
cient solution may be to fully specify the rules a priori.
More generalized, domain-independent agents, or those
operating in a more dynamic environment, may rely
completely on runtime learning algorithms to provide
the necessary information (Sugawara & Lesser 1993). A
third option combines these two by using adaptive tech-
niques to dynamically revise provided or cached rules
as environmental conditions are seen to shift.

We propose that the third option, coupled with diag-
nostic techniques capable of recognizing environmental
changes, is a valid and efficient strategy for realizing
contextual coordination rules. Under optimal condi-
tions, the existing rules will suffice, but as conditions
change the local contextual representation may be up-
dated appropriately, thus allowing the agent to adapt
to new conditions.

To frame the problem more concretely, let us consider
the following scenario, drawn from our previous work
in the Intelligent Home domain (Lesser et al. 1999). In
this environment we have several autonomous but coop-
erative agents, each with its own capabilities, objectives
and constraints, which strive to achieve their own goals
without adversely affecting others in the environment.
Each agent represents an “intelligent appliance” in the
house (e.g. a hot water heater, dishwasher, dryer, etc.),
with corresponding objectives. Also represented in the
house are a set of bounded resources, such as electricity
and hot water, which agents may need to make use of to
achieve their goals. The resources will have minimum
and maximum bounds, and will have different effects
on activity when they are depleted. In this particular
instance, consider a pair of agents which concurrently
make use of the hot water resource. Assume the system
designer originally primed the agents with a conserva-
tive strategy requiring coordination over all resources
at all times. This guideline, while safe, may not be
the optimal one for all circumstances, because there
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Figure 1: Abbreviated TEMS task structure example for a dishwasher agent

may be sufficient resources available for both agents to
complete their tasks regardless of the interactions be-
tween their local schedules. A diagnosis module, us-
ing knowledge about the execution characteristics and
resource state, could determine that in this particular
context, coordination is not necessary. If the environ-
ment changed, through the addition of competing ac-
tions or a reduction in the resource’s level, the diagno-
sis could be revised to reflect the new circumstances,
thereby re-activating the conservative strategy or rec-
ommending a new one.

The remainder of this paper will focus on our repre-
sentation for these coordination rules and the mecha-
nisms used to update them. We will conclude with a
brief discussion of unresolved issues and future work.

Coordination Representation

The primary vehicle for the contextual representation
of coordination is done with the domain-independent
T/EMS task modeling language (Decker & Lesser 1993)
(see Figure 1). A TEMS task structure is essentially
a goal decomposition tree, where leaf nodes represent
executable primitive methods and internal task nodes
provide a hierarchical organization. Tags indicating
how quality is percolated up the tree, along with prob-
abilistic descriptions of the executable methods allow
a scheduler to reason about the traits and tradeoffs
of a wide range of possible schedules. Interrelation-
ships shown between internal tasks, methods and re-
sources can be used to indicate a wide range of interac-
tions, such as enables, facilitates, hinders and consumes
(e.g. performing a task will enable the execution of an-
other). Interrelationships may also span task structures
between agents, and tasks and methods performed by
remote agents may be represented locally.

TAEMS task structures are typically used to suc-
cinctly encode the different mechanisms for achieving
a goal, and the constraints and tradeoffs associated
with each plan. They may also be used, however, to
describe those instances during execution where it has
been determined that coordination is to take place. To
do this, each agent will have two versions of its local
task structure: subjective and conditioned. The sub-
jective version contains what the agent believes to be
the complete view of its local execution alternatives!.
The conditioned view is a copy of the subjective which
has gone through a process of conditioning - it may
contain task, method or interrelationship deletions and
modifications. When the conditioned view is used for
plan construction, these modifications indirectly allow
the problem solver performing the conditioning process
to focus the attention of the scheduling and coordina-
tion mechanisms. These changes serve two purposes:
to prevent certain subtrees from being considered dur-
ing scheduling, and to remove interrelationships which
are not to be coordinated over. In the first case, if the
problem solver has determined that a particular action
should not be performed, it can simply remove it from
the conditioned view to prevent it from being consid-
ered. The second use is more germane to the issue at
hand - by convention any interrelationships present in
the conditioned view indicates that the interrelation-
ship should be coordinated over when the related tasks
or methods are scheduled for execution. Simply put,
the subjective view defines all the existing relationships,
while the conditioned view contains only the subset of

1We also have an objective view, inaccessible to the agent,
which defines the real execution alternatives. We can engi-
neer differences between these two views to create scenarios
where the agent’s expectations are not met.



IUnexpectedActionDuration

|UnexpectedActionQuality

IncorrectMethodRsrcUsage

|lncorrectCoordinatedDurationEstimate 'i:l F ailedDurationEstimatel

FalseDurationEstimate

UnexpectedActionCost

IncorreclMethodDurDislribution|

|IncorrectRschsageDistribution|

ActionAborted

IncorrectMethodCostDistribution |

|IncorrectMethonualDistribu[ion|

IUnecessaryRsrcCoordinationI

IUnexpectedResourceUsage

|UnexpectedTaskFrequencyl

|GoalDeadlineUnattainable

MethodFailure

InsufficientFunds

GoalDeadlineMissed

ResourceUnavailable <€

Normal Node
Triggerable Node|

NoRsrcCoordination
NonExistantResource
OverloadedResource

|UnexpectedScheduleDuration|

|Malfuncti0ningResource|

Figure 2: Example causal model structure for diagnosis in the Intelligent Home

relationships that require coordination.

Interrelationships in the conditioned view therefore
have a special meaning. A (consumes) relationship be-
tween a method and a resource would cause the usage
of that resource to be appropriately coordinated over
with other entities in the system prior to use. A hard or
soft (enables, facilitates) interrelationship arising from
a method or task represented at remote agent with a
local target would cause the local agent to contact the
remote one to coordinate their activities in a satisfac-
tory manner. A relationship indicating potential nega-
tive effects on a remote agent (disables, hinders) would
require the agent to first determine if performing the
activity is acceptable before execution. The scheduling
of a method flagged as being non-local would cause the
agent to coordinate over the timely execution of that
method, perhaps with a contract net protocol.

In this manner, the TAEMS task structure has proved
itself capable for our needs thus far in defining contex-
tual coordination rules. The underlying characteristic
which has permitted this representation is the natural
coordination independence of the TAEMS task struc-
ture. The component performing the conditioning can
determine which relationships to exploit, and represent
them concisely in the conditioned view. The sched-
uler and coordination component are then able to make
simple inferences based on the location and content of
elements in the structure to correctly determine and
perform the necessary coordination actions. It remains
to be seen how far this technique can be pursued. As
our library of possible coordination techniques grows,
or more data is needed to sufficiently quantify the char-
acteristics of a particular situation, it may be that ad-
ditional contextual information may need to be added
to our representation.

Adapting Coordination

With a reasonable representation of coordination in
hand, we must now determine how to create and up-
date the structure at runtime. As mentioned earlier,
agents will initially be seeded with preliminary coor-
dination rules. Although it is quite possible to learn
appropriate rules from scratch, as our early work on
this problem indicates (Sugawara & Lesser 1998), the
hybrid scheme using seeding and adaptation was cho-
sen both for efficiency reasons and to reduce the time
to convergence on a reasonable coordination model.

Our feedback structure is driven by a flexible, causal-
model based diagnosis engine. The causal model is a
directed, acyclic graph organizing a set of diagnosis
nodes. Figure 2 shows such a graph, constructed to
address issues brought up by faulty coordination and
action scenarios in the Intelligent Home domain; com-
plete graphs addressing broader topics can be found in
(Bazzan, Lesser, & Xuan 1998). Each node in the graph
corresponds to a particular diagnosis, with varying lev-
els of precision and complexity. As a node produces a
diagnosis, the causal model can be used to determine
what other, typically more detailed, diagnoses can be
used to further categorize the problem. Within the di-
agnosis system, the causal model then acts as a sort of
road map, allowing diagnosis to naturally progress from
easily detectable symptoms to more precise diagnostic
hypotheses as needed. Implicit in this architecture is
the existence of components within the agent capable of
reacting to such diagnoses, i.e. something which effects
the adaptive behavior at the appropriate time. This
can be done either with a single subsystem responsible
for all adaptation, or by enabling components governing
behaviors subject to diagnosis to react themselves.

An important goal of the diagnosis engine is both do-
main and coordination independence. In other words,
it is desirable for diagnosis to function correctly with-
out any inherent knowledge of the domain the agent is



working in, or the mechanisms it may potentially use to
coordinate with. It was decided to pursue coordination
independence, rather than directly integrating with ex-
isting coordination frameworks, such as GPGP (Lesser
et al. 1998), as an exercise to see how well high level
directives could be used in a general way to control any
type of coordination. We have seen that the TAMS
structure, used both as input to the diagnostics pro-
cess and to instantiate any adaptive measure taken as
a result of diagnosis, possess both these qualities. The
question, then, is weather the causal model design and
its underlying analysis techniques do as well.

There is nothing inherent to the causal model design
which would restrict its usage to a particular domain
or coordination technique, the specificity lies wholly
within the individual nodes, the faults they attempt
to diagnose and the methods used to diagnose them.
It is therefore feasible that a carefully designed causal
model, working from appropriately independent knowl-
edge or dynamically gathered domain specific informa-
tion at runtime, can satisfy our needs. Reflectively, it
is also quite possible to design nodes which have direct
knowledge about the specific type of coordination being
used, so that the model may easily be extended in this
direction if our initial attempts prove to be too general.

As an example of how a coordination indepen-
dent model could function, let us revisit the over-
coordination scenario described in the overview. The
pertinent node in the causal model shown in Figure 2
is UnnecessaryRsrcCoordination (URC), and our act-
ing agent will be the dishwasher, using the task struc-
ture shown in Figure 1. The URC node takes a long
term view of resource coordination. It begins analy-
sis when coordination is attempted over a particular
resource, which can be detected by listening to the
events produced by the coordination component in the
dishwasher?. Once coordination over a resource has
been noticed, the node will monitor whether or not
these requests are being accepted or rejected by the
other resident agents. In this case, diagnosis sees that
coordination is being performed over the hot water re-
source, whose usage is shown by the two consumes in-
terrelationships arising from the pre-rinse methods in
the task structure. Once a sufficient amount of data
has been gathered on coordination over hot water, the
node then compares the accept-request ratio to a spec-
ified acceptance threshold. The ratio is determined at
that time to be above the threshold, so a diagnosis is
produced indicating that coordination may not be nec-
essary over hot water. A confidence value is also at-
tached to the diagnosis, which is currently determined
by the relative distance between the observed accep-
tance ratio and the threshold. It is at this point that
other components can react to the diagnosis in an ap-
propriate manner. In the dishwasher, a problem solv-

*We use the JAF component-oriented agent architecture
for agent construction. More information on this can be
found in (Horling 1998).

ing component will update the conditioned view by re-
moving the interrelationships between methods and hot
water, which would in turn stop coordination over that
resource. This will produce a conditioned view where
all consumes interrelationships terminating at the hot
water resource have been removed. When this is done,
URC switches modes to listen for diagnoses arising from
the NoRsrcCoordination node, which lies at the end of
a chain of nodes which determine if a method’s poor
execution performance may be caused by a missing re-
source which has not been coordinated over. If at some
later time this node determines that a method has per-
formed incorrectly due to an insufficient level of hot
water, URC may react by reducing the confidence on
its original diagnosis. The problem solving component
could then detect this change in confidence and update
the hot water coordination rules accordingly.

This relatively simple heuristic can also be aug-
mented to support a sliding window of relevant data,
or indicate that only certain methods do not require
coordination (e.g. ones that operate at certain times,
or use less than some amount of resource) to produce
more situation-specific rules. The important point,
however, is that the diagnosis and reaction are being
performed in a domain and coordination independent
manner. The diagnosis technique knows only that a re-
source is being used, not how or why, and has only gen-
eral knowledge that the resource may be coordinated
over in some manner. Through passive monitoring of
generic coordination events and performance data for
related methods, we may also infer correct general poli-
cies for several of the other types of interrelationships
mentioned in the previous section.

An alternative method to diagnosis is to start with a
conditioned view devoid of interrelationships, and use
conventional learning techniques to determine through
exploration where interrelationships exist (Jensen et al.
1999). The fact that the learning algorithm can detect
such interrelationships would indicate that it would po-
tentially be advantageous to coordinate over them. If
such a system could also learn where interrelationships
did not exist, it might prove to be equivalent to the
diagnosis-based one described above. This technique
could provide a more accurate model of when to coor-
dinate than the heuristic based one, but might do so at
the cost of responsiveness.

Future Work

A working version of the system described above has
been implemented, primarily targeting inefficiencies
and faults in resource coordination. We plan on extend-
ing our causal model representation to better diagnose
coordination over actions and results, and explore the
effectiveness of different diagnostic techniques.

As mentioned previously, more research needs to be
done exploring how well the TAMS model can effec-
tively represent coordination context. In addition, we
also suffer from a lack of a formal model for several



other environmental characteristics used during the di-
agnosis process (i.e. expected external resource usage,
remote agent plans, etc.).
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