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Abstract

A novel approach to extracting building rooftops from high resolution Interferometric Syn-
thetic Aperture Radar (IFSAR) images is presented here. The presence of noise, missing
data and poorly understood radar artifacts in such images necessitates the use of robust
and context sensitive techniques. The algorithm presented here exploits knowledge about
the geometric structure of buildings and how this geometry interacts with the sensor.

Rooftops are extracted in two stages. In the first, a building’s back edge is located by way
of the shadow it casts in the image. Once the back edge of a building has been found, its
rooftop is extracted through region growing. The region’s growth begins at this back edge,
and proceeds along the building’s boundary. Once growth has terminated, a rectangle is
fit to the rooftop region so grown.

1 Introduction

In recent years, IFSAR-derived digital elevation maps (DEMs) have been used in site reconstruc-
tion tasks. SAR interferometry has several advantages over the traditional means of generating
DEMs, such as stereo photography or the use of laser altimeters. For instance, optical images can
only be acquired during the day and under favorable weather conditions. SAR interferometry,
on the other hand, is invariant with respect to the weather, and can be used night or day. The
IFSAR sensor can also operate at greater altitudes than most laser scanners.

There are several methods of generating IFSAR data, but we shall only consider the two-
antenna, single-pass case here. This means that a single aircraft with two antennae, separated by
some known baseline, collects all the data from the scene in a single pass. The phase difference
between the two returns (one per antenna) generated by a target on the ground is used to
determine that target’s 3D position [1]. The Kirtland Air Force Base and MOUT data sets were
collected in this manner.

[FSAR-derived DEMs are inherently noisy and often have a significant amount of data missing
from them. As an example of how inaccuracies arise in the elevation data, consider the effects of
layover on the front edge of a building. Layover occurs whenever two or more points are at the
same distance from the sensor [2]. In this case, a point P along the front edge of a building will
be at the same range as some point G on the ground (see Figure 1, left). Because of this, the
elevation measured for P will be the average of P’s actual height and the height of the ground



Figure 1: Left: Point G on the ground is at the same range as point P on the rooftop. Right:
Height map of a building. The building’s boundary is shown in white. The darker values at the
building’s front edge indicates that it is at a lower elevation than the rest of the rooftop.

point G. This phenomenon gives the front edge of a building a “crumbled” appearance (see
Figure 1, right).

Given the inaccurate and incomplete nature of IFSAR-derived DEMs, much of the previous
work done on extracting buildings from other types of DEMs - such as those derived from a
stereo pair of optical images - may not be applicable here. This would include, for instance,
systems that use parametric models to recognize buildings in the scene [3]. Such systems may
not recognize a building after it has been imaged by the IFSAR sensor. That is, the sensor
may distort a building’s height map in ways the models cannot account for. For instance, the
crumbled front edge of a building may make it difficult to fit a stored model to that building.
As such, the models employed by the system would need additional parameters to account for
the effects of layover. Given that the specific effects of layover are dependent on factors that
cannot be anticipated - such as the material properties of the surrounding terrain - this may not
be a viable solution. Model-based target detection in SAR images, however, has met with some
success [4].

As stated earlier, IFSAR-derived DEMs will have data missing from them. Points for which
no return was measured are referred to as “drop-outs”. Points are dropped-out of the IFSAR
image for several different reasons. For instance, a specular target, such as a calm body of water
or piece of metal siding, will not have a return measured for it if its surface normal does not
point towards the sensor. Point are also dropped-out when the slant range image is converted
into a grid of elevation values. It is this orthorectification process that creates “layover holes”,
which can be found near the front edge of a building [5]. A point can also be dropped-out of



the image because of an occluding object. For instance, a building’s rooftop will occlude the
terrain behind it. Because of this, a building will cast a shadow in the image (see Figure 2,
right). These shadows manifest themselves as large regions of drop-outs in the image, and can
be used to detect the presence of buildings in the scene.

This paper presents an algorithm for extracting buildings from an IFSAR DEM. This al-
gorithm operates in two stages. First, the back edges of all of the buildings in the scene are
located. These edges are identifiable because of the shadows they cast in the image (see Figure
2). Specifically, points that belong to the back edge of a building can be identified by their prox-
imity to a large region of drop-outs. Once the back edge of a building has been found, its rooftop
is extracted through region growing. The region’s growth begins at this back edge, and proceeds
along the building’s boundary. A point is added to the growing region only if it belongs to the
building’s rooftop. This determination is made by comparing the point’s height to a threshold
found in an elevation histogram of its neighborhood (ie. through adaptive thresholding). If the
point’s elevation exceeds that threshold, it is considered to be part of the rooftop and is added
to the growing region. Growth terminates once the region encompasses the building’s entire
rooftop. This algorithm is only suitable for use on buildings with rectilinear boundaries.

Section 2 of this paper details the back edge detection process. Section 3 describes how a
building’s rooftop is extracted once its back edge is found. The results of applying this algorithm
to the Kirtland AFB and MOUT scenes are shown in Section 4.

2 Back Edge Detection

2.1 Properties of a Back Edge

The back edges of a building are along those walls facing away from the sensor. The rooftop of
the building occludes the ground adjacent to a back edge from the sensor, causing no return to be
measured for that portion of the surrounding terrain. Therefore, points belonging to a building’s
back edge can be identified by the shadows they cast in the image (see Figure 2). These shadows
extend outward from the back edge in the direction of the sensor, where the direction of the
sensor is the 2D projection of the axis perpendicular to the flight path (see Figure 2, left). Since
the occluded area is part of the terrain surrounding the building, we make the assumption that
the shadows cast by a back edge will terminate at some point on the ground. This assumption
is reasonable in contexts where the buildings are not too closely spaced or surrounded by trees
and other obstructions. Thus, a back edgel (which is part of the building’s rooftop) will have an
elevation greater than that of the point at the terminating end of its shadow (which is part of
the ground). This information allows the formulation of two different constraints that any point
E must satisfy before being labeled aback edgel :
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Figure 2: Geometry of SAR data acquisition. The shadow cast by a building’s back edge extends
from back edgel E to a point G belonging to the surrounding terrain.

1. E must lie on the border between a rooftop and the shadow it casts.

2. There must be a shadow extending from FE in the direction of the sensor that terminates
at some point G belonging to the surrounding terrain. £ must have an elevation greater
than that of the surrounding terrain as represented by the point G. The height disparity
dH between E and G must be greater than or equal to the minimum height expected of a
building (taken here as 3.5 meters).

2.2 Characterizing Points on a Building’s Back Edge

The process of finding back edgels begins by identifying those points P in the image that satisfy
the first constraint. Because it is not known a priori which points belong to a building’s rooftop,
this condition must be approximated. For instance, we could require that such a point border a
shadowed region (ie. a region in the image for which no returns have been measured). All back
edgels will have this property because back edges cast shadows in the image.

A more discriminating approximation requires that one must be able to draw a line through
P that divides its local neighborhood into an occluded side and a rooftop side : all points to one
side of the line (the occluded side) should be drop-outs, while all points to the other side (the
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Figure 3: Binary masks at varying orientations. These masks are used to determine if a point
borders a shadowed region. The hypothesized border element separating shadow from rooftop
is shown in grey.

rooftop side) should have a return measured for them. This dividing line represents a segment
of the hypothetical back edge to which P belongs. If P is indeed a back edgel, then, in theory,
such a line must exist : it runs between the shadow cast by the building (ie. the occluded side
of the dividing line) and the building itself (the rooftop side of the dividing line). Due to the
influence of noise, however, the conditions stated above - namely that only dropouts can lie to
one side of the edge and only visible points to the other - must be relaxed.

Points that satisfy the above constraint, henceforth known as shadow edges, can be identified
by applying a series of binary masks to every point in the image for which a return was measured.
Each mask M is a disc with a radius of k pixels (k = 4 here) and represents the neighborhood of
a point on or near a shadow/rooftop border. The dark side of the mask represents the shadow
cast by the building’s back edge, while the bright side represents the building’s rooftop near that
back edge. Examples of these masks can found in Figure 3.

The orientation of a mask points into the occluded, or shadowed, side of the mask. The
dividing line (which passes through the mask’s center) has an orientation perpendicular to that
of the mask’s. For example, a binary mask with an orientation of zero has a dividing line that
passes through the mask’s origin at an angle of 90 degrees. This dividing line represents the
hypothetical back edge that passes through the mask’s center. All points to the right of that
line belong to the occluded side of the mask, while all points to the left of that line belong to
the visible, or rooftop, side of the mask (see Figure 3). The masks have orientations from 0 to
27, spaced at 10 degree intervals. This gives us a total of 36 different masks.

Each time a mask is applied to a point P in the image, a disc-shaped window of pixels (with
a radius of 4) centered at that point is compared to the mask to generate a match score. One
way to compute a match score is to cross-correlate the mask with P’s neighborhood. However,
this metric is inappropriate given that the mask is binary (ie. shadow or rooftop). A better
approach is to count the number of mismatches S¥; between the mask M and P’s neighborhood.



Mismatches occur whenever :

e there is a return for a point in the building’s shadow (ie. on the dark side of the mask),
as occluded points cannot register a return to the sensor, or

e a point falling into the region reserved for the building’s rooftop (ie. the bright side of the
mask) is a drop-out, since presumably the point is not occluded and should therefore have
returned the emitted signal

When determining whether or not a point P is a shadow edge, a set S* = (S, SF, ..., SL) of
36 such scores are generated, one for each mask in the set of all masks (M, ..., Mss).

Note that the logic expressed in the second condition is somewhat flawed since there are other
situations in which a target on the ground will not produce a return (see the Introduction). These
masks instead represent the neighborhood of a border point under ideal conditions (ie. no noise
or other distortions).

Figure 4a shows an IFSAR image of one of the buildings in the Kirtland scene. When the
binary mask M, (Figure 4b) is applied to this image, those points along the building’s right-
most edge received the best match scores (Figure 4d). This is because the edge bordered a
large region of shadowed pixels (ie. drop-outs) and had an orientation perpendicular to that of
the mask’s. However, when the mask M7y (Figure 4c¢) was applied to the same image, those
points along the building’s bottom-most edge received the best match scores (Figure 4e). The
two masks generated significantly different responses because of their different orientations: M,
detects vertical back edges while M,y detects horizontal back edges.

2.3 Locating Shadow Edges in the Image

The match scores produced by the masks can be used to determine if a point P and its neigh-
borhood (defined earlier as a disc with a radius of 4 pixels) are consistent with the hypothesis
that they belong to a shadow/rooftop border. Specifically, they can be used to determine if
P is consistent with the hypothesis that a building back edge Ejy passes through it, where the
hypothetical back edge is characterized by a single scalar 6 (given in radians). The orientation
of the hypothesized back edge is perpendicular to €, while # itself points into the edge’s shadow.

The determination as to whether or not P is consistent with the hypothesis that a back edge
similar to Ey passes through it is made by comparing the set of match scores S¥ observed for P
to those one would expect to observe for a point along the hypothesized back edge Ey. That is,
the set of match scores observed for P are compared to the set of match scores S¥ one would
expect to observe for P under the assumption that Ejy passes through P. If the observed scores
are similar to the expected scores, then it is plausible that P belongs to a back edge similar to
Ey.



Figure 4: A) A building’s height map. B) Binary mask My7. C) Binary mask M,. D) Match
scores resulting from the application of Myzy. E) Match scores resulting from the application
of My. A point’s grey scale value is inversely proportional to its match score. As such, points
receiving the best match scores will be the brightest in the D and E.

Computing the Expected Match Scores S”

Ideally, the back edge Ejy will neatly bisect P’s local neighborhood into an occluded side (ie.
shadow) and a visible side (ie. rooftop). That is, all of the points to one side of this edge will lie
in the building’s shadow. There will therefore be no returns measured for these points. Points
on the other side of this edge, however, will belong to the building’s rooftop and, as such, be in
full view of the sensor. These points will therefore have returns measured for them. It is clear,
then, that P’s neighborhood will be identical to the binary mask M, if Ey does indeed exist.
As such, the set of match scores S¥ expected for a point along a back edge such as Fjy can be
computed by comparing each of 36 masks to My. The match score produced by the application
of one mask My to another mask My is given by the following equation:

!By this we mean that there are no mismatches between My and P’s neighborhood
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where r is the radius of the masks (here, r is 4) and A#f is the difference between the mask’s orien-
tation ¢ and 6. This equation will give us the set of expected match scores S¥ = (S¥, SF ... SE)
for a point along the hypothetical back edge Ej.

Note that the set of expected match scores were computed under the assumption that there
was no noise or other distortions present in the image (i.e. ST is the set of scores we would
observe under ideal circumstances). This is quite obviously not the case in a real IFSAR image.
In using S% as our basis of comparison, the issue is whether or not the observed scores are good
approximations of the ideal scores. If the approximation is close enough, it is plausible that the
observed scores are the ideal scores permuted by noise.

Comparing the Observed Scores to the Expected Scores

The set of match scores S¥ derived from the image are compared to the set of ideal match scores
S¥ using the chi-squared error for binned distributions :

(2)

where N; is the number of events observed in bin ¢ and n; is the number of events expected
to be in bin ¢. In this case, each binary mask My has a corresponding bin, and events occur
whenever there is a mismatch between A/, and the neighborhood to which it was applied. (ie
the bin count for a mask is equal to its match score - see Section 2.2). The observed matches
scores Sf are then compared to the expected match scores Sf as follows :

¢ =y ek ®)

¢=0 ¢

A chi-squared distribution with 36 degrees of freedom is used to compute the likelihood p
that this large of an error could be generated by chance. If p is greater than 0.05, the two sets
are considered to match.



Procedure for Finding Shadow Edges

To find back edges at all possible orientations, our set of back edge hypotheses must have
orientations # that span the range 0° to 360°. This range is broken into ten degree intervals
and each interval is represented by a different back edge hypothesis Ey. This yields a set H
of 36 different back edge hypotheses Ey, F1g, Fog, - . ., F340, F350. However, due to constraints
imposed by the geometry of the sensor, only building edges at certain orientations can be back
edges. Thus, we do not need to test all 36 hypotheses: if a building edge with an orientation of 0
could not possibly be a back edge, then the hypothesis Ey can be removed from H. Specifically,
any hypothesis Ey whose orientation # faces towards the sensor can be removed from H. This
is because building edges with walls facing the sensor do not cast shadows and are therefore
not back edges. For instance, if the the sensor direction is vector [1,0]7, then H would have
hypotheses Fy, Eiq , ..., Egg and Earg, ..., F350. This constraint cuts the number of back edge
hypotheses we must try in half.

The overall procedure for determining whether or not a point is a shadow edge is as follows :

1. Apply the masks to P to generate the set of observed match scores ST.

2. Select a back edge hypothesis Fy from H that has not already been tried. If there are none
left, terminate.

3. Compute the chi-squared error between the observed match scores S¥ and the match scores
SE expected for a point on our hypothetical back edge Ejy using Equation 4.

4. Tf the chi-squared error yields a p value greater than 0.05, label P as a shadow edge and
terminate. Otherwise, return to step 2.

The chi-squared error of step 3 is computed as follows :

55 (57— 1A0] 1)’
(4)
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where A# is the difference between the mask M;’s orientation and 6.

2.4 Confirming Shadow Edges and Grouping them into Back Edges

We next determine which shadow edges (Figure 5, leftmost) belong to the back edge of a build-
ing’s boundary as opposed to, say, a layover hole. Such shadow edges can be identified by their
compliance with the two constraints given in Section 2.1. If a shadow edge F is indeed a back



F::

A: Shadow Edges B: Verified Back Edgels C: Final Back Edges

Figure 5: Stages of the Back Edge detection process.

edgel, then, according to the second constraint, £ must cast a shadow in the direction of the
radar that terminates at some point G' on the ground. G is found by moving a small window
along a path that begins with E and follows the direction of the sensor. The search terminates
when the majority of the pixels within the window have measured returns (i.e. when the window
has moved outside of the shadow cast by the building). To overcome the noise inherent in a
SAR derived DEM, the median elevation value of the points in that window is selected as the
elevation for G. The elevation value for E is selected in a similar fashion. If the candidate E
has an elevation sufficiently greater than that of GG, the candidate is selected as belonging to a
building’s back edge. The difference in elevation between E and G must be greater than (or
equal to) the minimum height expected of a building in the scene. Here, we expect the height
of a building to be at least 3.5 meters. The shadow edges produced earlier (Figure 5, leftmost)
will serve as our back edge candidates. These are then verified using the elevation constraint
described above (Figure 5, second from the left). Those shadow edges that were not upgraded to
back edgels (ie. those shadow edges that could not satisfy the second constraint given in Section
2.1) are stored for later use.

Next, the back edgels are grouped into connected components that represent back edges.
This is done in two stages. In the first stage, the system interpolates between verified back
edgels. Interpolation occurs along those shadow edges that have met the first criterion but not
the second (ie. those shadow edges that were not promoted to back edgels in the prior step -
see above). Such edges are promoted if and only if they form a line with back edgels detected
in the previous step (shown in Figure 5, second from the left). After interpolation has occurred,
a morphological closing is used to bridge small gaps between back edgels. A disc with a radius
of two pixels is used as the structuring element in the closing. The resulting back edge regions
are shown in the rightmost panel of Figure 5.

Finally, we ascertain the orientation of the back edge by fitting a line to it. This line is fit
using a Hough transform. The accumulator array used in the transform has two axes, R and 6:



Figure 6: Extracting the remainder of the building’s boundary via region growing. The rooftop
region grown so far is shown in black, while the back edge (Figure 5, far right) from whence it
began is shown in white. The region’s growth progresses panel A to panel E.

R is the perpendicular distance from the line to the origin and 6 is the angle that perpendicular
ray makes with the x-axis. As such, the line corresponding to the accumulator cell (7, ¢) is given
by the following equation:

xcos(p) + ysin(¢) =7

f is broken into ten degree intervals, while R is broken into 5 pixel intervals. The orientation of
a building’s back edge is used when fitting a rectangle to that building’s rooftop.

3 Boundary Detection Through Region Growing

3.1 Overall Strategy

After the building’s back edge has been detected, the remainder of its boundary is extracted
by identifying those points on its rooftop that are near or on one of its bounding edges. This
portion of the building’s rooftop is located by using a region growing technique classifies points
as belonging to either the ground or the rooftop based on an elevation histogram of their local
neighborhood. Points that have been labeled as rooftop are added to the growing region only
if they are adjacent to points labeled as ground. In this way, the region’s growth is restricted
to proceed along the building’s boundary (see Figure 6). The region growing process is seeded
using the back edges extracted earlier.

As mentioned above, classification decisions are based on a threshold found in an elevation
histogram of the neighborhood surrounding a point. Since the region’s growth is restricted to
points near an edge of the building, these neighborhoods will contain points from both the
rooftop and the surrounding terrain. Therefore, an elevation histogram of such a neighborhood



should have fairly distinguishable modes corresponding to the rooftop and the ground, allowing
a suitable threshold to be found between these modes (see Section 3.2). Note that it is possible
for other structures adjacent to building to be included in the rooftop region if these structures
are also elevated above the local terrain (e.g. trees).

The region growing process is fairly straight-forward. A portion of the building’s back edge
serves as our initial rooftop region. It does not matter where this segment is located on the back
edge, so long as it is 8-connected. These points are then labeled as rooftop and added to the
list of available seeds, which is initially empty. Next, the points at the terminating ends of the
shadows cast by these back edgels are labeled as ground (ie. the ground points G derived in
Sections 2.1 and 2.4). The rest image of the image remains unclassified.

At each iteration, a point is removed from the list of seeds. Unclassified points within an
adaptively sized window centered at this seed will be assigned labels (either rooftop or ground)
during this iteration. This window will be made large enough to include several points that have
already been labeled as ground. Once the size of the window has been determined, an elevation
histogram of the unclassified points within the window are taken and a threshold is selected.
This threshold will be used to classify the unlabeled points as either ground or rooftop. The
mean elevation of the points within this window that have already been classified as ground
will be used to guide the selection of this threshold (see the next paragraph). Points that have
been labeled as rooftop are then added to the list of seeds provided they are adjacent to points
classified as ground. This process repeats until no suitable seed points remain.

3.2 Threshold Selection Using A Priori Classifications

Since the terrain adjacent to a building is typically flat (at least locally), points belonging to the
ground within the same local neighborhood should have similar The points within the classifi-
cation window that have already been labeled as ground can therefore provide a rough estimate
of the elevation of any ground point within that window, including those yet to be labeled as
ground. As such, the mean elevation i, of those points already labeled as ground can aid us
in selecting an appropriate threshold ¢. Specifically, the mean elevation p; of those unclassified
points that would be labeled as ground by a particular threshold ¢ should be approximately the
same as the mean elevation pi,.ior of those points already labeled as ground. Note that the two
means [t and [ty Deed not be identical. This will allow for a small gradient in the elevation
of the ground plane.

After the window size has been selected, we generate the elevation histogram and compute
the mean elevation fi,,,r of those points within the window that have already been labeled as
ground. Next, any local minima ¢ within the elevation histogram are identified and added to the
set of all such minima S,,;,ima. These local minima will serve as our set of candidate thresholds.
Finally, for each t in S,,inima, We then identify those unclassified points with elevations less than
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Figure 7: A local elevation histogram used in determining the new classification threshold.

t and compute their mean elevation ;. That is, we compute the mean elevation of the points
that would be labeled as ground by our candidate threshold . Once this has been done, our
threshold is the elevation ¢ in Synime that minimizes the absolute value |pprior — pi|. After the
threshold has been selected, classification is performed. Note that in the early iterations of t he
process, the ground points G used to validate the back edgels will provide our estimates of the
ground’s elevation.

An example can be seen in Figure 7. There are two local minima in this histogram, indicated
in black. The first, or minima A, is at 102.672 meters, and the second, or minima B, is at 104.683
meters. The mean elevation i, of the points already classified as ground is 102.199 meters.
The mean ground elevation if minima A was used as our threshold would be 102 meters, only
0.199 meters away from our fi,ior 0f 102.199 m. The mean ground elevation if minima B was
used as our threshold would be 102.96 meters, which is 0.761 meters away from our ppy;,,. Thus,
a threshold of 102.762m is selected.

4 Results

Boundaries were established for each building found in the image by placing a bounding box
around the rooftop region grown for that building. These bounding rectangles were at an ori-
entation equal to that of the building’s back edge. The resultant fits for selected areas of the
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Figure 8: Buildings extracted from the MOUT DEM. Buildings A, B and C were not detected.

MOUT and Kirtland scenes are shown in Figures 8 and 9. Eight of the eleven buildings in the
Kirtland scene were detected along with one false positive. Twelve of the fifteen buildings in the
MOUT scene were detected. There were no false positives in the MOUT scene.

Building A and B in the MOUT site were missed because the shadows they cast extended to
the front edge of another building. As such, the shadow cast by any point on either buildings’
back edge will not terminate on the ground. Instead, it will terminate at a point on another
building’s rooftop. Because the shadows cast by A and B both terminate on the rooftop of a
taller building, any point E on either buildings’ back edge will have an elevation less than that
of the point G found at the terminating end of its shadow. Therefore, none of the points on
either buildings’ back edge will meet the second criterion required of a back edgel (see Section
2.1). As such, neither A nor B’s back edge was detected.

Buildings A, B and C were not detected because the majority of the points corresponding to
those buildings were dropped-out of the IFSAR image. That is, no returns were measured for
most of the points corresponding to buildings A, B and C. As such, the height of their rooftops
could not be determined, making it impossible to detect their back edges. Figure 10 shows an
optical image of the buildings A, B and C. Those points that were dropped-out of the IFSAR
image are indicated in black. It is evident from this figure that buildings A, B and C were
simply not detected by the IFSAR sensor. The only false positive of both data sets occurred at
site D of the Kirtland scene, and is shown in Figure 9. From the optical image of that scene,
it appears that D may be some sort of construction site. If this is the case, then it is possible
that a foundation erected at that site cast a shadow in the IFSAR image. This would lead to
the detection of a back edge at site D. This back edge would then serve as the seed of the false
positive.
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Figure 9: Buildings extracted from the Kirtland AFB scene. Buildings A, B and C were not
detected. Building D was a false positive.

The building hypotheses generated for the MOUT site (Figure 11, left) were compared to
the set of reference polygons shown in Figure 11. These polygons were extracted by hand and
represent the true boundaries of the buildings in the scene. A rooftop hypothesis extracted form
the IFSAR image is only valid to the extent that it overlaps one of these polygons. Two metrics
were used to evaluate the boundaries extracted by the system:

TP
D ) = -
etection Rate TP+ N

FP
Fualse Al Rate = ———
alse Alarm Rate TP+ FP

where TP is the total number of true positives, F'P is the total number of false positives and
F'N is the total number of false negatives.
A point inside the bounding box established for a building (Figure 11, left) is considered
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Figure 10: Buildings dropped-out of the Kirtland DEM.

System Results Reference

Figure 11: Left: Boundaries extracted by the system. Right: Reference polygons hand-extracted
from an orthorectified optical image.

to be a true positive if it is also within that building’s reference polygon (Figure 11, right).
Otherwise, that point is labeled as a false positive. A point is a false negative if it is interior
to the reference polygon but outside of the boundary extracted by the system. Table 1 shows
the false alarm and detection rates for the buildings found by the system. Those buildings that
went undetected by the system were not evaluated in this fashion.

References

[1] F.W. Leberl. Radargrammetric Image Processing, p. 472 - 473, Artech House, 1990.

2] F.W. Leberl. Radargrammetric Image Processing, p. 84 - 88, Artech House, 1990.



3]

Building | TP | FP | FN | Detection Rate | False Alarm Rate

0 2229 | 218 | 344 0.86 0.09
1 1130 | 348 | 48 0.95 0.23
2 1187 | 877 | 455 0.72 0.42
3 374 44 | 214 0.63 0.1
4 3036 | 1086 | 84 0.97 0.32
5 1145 | 115 | 698 0.62 0.09
6 708 0 | 426 0.62 0
7 480 | 115 | 174 0.74 0.19
8 1191 | 459 | O 1.0 0.28
9 467 0 |341 0.58 0
10 295 0 |139 0.68 0
11 1310 | 226 | 458 0.74 0.15

Mean 0.73 0.16

Table 1: Detection and False Alarm rates for the MOUT site.

U. Weidner, W. Forstner. Towards Automatic Building Extraction from High Resolution
Digital Elevation Models. ISPRS Journal, p. 38 - 49, 1995.

R. Chellappa, S. Kuttikkad, R. Meth, P. Burlina, K. Ome, C. Shekkar. Model Supported
Exploitation of SAR Imagery. Proc. ARPA Image Understanding Workshop, p. 389-408,
1996.

Vexcel Corporation. Building Extraction from IFSAR Data. Private Communication, 1998.



