
Approximation Via Value Unification

Paul E. Utgoff
David J. Stracuzzi

Technical Report 99-19
January 28, 1999

Department of Computer Science
University of Massachusetts

Amherst, MA 01003

Telephone: (413) 545-4843
Net: utgoff@cs.umass.edu

Approximation Via Value Unification i

Contents

1 Introduction 1

2 Regression Tree Induction as Approximation 1

3 Bias of Error Reduction 1

4 Value Unification 2

5 Comparison of Biases in Regression Tree Induction 3

6 Feature Construction Guided by Value Unification 4
6.1 Constructing a Feature . 5
6.2 Finding the Feature’s Coefficient . 7
6.3 The AVVU Algorithm . 7
6.4 Discussion . 8

7 Summary 9

Approximation Via Value Unification 1

Abstract
Numerical function approximation over a Boolean domain is a classical problem with wide ap-

plication to data modeling tasks and various forms of learning. A great many function approxima-
tion algorithms have been devised over the years. Because the goal is to produce an approximating
function that has low expected error, algorithms are typically guided by error reduction. This guid-
ing force, to reduce error, can bias the algorithm in a detrimental manner. We illustrate this bias,
and then propose an alternative approach based on a notion of value unification. We compare these
two biases in the realm of regression tree induction, and then present a new function approximation
algorithm AVVU based on value unification.

1 Introduction
Suppose that we are given a batch of N labeled training points, each of the form b f b .

The point b is represented as a vector of d Boolean variables. The real value f b is the target
value for point b, which means that it is the ideal value for the approximator to return, noise in
the measurement of f notwithstanding. Our problem is to find a good approximation f̂ such that
the mean-squared error 1N !

N
j 1 f̂ b j f b j 2 is minimized. Furthermore, one desires an f̂ that

has low error for any set of b f b points that could be drawn from the same distribution as the
training points.

2 Regression Tree Induction as Approximation
One method of function approximation is to form a tree-structured regression, known as a re-

gression tree (Breiman, Friedman, Olshen & Stone, 1984). The domain b is partitioned recursively
into a finite set of blocks, and for each block a constant value, e.g. the mean, is fixed as the value
of the approximation f̂ for every point in that block. The partition represents a piece-wise constant
function.

How is the partition determined? A common approach is to split any block in which the vari-
ance of the f values therein is above some predetermined threshold. Variance is equivalent to the
mean squared error when approximating by the mean of the sample, so this is the same as minimiz-
ing error. A split is accomplished by enumerating the possible tests, and selecting a test for which
the average variance in the resulting blocks would be minimized. For our purposes, each Boolean
variable bi can serve as a binary test. Let L be the instances in one block, and R be the instances
in the other block. Then the assessment of the test is L "2L R "2R

L R . A test (Boolean variable) with
the lowest value of this metric is selected and installed at a decision node in the regression tree,
and each of the two resulting blocks is partitioned recursively until each block is of sufficiently
low error (variance). In the extreme, every block will contain a single training point, but hopefully
there will be good generalization, producing fuller blocks and a smaller tree.

3 Bias of Error Reduction
Consider a simple approximation task for instances of two Boolean variables. Suppose that

the target function is f b 3b0 11b1, and that we have been given all four possible instances
for training. Because f does not include any second degree terms, these two Boolean variables

Approximation Via Value Unification 2

make independent contributions to the value of the function. We should not expect either variable
to be preferred for the purpose of building a regression tree. However, a regression tree inducer
guided by error (variance) reduction will prefer to test b1 at the root. As shown in Figure 1, testing
b0 at the root groups 14 with 3 in one block, and 11 with 0 in the other. Testing b1 at the root
groups 14 with 11 in one block, and 3 with 0 in the other, which produces lower expected error.
So, although we would rather that the test selection metric not be biased in this case, we see that it
is nevertheless.

t

t

14

f

3

b1 = t

f

t

11

f

0

b1 = t

b0 = t

t

t

14

f

11

b0 = t

f

t

3

f

0

b0 = t

b1 = t

(a) (b)

Figure 1. The Two Possible Regression Trees

4 Value Unification
Let us examine this same simple function approximation problem from a different point of

view. Figure 2(a) depicts the target function f as a Venn diagram, where each value is the error
with respect to f̂ , which is initially the 0 function. A set contains those instances for which the
corresponding Boolean variable is true. Suppose that we could infer the 3b0 component of the
target function. Then the error function would change to that of Figure 2(b). The point in the b0
set but not the b1 set now has error 0, and the error for the point in the b0 set and the b1 set now
has error 11. Originally, there were four different values, but now there are two. A unification
of values has occured, making the remaining approximation problem simpler. Notice that if we
had instead first inferred the 11b1 component of the target function, a different but equally useful
unification would have occurred.

b0 b1

-11

0

-3
-14

b0 b1

-11

0

-110

(a) (b)

Figure 2. Unification of Values

These observations suggest that an induction process based on value unification is possible, and
that it would be biased differently from error reduction. The variance reduction bias first groups
instances by target value, and then finds a test to facilitate that desired grouping. The unification
bias seeks to account for the differences in instance values with respect to each other, instead of
with respect to the target values. Of course the final approximator has the same goal in each case,
to reduce error, but the priority for grouping instances is different.

Approximation Via Value Unification 3

We shall show first how a bias based on value unification can be manifested in a regression tree
inducer. Afterward, we present a new algorithm AVVU of a different kind.

5 Comparison of Biases in Regression Tree Induction
For regression tree induction we do not need to unify any values, but we can be guided by the

same goal. By substituting a new test selection metric into the same splitting mechanism described
above, we can reduce the total number of distinct values observed. Let v T be the number of
distinct f b values in T, where T is a set of training points. Define the test selection metric to
be v L v R , where as before L and R are the two blocks of the partition. A test is good to
the extent that it separates instances into blocks with small value sets. Note that for regression tree
induction, it is not necessary to unify the values of the blocks since they are handled independently,
but the motivation is the same.

#vars #features unify tree error tree iti c4.5
10 10 151.77 165.71 145.88 290.68
10 20 557.82 626.68 553.43 1105.27
15 10 608.60 654.90 519.76 968.07
20 10 1310.05 1497.64 1167.71 1833.42
25 10 2204.29 2617.21 2040.40 2696.58

Table 1. Tree Induction Measurements

How do these two test selection metrics compare in practice? One question is which algorithm
builds smaller trees? Table 1 shows a variety of measurements that give some indication. For
each combination of number of binary variables and number of features in the target function, 100
artificial problems were given to unify tree (induce regression tree using unification metric) and
error tree (induce regression tree using expected error metric). The average number of leaves for
each set of 100 problems is shown in the table. Apparently the unify tree algorithm builds smaller
trees than error tree.

This leads to a second question, whether one might reasonably employ a decision tree inducer
that treats the target values of the instances as tokens, not as numerical values. The same problem
sets were given to each of ITI (Utgoff, Berkman & Clouse, 1997) and C4.5 (Quinlan, 1993). The
tree sizes for unify tree and ITI are quite similar, with an apparent edge to ITI. We shall leave
implications for tree-structured induction to another discussion.

It is instructive to examine two regression trees for a single small problem. Figure 3 shows a
typical example in which partitioning based on error reduction does a poor job of grouping values,
and hence capturing the regularity in the data. Notice that error tree sends four of six values down
the left branch and another four of six values to the right, causing much duplication of subproblems
and replication of subtrees (Pagallo & Haussler, 1990). Figure 4 shows the tree built by unify tree
for the same problem. Two of the six possible values are sent down the left branch, and the
remaining four are sent down the right branch, eliminating duplication in the subproblems.

Approximation Via Value Unification 4

t

t

t

0.00

f

t

0.00

f

t

0.00

f

40.49

b5 = t

b8 = t

b6 = t

f

t

-64.85

f

t

-64.85

f

t

-64.85

f

-24.36

b6 = t

b8 = t

b5 = t

b4 = t

f

t

t

0.00

f

t

0.00

f

t

0.00

f

40.49

b5 = t

b8 = t

b6 = t

f

t

34.16

f

t

34.16

f

t

34.16

f

74.65

b5 = t

b8 = t

b6 = t

b4 = t

b2 = t

Figure 3. Regression Tree Using Variance Metric

t

t

0.00

f

t

0.00

f

t

0.00

f

40.49

b5 = t

b8 = t

b6 = t

f

t

t

-64.85

f

t

-64.85

f

t

-64.85

f

-24.36

b6 = t

b8 = t

b5 = t

f

t

34.16

f

t

34.16

f

t

34.16

f

74.65

b5 = t

b8 = t

b6 = t

b2 = t

b4 = t

Figure 4. Regression Tree Using Unification Metric

6 Feature Construction Guided by Value Unification
We present an alternative representation and induction algorithm for finding an approximation

f̂ of target function f . The algorithm AVVU is guided primarily by value unification, and secon-
darily by error reduction. The representation is much more compact than that of a tree, due to the
use of overlapping features.

The representation of f̂ is a linear combination of a coefficient vectorW and a Boolean feature
vector C defined over b. The overall approach is to find each term wici one at a time using best-
first search. When all the terms have been found, the process is complete. To find each term, the
algorithm first finds the ci feature (set cover), and then its coefficient wi. We describe these latter
two steps first, and then return to a statement of the AVVU algorithm.

Approximation Via Value Unification 5

6.1 Constructing a Feature

Each feature ci is a Boolean set cover, represented by a Boolean mask with the same number of
components as b. A true value in the mask, depicted as ‘#’ in the discussion below, matches either
true ‘1’ or false ‘0’ in the corresponding component of b. A false value in the mask, depicted as
‘0’, matches only a false ‘0’ in the corresponding component of b. A feature cmatches an instance
b if and only if every component of c matches every component of b.

To find the next ci, the AVVU algorithm conducts a best-first search that is designed to construct
a feature that will do the best job of unifying values. This is done indirectly by finding a c that
eliminates overlap in the values of those training instances that are covered by ci and those that are
not. Overlap is measured as the number of pairs of instances of identical adjusted value that can
be drawn without replacement, one instance from the covered set and one instance from the not
covered set. Lower overlap is better. Indeed, the terminating condition of the best-first search is to
have achieved 0 overlap.

Stated another way, we would like to unify the values of the training instances. By identifying
a particular ci, we give ourselves the ability to adjust the values of just those instances covered
by ci, without touching those that do not match. Associating a coefficient wi with the feature ci
specifies the adjustment. We can identify a ci that will best facilitate the unification process, and
then determine the adjustment needed to maximize the unification of values.

Here is a trace of the AVVU algorithm for a small approximation task in which there are d 8
Boolean variables, giving 2d 256 possible points b. The target function consists of the two
indicated features, making four possible f values. The 4000 training instances drawn at random
contain many duplicates, and it is likely that they cover all 256 possibilities. One can see that
candidate features that are more like a target feature have lower overlap. One way of seeing this is
to note that a feature in the target f has the effect of adding some constant amount to the value of
an instance it covers. This additive step makes a distinct set of values different from those when
the value is not added. This is an assumption of the algorithm. By finding a most general feature
that achieves no overlap, one has found a feature of the target function.
Target:
-84.53 00##00##
-53.16 ###000##

Expand ########
Create 0#######, overlap 348
Create #0######, overlap 339
Create ##0#####, overlap 365
Create ###0####, overlap 266
Create ####0###, overlap 279
Create #####0##, overlap 255 <--- best
Create ######0#, overlap 390
Create #######0, overlap 397

Expand #####0##
Create 0####0##, overlap 136
Create #0###0##, overlap 139

Approximation Via Value Unification 6

Create ##0##0##, overlap 168
Create ###0#0##, overlap 78
Create ####00##, overlap 73 <--- best
Create #####00#, overlap 182
Create #####0#0, overlap 188

Expand ####00##
Create 0###00##, overlap 43
Create #0##00##, overlap 59
Create ##0#00##, overlap 93
Create ###000##, overlap 0 <--- solution
Create ####000#, overlap 92
Create ####00#0, overlap 90

Have feature, assign weight -53.16
-53.16 ###000##

Expand ########
Create 0#######, overlap 348
Create #0######, overlap 339
Create ##0#####, overlap 370
Create ###0####, overlap 368
Create ####0###, overlap 354
Create #####0##, overlap 330 <--- best
Create ######0#, overlap 394
Create #######0, overlap 401

Expand #####0##
Create 0####0##, overlap 136 <--- best
Create #0###0##, overlap 139
Create ##0##0##, overlap 173
Create ###0#0##, overlap 180
Create ####00##, overlap 148
Create #####00#, overlap 186
Create #####0#0, overlap 192

Expand 0####0##
Create 00###0##, overlap 44
Create 0#0##0##, overlap 80
Create 0##0#0##, overlap 81
Create 0###00##, overlap 43 <--- best
Create 0####00#, overlap 87
Create 0####0#0, overlap 103

Expand 0###00##
Create 00##00##, overlap 0 <--- solution
Create 0#0#00##, overlap 46

Approximation Via Value Unification 7

Create 0##000##, overlap 44
Create 0###000#, overlap 48
Create 0###00#0, overlap 50

Have feature, assign weight -84.53
-84.53 00##00##

Approximation:
-84.53 00##00##
-53.16 ###000##

6.2 Finding the Feature’s Coefficient

Suppose that the AVVU algorithm has found a feature ci as described above. How can a weight
be determined for it? Only a finite set of possible weights need be considered - those that can unify
values of the instances covered by the ci with those not covered. Any other weights would not
accomplish any value unification, which would defeat the entire enterprise. The possible weights
can be enumerated by considering each f j fi, where the f j are taken from the instances not
covered, and the fi are taken from the instances covered. One can consider the possible differences
in all possible pairs of values from the two value sets. For each candidate weight, evaluate its
worth by computing the size of the value set of all the training instances if the feature with that
weight were appended to the approximation. The weight that produces the smallest sized value set
(greatest unification) is considered best, and is adopted.

Having implemented the above, we then noticed that in practice the weight can be determined
much more efficiently by taking the negative of the value that occurs most frequently in the set
of instances covered by the newly constructed feature. This has the effect of unifying the largest
number of values with 0, which tends to reduce overlap. We are still studying why this shortcut is
so reliable.

Value unification is employed to group sets of instances in order to eliminate error. Because it
is a means to an end, it can be confusing to draw a strong distinction. A natural question is how
value unification manages to eliminate the error. This is because some of the training instances
evaluate to 0 due to no target feature matching such an instance. When building a cover, it would
be counterproductive to match such an instance, because it already evaluates correctly. Hence,
there is a group of 0-error instances from the outset. Adjusting covered instances to have adjusted
value 0 reduces overlap.

6.3 The AVVU Algorithm

It is now possible to state the algorithm succinctly, assuming the existence of the find term()
procedure, which encapsulates the two steps described above. The AVVU algorithm is:

Initialize f̂ to have no terms, the 0 function.
while (size of value set of N training points 1)

Call find term to obtain new term.
Append new term to f̂.
Compute adjusted value for each training point.

Approximation Via Value Unification 8

return f̂

The algorithm finds features in general to specific order. This is important, because one would
like to unify as many values as possible. If AVVU were to proceed to more specific features, it
would need more of them, and therefore execute more slowly.

It is important to have an adequate sample of instances, even with a small number of features.
One must sample the different regions of the instance space, even though there may be few features
in the target function. We have found so far that when the algorithm does not work, increasing the
sample size is the remedy.

The algorithm can be implemented efficiently. By keeping the list of instances sorted by ad-
justed value, one can split the list in one sweep over the instances, or join two sorted lists in one
sweep. A value set can also be obtained in a single sweep. Overlap can be computed in a single
sweep. The instances need to be reevaluated and sorted once at the beginning of each search for a
new feature. Sorting is O n logn , and the other operations just mentioned are O n in the number
of instances. For the step of finding the weight for a new feature, the cost of the all-differences
method is very loosely O n2 but it is much less because one is really working with value sets,
which in effect discards instances with non-unique error values. These value sets shrink as the uni-
fication process progresses. However, by using the shortcut method, the cost of finding a feature is
O n , because the most frequent value can be identified in one sweep.

Table 2. Target Function
Target:
-93.95 #0##0####0#0#00#0###
-41.33 #0##0###00##0####0##
-20.82 0###00#######0###0##
-98.97 ####0########0000###
-45.67 #######00##0#####0#0
-57.36 ########0##0###00###
61.02 ##0##0####0######0##
25.09 #######0#####0###00#
-53.16 #0#####0########0###
-30.68 ##########0#########

Table 2 shows a target function of 10 features based on 20 Boolean variables. Using the shortcut
method for finding a feature’s weight, and using a sample of 10,000 training instances, the AVVU
algorithm found an exact solution in 29 cpu seconds. The features are shown in the table in the
reverse order in which the algorithm found them.

6.4 Discussion

The AVVU algorithm produces a compact representation. For example, for the target function
in Table 2, a regression tree based on the unification metric contains 879 leaves (versus 10 features),
and requires 15 seconds to construct (versus 29 seconds).

The algorithm relies on the values associated with the target features being unique. No testing

Approximation Via Value Unification 9

has yet been done to see whether the algorithm may be able to handle non-uniqueness. The pattern
of a feature is conjunctive, so there is little reason to expect that different features contributing
identical amounts would be separable in this sense. We shall investigate this soon.

We have only tested this particular algorithm on artificial target functions of the same form
used by the approximator itself. More work is needed to see whether other kinds of targets have
any important differences.

An earlier version of the algorithm was based on a Boolean encoding of discrete variables. The
algorithm did not always work for those cases. We suspect that the lack of independence of such
Boolean variables is involved, but more work is needed.

We are hopeful that the algorithm will be able to tolerate noise by relaxing equality test for
unification, but this has not yet been tried.

Finally, we have no proof that this algorithm will always find a good approximation. With an
unrepresentative set of training points, the algorithm can become confused. More testing is needed.

We are not familiar with any other algorithms that are guided by value unification. For function
approximation over a Boolean domain, one could resort to a variety of error-guided methods. For
example, one could use error back-propagation with an artificial neural network (Rumelhart &
McClelland, 1986). A sigmoid threshold unit can represent a Boolean set cover, but whether a
network could find the needed set covers as hidden units, or find some other set of hidden units
that suffice, is not known. We did train a neural network on the same 10,000 training instances for
the problem Table 2, using 20 input units, 10 hidden units, and 1 output unit. Counting a network
output as correct if it is within 5% of the target output, letting backprop run for 320 epochs produces
a network that is ‘correct’ for 9501 of the 10000 examples. More epochs help little; after 20,000
epochs, correctness is only somewhat better. Each 100 epochs takes about 1 minute of cpu. For
some purposes, 95% accuracy may be sufficient, but it is clear that the network is not finding all
the regularity in the data.

7 Summary
Our work presents four ideas. The first is that algorithms that are driven primarily by error

reduction can be led into missing regularities in the data that would facilitate function approxima-
tion. Second, one can benefit from trying to group instances that have similar values for similar
reasons. Third, one can build smaller regression trees by using the unification metric. Finally, it
is possible to fashion algorithms that are driven primarily by value unification, and only secon-
darily by error reduction. In particular we presented the novel AVVU algorithm that uses value
unification to identify useful overlapping features.

Acknowledgments
This work was supported by National Science Foundation Grant IRI-9711239. We are indebted

to Gang Ding, who produced the neural network results. We thank Yanfeng Lu, who provided
helpful comments.

Approximation Via Value Unification 10

References
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression

trees. Belmont, CA: Wadsworth International Group.

Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learning. Machine
Learning, 5, 71-99.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo, CA: Morgan Kaufmann.

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing. Cambridge, MA:
MIT Press.

Utgoff, P. E., Berkman, N. C., & Clouse, J. A. (1997). Decision tree induction based on efficient
tree restructuring.Machine Learning, 29, 5-44.

