A New Polynomial Function Approximation Algorithm

Paul E. Utgoff
Jun Qian

Technical Report 99-20
January 28, 1999

Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

Telephone: (413) 545-4843
Net: utgoff@cs.umass.edu

Polynomial Function Approximation

Contents

1 Introduction

2 The GMG Algorithm
3 Illustrations

4 Related Work

S Summary

Polynomial Function Approximation 1

Abstract

We present a new algorithm GMG for building a polynomial approximation of a real-valued
function. The method is able to find sparse or dense polynomials of high degree and dimensionality.
This is accomplished by a novel organization of the space of monomial terms. The algorithm solves
approximation tasks that were previously intractable.

1 Introduction

A longstanding problem in function approximation is to find an efficient method for construct-
ing high degree polynomials in a large number of variables. The problem stems from the exponen-
tial growth in the number of possible monomial terms as the number of variables or the degree of
the polynomial rises. Under the assumption that most of the high degree terms will not be needed,
how can one find the important terms quickly? We propose such a method and demonstrate its
advantages.

The problem to solve is as follows. Given a set of N training points (x, f(x)), find a polynomial
in x that is highly accurate for the training points and for other points that could be drawn from the
same distribution. A point x is represented as a vector of d components in R?. The target value
of the target function f to be approximated is specified as f(x). We assume that N is as large
as necessary to sample the function adequately. We do not have any knowledge of the analytic
form of f, but we hope to be able to approximate it well by a polynomial in the d variables. The
approximation algorithm must find a good approximation f in the form of a polynomial. We would

like the approximation to exhibit a low mean-squared error (MSE), i.e. 3 3, (£(x;) — £(x:))*

The desire to be able to infer a function from data has a very long history in Mathematics,
dating back to Gauss and Newton. The problem is of immense practical value because one can
hope to gain insight into a process that one can measure, by attempting to model the data, and then
by studying the model.

For functions of many variables or high degree, it is not practical to generate all the possible
monomials up to that degree. For d variables, the number of monomials of exactly degree 4 is:

h+d—1
h
because it is a d-part composition of & (Reingold, Nievergelt & Deo, 1977). The number of possible
monomials is the sum of these exact counts from O up to the maximum degree of a monomial,

giving:
i (i+d—1 >
= !

Table 1 shows the total number of possible monomials of degree 1 or higher up to the indicated
maximum degree, for the indicated number of variables. One can see that generating all possible
monomials is intractable for all but small problems.

Polynomial Function Approximation 2

Table 1. Number of Possible Monomials

Vars | deg1 deg2 deg3 deg4 deg5 deg6 deg7 deg8 deg9 deglO
10 11 66 286 1001 3003 8008 19448 43758 92378 184756
9 10 55 220 715 2002 5005 11440 24310 48620 92378
8 9 45 165 495 1287 3003 6435 12870 24310 43758
7 8 36 120 330 792 1716 3432 6435 11440 19448
6 7 28 84 210 462 924 1716 3003 5005 8008
5 6 21 56 126 252 462 792 1287 2002 3003
4 5 15 35 70 126 210 330 495 715 1001
3 4 10 20 35 56 84 120 165 220 286
2 3 6 10 15 21 28 36 45 55 66
1 2 3 4 5 6 7 8 9 10 11

2 The GMG Algorithm

Figure 1 shows the top level of a new algorithm GMG (Greedy Monomial Grabber) for finding
a polynomial approximation f of the target function f. The main loop appends each currently
best monomial to the approximation. The GMG algorithm is efficient to the extent that it generates
only those monomials that are needed in the approximation. Unneeded monomials do not derail the
process because a coefficient of O has the effect of discarding a monomial. However, creating and
discarding is less efficient than not creating at all, and we would like to be efficient. To optimize

the coefficients, the algorithm computes, in a standard way, a linear regression that minimizes the
MSE.

I+ set of N training points
f+0
open ¢ node with 0 degree monomial
while (MSE(f,I) >¢)
{ m < bestmonomial(f,I,open)
fel 1l '+ m
open < open || successors(m)
optimize_coefficients(f,I)
update_MSEs (f,],open)
}

return f

Figure 1. Top Level Algorithm

The best monomial to append next is taken from the head of the open list, using as a metric
the MSE of the approximation that would include the candidate monomial. One can compute
quite readily the MSE for the N instances that would result if the candidate monomial were to be
appended to the approximation, and its coefficients optimized. Candidate monomials with lower
MSE are considered better. Upon appending the best monomial, the successors of the monomial
are appended to the open list. The coefficients for the current polynomial approximation (including
the new monomial just appended), and all the nodes on the open list, are reoptimized, and the MSE
of every node on the open list is recomputed. Based on these recomputed MSE values, the order

Polynomial Function Approximation 3

of the nodes on the open list may change. The GMG algorithm continues in this manner until the
approximation achieves sufficiently low error, which assumes that such an MSE can be achieved.
The algorithm has no closed list; a monomial is either in the approximation, or on the open list, or
is yet to be generated.

1,0/0’0\0,1
VA WAN
NANWAWAN

Figure 2. One-Rule Monomial Space

The shape of a search space is determined not only by the metric that is applied to each
state/point, but also by the organization of the space, as determined by the order in which states/points
are generated. Consider a space, which we call ‘One-Rule Monomial Space’, that is ordered by
increasing degree of the monomials. Figure 2 shows a part of this monomial space for a hypo-
thetical problem of two variables. Note that for our purposes, every monomial space contains the
possible monomials without coefficients, which are determined separately. To save superscript and
subscript clutter, we indicate each monomial solely by a vector of its exponents.

This simple approach (MSE metric, monomial space organization, greedy appending) has sev-
eral advantages, but two serious problems that we now address. The first is due to the problem
of bias in variables of odd versus even power. For example, a variable raised to an even power
curves upward for negative values, while a variable raised to an odd power curves downward for
negatives. If a variable raised to an odd power is a better class of fits than that variable raised to
an even power, then this organization of monomial space is inadequate because it creates ridges
that will fool the algorithm. Notice in Figure 2 that to get from an exponent of value k, to a value
of k+ 2, one would need to consider an exponent of value £+ 1 which is of a very different ilk
because its MSE will be so much higher than with k or k4 2.

0,0
2,0 1,0 0,1 0,2
3,0 1,2 1,1 2,1 0,3
Figure 3. Two-Rule Monomial Space
To eliminate these ridges, we need a different organization of monomial space, called “Two-

Rule Monomial Space’. We shall still place the 0-degree monomial at the root, but the children
will be generated in a different order. There are now two generation rules:

Polynomial Function Approximation 4

1. For a monomial whose exponents are all no more than 1, change aOtoa 1.

2. For any monomial, add 2 to any exponent.

Figure 3 shows the organization of monomial space that results. Notice that the ridges have been
eliminated. Indeed, the four classes of monomial, 0o, ee, oe, eo (‘0 for odd and ‘e’ for even) are
clearly visible below the root. Hereafter, adding only 2 to an exponent keeps the monomial in the
same class.

0,0
2,0 1,0 1,1 0,1 0,2
3,0 1,2 2,1 0,3

Figure 4. Three-Rule Monomial Space

The second serious problem is of a similar flavor, and will also be eliminated by reorganizing
monomial space. There is a bias in variables of non-zero exponents. When an exponent is 0,
the variable is effectively eliminated. To change an exponent from 0 to non-0 is to introduce a
variable. As one moves in monomial space from a monomial of n variables to a monomial of
n+-1 variables, the number of variables changes, which can wreak havoc for negative values of the
introduced variable because under some circumstances the function has been negated. This is much
like parity. A ridge of a different sort is still present in monomial space. To fix this, we reorganize
monomial space, giving ‘Three-Rule Monomial Space’, as defined by the three generation rules:

1. For the 0-degree monomial, change aO to a 1.

2. For a monomial whose exponents are all no more than 1, change any two exponents that are
each O to 1.

3. For any monomial, add 2 to any exponent.

Figure 4 shows the new organization of monomial space that results. The parity ridges have been
eliminated. The example would be more interesting for a higher number of variables. As itis, Rule
2 can only be applied once, as shown.

Let us consider how many children of the root there will be for d variables. We have d choices
of 0 to change to a 1, and d choices of 0 to change to a 2, and @ choices of pairs of Os to
change to 1s. At successive levels, application of Rule 2 will consume the Os in the exponents. As
soon as only Rule 3 applies, all the monomial classes have been generated. However, due to the
greedy expansion, only those of apparent usefulness will be expanded.

Let us see how well the algorithm can do. Given our organization of monomial space, we can
expect it to do well, assuming that appending monomials one at a time can work well.

Polynomial Function Approximation 5

3 Illustrations

Here is a trace of the GMG algorithm as it solves the third degree polynomial f(x) = 10xy +
x(z) +0. lxg + 2x0px1 1n two variables. The string of digits at the beginning of a line is the vector of
exponents for that monomial. Commas have been omitted here because only single digit exponents
appear in the traces shown. The ‘best’ tags were added by hand to help readability. The 2000
training points were each produced by generating random values within [—10, 10] for each of the
variables, and then evaluating the target function at that point.

Open List:

00, mse = 13647.26064 <--- best
Append monomial:

00, mse = 13647.26064

Open List:
10, mse 5356.14784 <--- best
01, mse = 13646.40022
11, mse 9069.99210
20, mse = 12913.98452

02, mse = 13633.18004
Append monomial:
10, mse = 5356.14784

Open List:

01, mse = 5352.15427
11, mse = 1058.87082 <--- best
20, mse = 4493.51163
02, mse = 5355.41690
30, mse = 5172.61862
12, mse = 5353.45464
Append monomial:
11, mse = 1058.87082

Open List:

01, mse = 1058.84724
20, mse = 226.47090 <--- best
02, mse = 1057.21293
30, mse = 870.74560
12, mse = 1053.48514
31, mse = 1057.57780
13, mse = 1058.04171
Append monomial:
20, mse = 226.47090

Open List:
01, mse = 226.46824

Polynomial Function Approximation 6

02, mse = 226.15230
30, mse = 0.00000 <--- Dbest
12, mse = 226.25875
31, mse = 225.84713
13, mse = 226.47083
40, mse = 226.45717
22, mse = 226.02626
Append monomial:
30, mse = 0.00000

Approximation:

30 * 0.10000 +
20 * 1.00000 +
11 =* 2.00000 +
10 = 10.00000 +
00 =* -0.00000

We see that the algorithm finds the needed monomials quite directly. Note that the monomials
appear one per line, with the coefficient following the vector of exponents. Only the 0-degree
monomial was not needed, as evidenced by its coefficient of 0. Notice also how the MSE for the
wﬁmmmmmmhhdmg%anhﬁammnFmemmmmmmmmd%ﬂ(mmwwa%Hﬁnme
trace) has MSE 13646 in iteration 1, but MSE 5352 in iteration 2. Similarly, monomial x3xJ has
MSE 5173 in iteration 3, even though it later has MSE 0. These dynamically changing values of
MSE for nodes on the open guide the search at each step. GMG took 3 seconds for this problem
on a 233MHZ Pentium II, including 37 linear regressions.

Let us now examine how GMG behaves on a target polynomial whose monomials are some
distance from the root node. The target polynomial is in nine variables (seven relevant and two
irrelevant) and includes a 10th degree term. It is f(x) = x%x% +x8 + xpx1Xx2 + xXoXx1 + X0 + X1 +
x%x%xg —|—x%x§. There were 2000 training points. The trace is lengthy, so only the final approxima-
tion is shown. From it, one can see all monomials that were absorbed into the polynomial. Those

that were ultimately not needed have a coefficient of 0.

Approximation:

010000000 =* 1.00000 +
111000000 =* 1.00000 +
110000000 = 1.00000 +
300000000 =* 1.00000 +
100000000 =* 1.00000 +
022000000 =* 1.00000 +
020000000 = 0.00000 +
022002000 =* -0.00000 +
020004000 =* 1.00000 +
020002000 =* 0.00000 +
000002000 =* 0.00000 +
000000226 * 1.00000 +

Polynomial Function Approximation 7

000000224 = 0.00000 +
000000222 =* -0.00000 +
000000202 = 0.00000 +
000000002 = -0.00000 +
000000000 = 0.00001

We see that the eight needed monomials are all there, along with nine that were not needed.
This is remarkably good efficiency considering that, as shown in Table 1, there are 92,378 mono-
mials in the space. GMG took 261 seconds for this problem, including 1880 linear regressions.

Finally, here is an example of the algorithm finding a dense polynomial. By ‘dense’, we mean
that all monomials up to the required degree are needed. This is in contrast to the two previous
examples of ‘sparse’ polynomials. The target function is a five degree polynomial in two variables:
f(x) = (x0+0.1x; —2)(2x0 —x1 —3)(0.3x1 —x9 +2) (2x0 +0.001x; — 3) (xo —4x1 + 1). There were
2000 training points. GMG took 43 seconds for this problem, including 262 linear regressions.

Approximate Function:

05 =* 0.00012 +
04 =* -0.36127 +
03 = 3.78951 +
02 = 61.42720 +
14 * 0.24053 +
13 = -4.10823 +
12 * -106.21020 +
23 * 1.05426 +
50 * -4.00000 +
40 = 24.00000 +
22 * 60.71200 +
41 * 18.79800 +
31 = -124.19100 +
20 = 11.00000 +
32 * -11.47060 +
30 * -45.00000 +
11 * -325.00800 +
21 * 303.59100 +
01 = 128.41200 +
10 =* 48.00000 +
00 =* -36.00000

4 Related Work

Sutton and Matheus (1991) proposed a polynomial function approximation algorithm that ap-
pends monomials one at a time. Their algorithm initializes the open list with all the 1-degree
monomials. Thereafter, a new successor monomial can be produced by forming the product of
two monomials already on the open list. Monomials are not removed from the open list, allowing
every monomial to remain a candidate for forming a new monomial. To guide selection of a pair
of monomials to use in constructing a new one, they compute a measure, called the ‘potential’,

Polynomial Function Approximation 8

for each existing monomial. The two monomials with the highest potentials are selected and com-
bined. The potential of a monomial is the coefficient of the square of that monomial when finding
a least mean-squared-error fit for all the squares of the existing monomials. They provide a fur-
ther improvement, called a ‘joint potential’, which is the potential of a cross term (product of two
monomials).

We implemented their algorithm. Rich Sutton kindly provided his Lisp code, but for a variety
of reasons, we wrote our own C code. Our implementation reproduces exactly all the examples
reported by Sutton and Matheus. We have found their algorithm to work quite well for monomials
that have variables with low exponents, but that it can miss finding monomials with variables of
high exponents. We suspect that this is due to ridges in their monomial space. For example, their
algorithm does not find an approximation for the first example problem above. After generating
the monomial x(% and 2xpx; (xo is already there initially), the program could not find xg. After
the algorithm finds x3, the potential of xy becomes negative, and stays negative indefinitely, which
means it is not selected for combination.

Numerical Recipes (Press, Flannery, Teukolsky & Vetterling, 1988) contains a variety of meth-
ods for polynomial interpolation and extrapolation in one variable. For multi-dimensional poly-
nomial construction, they suggest two local methods. One is to build a multi-dimensional grid of
approximating functions, and the other is to slice the multi-dimensional space recursively, ground-
ing out in a multitude of one-dimensional approximation problems.

MATLAB (Borse, 1997) offers a polynomial fitting function, but the user must specify the de-
gree The algorithm enumerates the monomials of a dense polynomial of that degree, and computes
the coefficients that minimize the mean-squared error. This approach is impractical because of the
sea of monomials that will be generated for functions of many variables or of high degree.

S Summary

We have presented a practical algorithm GMG for finding polynomial functions of high di-
mension and high degree. The strength of the algorithm comes from the organization of monomial
space in a manner that removes ridges in the error function. The algorithm is able to solve ap-
proximation problems that were previously not solvable automatically. The algorithm is oriented
toward polynomial approximation, but the search algorithm and the notion of space reorganization
may be extendible to other model classes.

Acknowledgments

This work was supported by National Science Foundation Grant IRI-9711239. We are indebted
to John Buonaccorsi of the UMass Mathematics and Statistics Department, who provided many
useful comments about polynomial regression in the Statistics community. Rich Sutton kindly
supplied his program code. We thank Gang Ding and David Stracuzzi for helpful comments.

References
Borse, G. J. (1997). Numerical methods with MATLAB. PWS Publishing Company.

Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1988). Numerical recipies in
C: The art of scientific computing. New York: Cambridge University Press.

Polynomial Function Approximation 9

Reingold, E. M., Nievergelt, J., & Deo, N. (1977). Combinatorial algorithms: Theory and practice.
Prentice Hall.

Sutton, R. S., & Matheus, C. J. (1991). Learning polynomial functions by feature construction. Ma-
chine Learning: Proceedings of the Eighth International Workshop (pp. 208-212). Evanston,
IL: Morgan Kaufmann.

