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Abstract. To scale agent technologies for widespread use in open systems, agents
must have an understanding of the organizational context in which they oper-
ate. Our current focus is on the expansion of agent knowledge structures to sup-
port modeling of organizational information and on a corresponding expansion
of agent control techniques to use the information. In this paper we focus on
the issue of task valuation and action selection in such socially situated agents.
Specifically on the issue of quantifying agent relationships and relating work mo-
tivated by different sources. For example, the comparison of work done for self-
interested reasons to work motivated by cooperative strategies.

1 Introduction

We believe that in order to scale-up agent technology [25] for use in open application
domains, e.g., electronic commerce on the web, agents must model their organizational
relationships with other agents and reason about the value or utility of interacting and
coordinating with particular agents over particular actions. For example, a database
management agent owned and operated by IBM1 might have an extremely cooperative
relationship with an information gathering agent owned by Lotus (Lotus is a subsidiary
of IBM), but an entirely different type of relationship with a Microsoft information
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gathering agent – the IBM agent might prefer to service requests for the Lotus agent
over the Microsoft agent or it might be willing to cooperate with the Microsoft agent
if a higher fee is paid for its services. The agents might even coordinate via different
protocols; the IBM agent might haggle with the Microsoft agent over delivery time
and price whereas it might simply satisfy the Lotus request in short order and with a
nominal or zero profit margin. Representing situations such as these is one aspect of our
current research agenda. The overall objective is to expand the contextual information
used by agents to make control decisions. Space limitations preclude a full description
of the modeling or knowledge structures under consideration, however, the structures
specify, or partially specify factors such as: the (multiple) organizations to which an
agent belongs, the different organizational roles an agent is likely to perform for the
organization (in a task-centered sense, akin to [19]), the relationships between agents
within the organization and without, the importance of a given role to an organization,
the importance of a role to the agent, the coordination protocols to use in different
circumstances, etc.

Broadening the scope of an agent’s understanding of the organizational context in
which it operates affects the agent control equation in two primary ways. Structural in-
formation affects the scope of the agent control process. For example, information that
specifies with which agents a given agent is likely to interact, with respect to a partic-
ular goal, affects the scope of the agent’s coordination dialogue. Structural information
is particularly important in large multi-agent systems (MAS) because it helps control
the combinatorics – it may constrain the distributed search space for any coordination
episode. In contrast, value information pertains mainly to representing, and reasoning
about, complex agent relationships. Value information affects the way in which a given
agent evaluates its candidate tasks and actions; information that describes the objective
function [37] of an organization, and thus the relative importance of tasks performed
for the organization, falls into this category. In this paper, we focus on the value side of
the problem, i.e., on the agent’s in context task valuation and selection process.

To ground the discussion, consider a simple example. Figure 1 shows an organized
network of financial information agents in the WARREN [15] style. The network is
a subset of a larger organization of agents that is populated by three types of agents.
Database Manager ( ) agents are experts in data maintenance and organization.
These agents maintain repositories of information, e.g., D&B reports, Value Line re-
ports, financial news, etc., and act as the interface between a repository or digital li-
brary and the rest of the network. The repositories may be simple databases, collec-
tions of databases, or even entail lower-level database management agents with which
the primary database manager interacts. Thus the manager’s functions are not simply
to query a single existing database, instead they conform to the properties of agency,
having multiple goals, multiple ways to achieve the goals, and so forth. Information
Gathering ( ) agents are experts in particular domains. They know about databases
(and database managers) pertaining to their area of expertise, or know how to locate
such databases. Their task is to plan, gather information, assimilate it, and produce a
report, possibly accompanied by a recommendation to the client about a particular ac-
tion to take based on the gathered information. The agents pictured in the figure are
both experts at collecting and assimilating financial news to build investment profiles
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Fig. 1. A Network of Organized Information Agents

of different companies. Personal Agents ( ) interface directly with the human client,
perhaps modeling the client’s needs. These agents also decide with which information
specialists to interact to solve a client’s information need. s for a given company
may interact with specialists outside of the company, however, interaction styles may
differ, i.e., different protocols may be used, different fee structures may apply, etc. The
edges in the figure denote interactions between agents. We will focus on the interactions
and relationships between the expert for Merrill Lynch, denoted , and the
expert for Schwab, and the multiple pictured s.

Agent is organizationally situated. The agent belongs to multiple different
organizations and it has different relationships with the other agents, stemming from
the different organizations, different organizational objectives within and without the
organizations [5], and from different relationships within the organizations. Figure 2(a)
shows ’s organizational relationships. It is part of the Merrill Lynch corporate
structure and thus shares this organization with and . It is also part of
the set of agents that specialize in financial information gathering and shares this
in common with . also belongs to the organization of financial informa-
tion agents and shares this in common with . Note, we view organizations as
hierarchical structures that can be specialized (i.e., subclassed). In this figure, the or-
ganization shared by and may have the same root as the organization
shared by and , however, the specializations differ (in fact, all the agents
are members of a root organization pertaining to financial information agents). In ad-
dition to its organizational positioning, also has different relationships within
these organizations. Figure 2(b) shows the agent’s different relationships. This figure
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(a) ’s Organizational Memberships
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(b) ’s Inter-agent Relationships

Fig. 2. Different Relationships Complicate Action Choice



differs from Figure 2(a) in that has a different relationship with and
. While and are both members of the Merrill Lynch organi-

zation, represents a mutual fund manager from the funds division and
represets an individual broker associated with the retail division.

One of the issues that arises when examining a scenario like this is the need to relate
the different motivational factors that influence agent decision making. For example,

interacts with and for cooperative reasons. In contrast,
interacts with for self-interested reasons, namely profit for itself, its division,
or Merrill Lynch. Agents situated in open, social, environments interact with different
agents, and different organizations of agents, for different reasons. The ability to relate
these differentmotivations is a requisite for the agents to act rationally, or approximately
so, given their social context. Without this ability, how can determine which
requests to service, and in what order? Assuming a model in which agents are rationally
bounded, tasks/requests arrive dynamically, and deadlines or service times on requests
are present, the agent cannot simply perform all the tasks, but must instead select a
subset of the tasks to perform and then determine an appropriate sequence in which
to perform them. It is important to note that the agent decision process is contextual.
Since the environment is dynamic, and the state of problem solving changes over time,
given a set of tasks from which to choose, the choice of which tasks are appropriate is
dependent on the current situation. For instance, if has spent the last units of
time problem solving for , and new requests from and arrive,
even if requests generally take precedence over requests (as specified
by the organizational structure), it may be appropriate for to service the
request before servicing the request.

Figure 3 shows ’s candidate actions at some point time, . The tasks are struc-
tured in a TÆMS [16] network, though the sum() function simply specifies that any
number of the tasks may be performed in any order. ’s candidate tasks include
servicing requests from , , and , as well as doing a local-only
task (updating its source models). It also has the option of contracting out its update
sources task to . In order to compare these actions the agent requires a frame-
work that quantifies and relates the different motivational reasons for performing par-
ticular tasks, as well as relating the costs/benefits of doing tasks for others, and doing
local work, to the costs/benefits associated with contracting out the local update task.
The complexity of the relationships that the agent has with other agents requires this
complex approach to evaluation. The rationale for keeping the different motivational
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Fig. 3. ’s Abstracted Task Structure



concerns separate is that they represent quantities that are not interchangeable, e.g.,
progress toward different problem solving objectives, akin to [33]. They are not re-
ducible at all agents to some uniform currency and not all quantities have value to all
other agents. For example, doing a favor for someone cannot in turn be used to purchase
something at the local store. Another intuitive example: work done on one’s yard has
no intrinsic value to a professional peer, unless said peer is your neighbor. With respect
to computational agents, partitioning of concerns like these maps to the balancing of
local work with non-local work, but also to the balancing of work done to satisfy some
joint goal [26, 21, 13, 38] in contrast to work done to satisfy joint goal . The
idea of this research is not wholly to partition different activities, and the evaluation of
their worth to the agent, but rather to support ranges of representations, e.g., tasks and
actions that have both self-interested and cooperative motivations, or work relating to
multiple different joint goals held by multiple agents related, at least partially, through
different organizations.

In the sections that follow we present a model for relating different motivational
factors, and different measures of progress, that enables agents to compare different
types of actions, and the costs and benefits of particular courses of action. We then
discuss the issue of interfacing this model with our existing agent control technologies
and present ideas about how agents will make decisions based on this model.

2 Quantifying and Comparing Motivations

There are three different classes of tasks that a socially situated agent, such as ,
must reason about: 1) tasks that are of local concern only and do not have direct value
or repercussions in any non-local context; 2) tasks that other agents wish the local agent
to perform; and 3) tasks that other agents may perform for the local agent. Obviously,
there are graduations or tasks that pertain to more than one of these classes. For ex-
ample, a task may produce a result that is valuable locally as well as having value to
another agent. Additionally, each task may be performed for cooperative reasons, self-
interested reasons, or ranges of these. For example, performing a task for an associate
for a nominal fee may pertain to both cooperative concerns and self-interested motiva-
tions. It is important to note that even actions performed for cooperative reasons actu-
ally have different motivations. For example, doing a favor for one’s superior at work
is evaluated differently than doing a favor for a peer, which is treated differently than
doing a favor for persons unknown, and so forth. In order to address these concerns, we
have developed a model for agent activities that quantifies these different motivational
factors and enables the local agent to compare the factors via a multi-attributed utility
function. Definitions:
Agents are autonomous, heterogenous, persistent, computing entities that have the abil-
ity to choose which tasks on which to operate, and when to perform them. 2 Agents are
also rationally bounded, resource bounded, and have limited knowledge of other agents.
Agents:
– Can perform tasks locally if they have sufficient resources.
2 This is by no means the only definition of agency [25, 28, 12, 38, 31, 23, 18, 44].
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Fig. 4. Role of in Agent Control

– Interact through communication with other agents to perform tasks. For presen-
tation clarity, we will cast discussion in terms of two basic interaction models: the
local agent asking other agents to perform tasks, or the local agent performing tasks
for other agents.

– Agents interact via multiple different mediums of exchange known as motivational
quantities ( s) that are produced by performing tasks, i.e., a given agent has
a set of s that it accumulates and exchanges with other agents, as shown in
Figure 4(a).3

– Not all agents have the same set. However, for two agents to interact, they
must have at least one in common (or have the means for forming an
dynamically).

– For each belonging to an agent, it has a preference function or utility curve 4,
, that describes its preference for a particular quantity of the , i.e.,

such that where is the utility associated with
and is not directly interchangeable with unless . Different agents may
have different preferences for the same .

– An agent’s overall utility at any given moment in time is a function of its differ-
ent utilities: , as shown in Figure 4(b). We make no
assumptions about the properties of , only that it enables agents to determine
preference or dominance between two different agent states with respect to s.

– For simplicity of presentation, let us assume that is not a multi-variate utility
function and instead that for each there is an associated function 5 that
translates specific utility into the agent’s general utility type, i.e.,
such that . Thus may take the form of Equation 1.6

3 If agents are allowed to contract with other agents via a proxy agent, and the proxy agent
translates s of one type to another, it is possible for the agents to be viewed as sharing a
common . However, this is limited by the availability of s of the proper type. If we
ignore the issue of quantity, the general issue of reducibility of s via proxy can be
viewed as a graph connectivity problem.

4 We currently view these as continuous functions but are exploring the possible need for step-
wise utility functions that describe “saving-up” for a potential future event.

5 Astute readers will note that could be combined with . We partition these concerns
to provide separate places for mapping different organizational and relationship-centered in-
fluences.

6 This simple model assumes that all utilities associated with different motivational quantities
can be mapped to a common denominator at the agent. This does not mean that the same



(1)

– Change in agent utility, denoted , is computed through changes to the in-
dividual utilities, , etc. Let denote the utility associated with before
the quantity of the changes (e.g., as the result of task performance). Let
denote the utility associated with the changed quantity. The change in overall
utility to the agent, in this simplified model, is expressed in Equation 2.

(2)

Tasks are abstractions of the primitive actions that the agent may carry out. We return
to the issue of abstraction in Section 4. Tasks:

– Require some time or duration to execute, denoted .
– May have deadlines, , for task performance beyond which performance
of said task yields no useful results. (This could also be defined via a function that
describes a gradual decrease in utility as passes.)

– May have start times, , for task performance before which performance of
said task yields no useful results. (This could also be defined via a function that
describes a gradual increase in utility as approaches.)

– Produce some quantity of one ormore s, called anMQ production set ( ),
and is denoted by: , where . These quanti-
ties are positive and reflect the benefit derived from performing the task. They may
be the direct outcome of performing the task, i.e., some result produced by doing
the actual work, or they may be quantities that another agent is paying for the work
to be performed. In this model, the two are equivalent.

– Tasks may have multiple production sets; that is a given task may produce dif-
ferent groups of s. This models the idea that agents may interact with multiple
different mediums-of-exchange. For instance, agent may service a request
for agent in return for some financial compensation, or by “calling-in”
a favor, or for some combination of these. The multiple production sets are
represented: . Note that

may as different sets may have commonmembers. To
simplify presentation, we concentrate on tasks that have a single , though
we return to the issue of different in Section 3.7

– Akin to the , tasks may also consume quantities of s. The specification
of the s consumed by a task is called an MQ consumption set and denoted

, where . As with s, a task may
have multiple sets. Consumption sets model the idea of tasks consuming

mapping is possible at all agents, nor do we feel this property is necessary for the model. It is
intended to simplify presentation and model manipulation at this time.

7 The issue of which from the candidate sets will pertain to a given transaction can
be viewed as an issue for explicit negotiation between agents [20, 7], or as a dynamic agent
choice problem [40].
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resources, tasks hindering progress toward some objective, and agents contracting
work out to other agents, e.g., paying another agent to produce some desired result
or another agent accumulating favors or good will as the result of task performance.
In contrast to production sets, consumption sets are the negative side of performing
a particular task.

– All quantities, e.g., , , , are viewed from an expected value stand-
point. We return to the issue of uncertainty in Section 5.

To illustrate, Figure 5 shows a single utility curve for a single . Assume some
task, , produces amount of . The agent reasons about task performance,
and the utility thereof, by comparing the change in associated with the change
in that performing will produce. If this is the only task being considered,

.
Figure 6 illustrates the model’s application to the task structure of pictured in

Figure 3. The different problem solving options available to are: 1) performing
task for ; 2) performing task for ; 3) performing its
local update task, ; 4) contracting its local update task out to , represented as

. Recall that has different relationships with , , and .
As shown in Figure 4(a), the agents’ different relationships translate into different s
with which they interact. services requests from for cooperative reasons
– it is part of ’s job description and it is recorded as an inter-company transaction
for reporting purposes. This motivation is expressed as in ’s . In
contrast, has a very different relationshipwith – per the two agents’
sets, they may interact via currency ( ) or via an based on professional favors,
classified as . has still another relationship with and they interact
via currency only. To compare the different candidate tasks, reasons about the
positive/negative changes in utility that result from carrying out the tasks. For example,
to compare , , and (assuming the single valued utility mapping
shown in Equation 1):

1. For : 1) The task consumes a local resource , e.g., monthly allotment
of ppp connection time. Therefore, compute the negative change in that will
result from the performance of ; 2) compute the positive change in
that is produced by performing the task for (i.e., the increase in );
3) .

2. For : 1) compute the negative change in , another (different) local
resource that is consumed by ; 2) compute the positive change in that
is produced by performing the task for (i.e., the monetary payment from

to ); 3) .



N(17;4

#$

#$

%!$ %!$

T
(17;4

#%$&

%!%$& %!%$&

T
M=

#'(

%!'(

#'(

%!'(

N!"%(D #%$&

T
%(D

#'&
#'&

%!'&
%!'&

#)

#)

%!) %!)

N!"G/8-.

T
RT

MD

#*

#*

%!*

N&'9

T
?

%!*

#$

#$

%!$ %!$

T
(17;4

Fig. 6. Comparing Different Candidate Tasks

3. For : 1) compute the positive change in produced by the performance of
task ; 2) .

4. To select between the three, simply choose whichever has the highest gain in util-
ity for the agent. For example, if and

then perform the local action. In other
words, if the gain in utility achieved by performing exceeds the utility pro-
duced by performing , even when considering the resource cost of
(note that is less than in Figure 6), then it is preferable to perform .
Likewise with .

If the agent’s objective is to simply select which task to perform next, and tasks
do not have associated deadlines, and the present and future value of s are equiva-
lent, then it can reason using the maximum expected utility principle and select the task
at each point that maximizes immediate utility. However, this simple choose-between-
available-tasks model does not map well to situations in which tasks have deadlines, or
even situations with a temporal component. For example, consider choosing between

and : if then perform the task locally, oth-
erwise, contract it out. In this case, , which is the cost of having perform
the task for , must be zero in order for to consider allocating the task to

. In order to properly assess the value of such an arrangement, the agents need to
use the model presented in this section for comparisons, but, to add components such
as opportunity cost or future value to the selection / decision process. We return to this
issue in Section 5.

In this section we have presented a model for comparing tasks that are motivated by
different factors. The model can support comparison between tasks that are performed
for other agents in return for financial gain to tasks that are performed for other agents
for cooperative reasons. Via the different preferences for the different quantities, agent
control can be modulated and agents can reason about mixtures of different task types
and different motivations. For example, a socially situated agent can reason about doing
work in exchange for money as well as progress toward organizational objectives or the
accumulation of goodwill, favors, and other non-currency exchanges. The use of state in
the model also facilitates contextually dependent behaviors or adjustments to behaviors
over time. Agent performing cooperative work with a closely allied agent, , for



instance, may need to balance this workwith cooperativework with others over time. As
accumulates goodwill (represented as one ) with , its preferencemay shift to the

accumulation of other s. The use of utility for this application is flexible and very
general, though to effectively use the model we must address how to meaningfully plan
and reason with the model and how to integrate it into existing agent control technology.
We return to these issues in Sections 4 and 5.

3 Incorporating Organizational Structure and Influence

The model enables the direct comparison of work motivated by variety of differ-
ent sources, and it supports ranges of these. The model also supports the integration of
certain classes of organizationally derived influence and structure. For instance, organi-
zational relationships can be associated with particular s, i.e., agents belonging to
a particular organization and interacting for a particular organizational goal can track
their contributions and joint progress (either by communication or by observation) to-
ward the goal using an explicitly for that purpose. Using the same means, agents
can reason about their progress toward multiple different goals held by different orga-
nizations.

The selection of different and is another place where organiza-
tional structure integrates with the model. Organizations may have relationships with
each other and this can be mapped into the selection of s in particular /

sets. For instance, if organization related to organization in such a way
that members of are willing to coordinate in a cooperative fashion, though to a lim-
ited extent, with members of , agents belonging to can exchange as well as

. The notion of “limited extent” in the previous sentence points to another place
where organizational structure maps into the -centric model; the preference func-
tions or utility curves of the agent reflect the relative importance of particular types of
problem solving activities to the agent. For example, a type of problem solving that is
very important to the agent will have a steep utility curve relative to its other concerns;
this approach also pertains to power relationships between agents. Organizational influ-
ences and relationships can also be mapped to , or to the functions used in the utility
mapping of Equation 1.

Organizational structure imposed on the computation also comes into play in the ini-
tial assignment of ’s (quantities of s) to agents. Note that since work is produced
over time, the system is not a zero sum game, but instead is a growing economy. The
initial allocation of s to agents predisposes the system to initialize in a particular
way and biases the flow of the distributed computation, as in [33]. Agent communi-
cation also has roles in this model. Negotiation [20, 30, 7] between agents can be used
to select which s, from a set of candidate / , will be used for a
given exchange or produced by a given task execution. Negotiation can also be used
to determine the “price” (in s) or quantity that a particular transaction will pro-
duce. Auctions or other market mechanisms [43, 9, 6] can be integrated with the model
through this avenue.



4 Integration with Detailed Agent Control

The model is deliberately abstract to simplify control reasoning at the meso-level
of agent control [34]8, i.e., the computational organizational level rather than the micro-
level. While it could be used directly at the micro-level of agent control, the agent would
be unable to reason about a wide class of issues that are important for socially situated,
resource bounded, agents. The model lacks features such as explicit representation and
quantification of interactions9 between tasks and a detailed view of the actions that
may be used to carry out the tasks. We generally subscribe to a model where agents
have alternative ways to perform tasks (or achieve goals), and that part of the agent
control problem is to evaluate the different possible ways to perform a task, taking into
consideration the different trade-offs or performance characteristics, and to select one
or more from the set of alternatives. Additionally, detailed and complex interactions
between agent activities, such as chains of interactions, motivate detailed coordination
between agents. This detailed, quantitative, temporal, constraint and interaction based
view of the world is embodied by research in TÆMS [17], Design-to-Criteria (DTC)
[41, 39] agent scheduling, and GPGP [16] agent coordination.

The existence of such sophisticated, quantitative, machinery for agent control begs
the question of why the -centered model is necessary. The detailed technologies
are well suited to representation and control at a particular level of detail (micro-level).
However, TÆMS is designed to represent a quantified view of the problem solving pro-
cess of an agent – it does not lend itself to organizational level issues in its current
form. Enhancing TÆMS for organizational level application may be possible, though
because the class of issues is inherently different at the organizational level, we believe
a new structure coupled with a new reasoning process is appropriate. The integration
of the organizationally centered framework with the detailed tools is akin to other
recent work in integrating process-program controllers [27] and opening the detailed
tools for use with BDI problem solvers [8, 35] and others [42, 29]. The general view is
that the higher-level components are responsible for influencing the selection of candi-
date tasks for the agent, while the detailed tools (GPGP/DTC) reason about satisficing,
real-time, detailed, temporal control or implementation of the selected tasks and goals.
Space precludes a detailed discussion, more information is available in [39].

5 Conclusion and Future Directions

The model presented here is currently under development and integration. Recent ex-
tensions [39] include the addition of multiple alternative performance profiles for
tasks and support for an approximate scheduling process. The scheduling process
[39] includes facets that factor-in the future value of s, temporal issues, and oppor-
tunity costs. The potential importance of future value is illustrated in tit-for-tat agent
coordination [36] and other cooperative games [32]. Opportunity cost plays a role in
task selection, as well as the evaluation of long-term contracts [30] and negotiation [20,
8 We are currently exploring the relationship between the meso-level and the social-level [24].
9 However, we are considering certain classes of interaction modeling at this level; the issue is
expressiveness versus tractability.



7] over the terms (time and ) of said contracts. Reasoning about decommitment
penalties or costs [1] also factors into the model at this level.

Regardless of the underlying scheduling technology, the model stands on its own
merits as a way to quantify and relate hereto unrelated concerns like cooperative and
self-interested motivational factors. Using the model, agents can reason about different
concerns like self-interest, favors, altruism and social welfare [14] 10. The model also
frames the problem of balancing these different motivations, as well as balancing work
between different organizational entities, the individual and the community [24], and
balancing different agent relationships. It is important to note, however, that the model
requires detailed information about tasks, organizational goals, , and the utility
functions of each individual agent. Certain classes of this information could be learned
though in the general case this falls on the designer(s) of the multi-agent system. Obvi-
ously, design principles that guide such a process are desirable.

While the model is related to research in social welfare, utility, and choice
[22, 14, 4, 7], the model differs in its use of a local, state-based (contextual), view of
the larger organizational issues. In the framework, agents reason about the utility
of particular actions based on their local view of organizational objectives expressed
via s and utility functions. Inherent in the framework are the assumptions that: 1)
agents have imperfect knowledge of the problem solving taking place at other agents; 2)
the utility function of a given agent cannot generally be shared and computed by other
agents because it is dependent on the agent’s problem solving state; 11 3) globally ap-
propriate behavior can be approximated through local reasoning in the spirit of [10]. In
this latter case, the precision of the approximation is dependent on the degree to which
agents can communicate or observe problem solving toward organizational objectives.
Distinctions made, there is a relationship between the model and research in social wel-
fare, utility, and choice. In a sense, s might be used to approximate and implement
social utility functions in multi-agent systems populated by complex problem solvers.
It might also be reasonable to combine the technologies online, where formal views of
social utility are used to determine allocations and utility functions, or where
social utility is used in the organizational design phase to weight organizational objec-
tives for the level. There are also important empirical lessons that can be learned
from the large body of research in social utility and social welfare.

The model also relates to other recent work in the multi-agent community, such
as agents interacting via obligations [2], or notions of social commitment [11], but it
differs in its quantification of different concerns and its dynamic, contextual, relative,
evaluation of these. The model resembles MarCon [33] as the different degrees-of-
10 All mapped to different s or groups of s. However, the issue of how to specify system-
wide goal criteria, or organizational-level goals, that characterize acceptable ranges of these
must also be addressed to employ s to concepts like social welfare in a meaningful fashion.

11 To share such a function requires full exchange of the agent’s knowledge structures and
its objectives and that the receiving agent engage in the same (generally) exponential plan-
ning/scheduling computation that the sending agent uses to decide on its course of action (and
that the receiver thus does this for every agent with which it interacts). In other words, we take
the view that the computation of the utility that a different agent associates with a particular
task is not generally feasible in complex real-time resource-bounded problem solving agents
(there are also obvious issues of privacy and heterogeneity).



satisfaction afforded by the model is related to MarCon’s constraint optimization
approach, and MarCon too deals with utilities/motivations that cannot always be com-
mingled. MarCon, however, views constraints as agents, assigning particular roles to
particular agents, and the issue of which tasks to perform do not enter into the problem
space.

Evaluation of the framework has two facets: modeling and scheduling. Eval-
uating the scheduling of s is straightforward. Though not generally tractable, the
space of possible schedules can be produced exhaustively and the output of any
approximate scheduling process can be directly compared to the provably optimal
solution. Evaluating the modeling aspects of the framework is more subjective.
The questions that must be answered are 1) does the model express desired situations,
2) does reasoning with the model enable the agent to act appropriately given the situa-
tion described in the model. If we assume no calculation errors in computing utilities for

tasks, case two reduces to case one. The real question is whether or not the model
maps well to the situations for which it was designed. Because of the model’s some-
what unique integration of local control combined with temporal constraints and utility,
it is difficult to compare it directly to other work in social choice. We are currently ex-
perimenting with the representational strength of the model. Preliminary results can be
found in [39].

Many other research questions remain. Aside from the obvious (and deliberate)
lack of prescriptive semantics for the model, one of the outstanding issues is how to
best leverage the model from a decision making standpoint, i.e., how to incorporate
the model into a high-level decision process that can then be integrated with the rest
of our agent control technology as discussed in Section 4. Another obvious question is
how to translate organizational goals and objectives into allocations, assignments
of , and local agent utility curves. Currently, this process is being ex-
plored by hand, though an automated organizational design process [3] is a future pos-
sibility once the issues are better understood. In terms of limitations, the primary issue
is the relative “youth” of the framework.While the local, state-based view appears
appropriate for certain classes of agent control, it has yet to be employed in a wide
range of projects and situations.

6 Acknowledgments

We would like to thank Professor Lawrence Zacharias of the Isenberg School of Man-
agement at the University of Massachusetts for his expertise in social economics and
other related bodies of work. We would also like to acknowledge Professor Lee Oster-
weil for his thoughts on representational validation and Professor Shlomo Zilberstein
for his expertise in flexible computation. Their input, combined with the views of the
authors, shaped the formation of the model.

References

1. Martin Andersson and Tumas Sandholm. Leveled commitment contracts with myopic and
strategic agents. In Proc. of the 15th National Conf. on AI, pages 38–44, 1998.



2. Mihai Barbuceanu. Agents that work in harmony by knowing and fulfiling their obligations.
In Proc. of the 15th National Conf. on AI, pages 89–96, 1998.

3. Brett Benyo and Victor R. Lesser. Evolving Organizational Designs for Multi-Agent Sys-
tems. MS thesis, University of Massachusetts, 1999.

4. Guido Boella, Rossana Damiano, and Leonardo Lesmo. Cooperating to the group’s utility.
In N.R. Jennings and Y. Lespérance, editors, Intelligent Agents VI — Proc. of the Sixth Intl.
Workshop on Agent Theories, Architectures, and Languages (ATAL-99), Lecture Notes in AI.
Springer-Verlag, Berlin, 2000. In this volume.

5. Jonathan Boswell. Social and Business Enterprises. George Allen & Unwin Ltd., London,
England, 1976.

6. Craig Boutlier, Yoav Shoham, and Michael P. Wellman. Economic Principles of Multi-Agent
Systems. Artificial Intelligence, 1-2(1-6), 1997.

7. Sviatoslav Brainov. The role and the impact of preferences on multiagent interaction. In
N.R. Jennings and Y. Lespérance, editors, Intelligent Agents VI — Proc. of the Sixth Intl.
Workshop on Agent Theories, Architectures, and Languages (ATAL-99), Lecture Notes in
AI. Springer-Verlag, Berlin, 2000. In this volume.

8. M.E. Bratman. Intention Plans and Practical Reason. Harvard University Press, 1987.
9. Donald E. Campbell. Resource Allocation Mechanisms. Cambridge University Press, 1987.
10. Norman Carver, Zarko Cvetanovic, and Victor Lesser. Sophisticated cooperation in FA/C

distributed problem solving systems. In Proc. of the Ninth National Conf. on Artificial Intel-
ligence, pages 191–198, Anaheim, July 1991.

11. Cristiano Castelfranchi. Commitments: From individual intentions to groups and organi-
zations. In Proc. of the 1st Intl. Conf. on Multi-Agent Systems (ICMAS95), pages 41–48,
1995.

12. Phillip R. Cohen, Adam Cheyer, Michelle Wang, and Soon Cheol Baeg. An open agent
architecture. In Michael N. Huhns and Munindar P. Singh, editors, Readings in Agents,
pages 197–204. Morgan Kaufmann, 1998.

13. P.R. Cohen and H.J. Levesque. Intention is choice with commitment. Artificial Intelligence,
42(3):213–261, 1990.

14. James Coleman. Individual Interests and Collective Action. Cambridge University Press,
Cambridge, England, 1986.

15. K. Decker, A. Pannu, K. Sycara, and M. Williamson. Designing behaviors for information
agents. In Proc. of the 1st Intl. Conf. on Autonomous Agents, pages 404–413, 1997.

16. Keith S. Decker. Environment Centered Analysis and Design of Coordination Mechanisms.
PhD thesis, University of Massachusetts, 1995.

17. Keith S. Decker. Task environment centered simulation. In M. Prietula, K. Carley, and
L. Gasser, editors, Simulating Organizations: Computational Models of Institutions and
Groups. AAAI Press/MIT Press, 1996.

18. Robert Doorenbos, Oren Etzioni, and Daniel Weld. A scalable comparision-shopping agent
for the world-wide-web. In Proc. of the 1st Intl. Conf. on Autonomous Agents, pages 39–48,
1997.

19. Edmund H. Durfee and Thomas A. Montgomery. Coordination as distributed search in a hier-
archical behavior space. IEEE Transactions on Systems, Man, and Cybernetics, 21(6):1363–
1378, 1991.

20. P. Faratin, C. Sierra, and N. Jennings. Negotiation Decision Functions for Autonomous
Agents. Intl. Journal of Robotics and Autonomous Systems, 24(3-4):159–182, 1997.

21. Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group action. Artificial
Intelligence, 86:269–357, 1996.

22. Lisa Hogg and Nick Jennings. Variable sociability in agent-based decision making. In N.R.
Jennings and Y. Lespérance, editors, Intelligent Agents VI — Proc. of the Sixth Intl. Workshop



on Agent Theories, Architectures, and Languages (ATAL-99), Lecture Notes in AI. Springer-
Verlag, Berlin, 2000. In this volume.

23. Michael N. Huhns and Munindar P. Singh. Agents and multiagent systems: Themes, ap-
proaches, and challenges. In Michael N. Huhns and Munindar P. Singh, editors, Readings in
Agents, pages 1–23. Morgan Kaufmann, 1998.

24. N. R. Jennings and J.R. Campos. Towards a social level characterisation of socially respon-
sible agents. IEE Proc. on Software Engineering, 144(1):11–25, 1997.

25. Nicholas R. Jennings, Katia Sycara, and Michael Wooldridge. A roadmap of agent research
and development. Autonomous Agents and Multi-Agent Systems, 1(1):8–38, 1998.

26. N.R. Jennings and E.H. Mamdani. Using joint responsibility to coordinate collaborative
problem solving in dynamic environments. In Proc. of the 10th National Conf. on Artificial
Intelligence, pages 269–275, 1992.

27. David Jensen, Yulin Dong, Barbara Staudt Lerner, Eric K.McCall, Leon J. Osterweil, Stanley
M. Sutton Jr., and Alexander Wise. Coordinating agent activities in knowledge discovery
processes. In Proc. of Work Activities Coordination and Collaboration Conf. (WACC) 1999,
1999. Also as UMASS Tech Report UM-CS-1998-033.

28. Henry Kautz, Bart Selman, Michael Coeh, Steven Ketchpel, and Chris Ramming. An exper-
iment in the design of software agents. In Michael N. Huhns and Munindar P. Singh, editors,
Readings in Agents, pages 125–130. Morgan Kaufmann, 1998.

29. Victor Lesser, Bryan Horling, Frank Klassner, Anita Raja, Thomas Wagner, and Shelley XQ.
Zhang. BIG: A resource-bounded information gathering agent. In Proc. of the 15th National
Conf. on AI (AAAI-98), July 1998. See also UMass CS Tech. Reports 99-13, 98-03, 97-34.

30. Victor Lesser, Thomas Wagner, and Abhijit Deshmukh. Negotiating via MQs. Ongoing
Research, 1999.

31. Victor R. Lesser. Reflections on the nature of multi-agent coordination and its implications
for an agent architecture. Autonomous Agents and Multi-Agent Systems, 1(1):89–111, 1998.

32. Martin A. Nowak, Robert M. May, and Karl Sigmund. The Arithmetics of Mutual Help.
Scientific American, pages 76–81, June 1995.

33. H. Van Dyke Parunak, Allen Ward, and John Sauter. A Systematic Market Approach to
Distributed Constraint Problems. In Proc. of the Third Intl. Conf. on Multi-Agent Systems
(ICMAS98), 1998.

34. Michael J. Prietula, Kathleen M. Carley, and Les Gasser. A Computational Approach to
Oganizations and Organizing. In Michael J. Prietula, Kathleen M. Carley, and Les Gasser,
editors, Simulating Organizations: Computational Models of Institutions and Groups, pages
xiv–xix. AAAI Press / MIT Press, 1998.

35. A.S. Rao and M.P. Georgeff. Modelling rational agents within a BDI-architecture. In
J. Allen, R. Fikes, and E. Sandewall, editors, Proc. of the 3rd Intl. Conf. on Principles of
Knowledge Representation and Reasoning, pages 473–484. Morgan Kaufmann, 1991.

36. Sandip Sen and Anish Biswas. Effects of misconception on reciprocative agents. In Proc. of
the 2nd Intl. Conf. on Autonomous Agents (Agents98), pages 430–435, 1998.

37. Herbert Simon. Organizational objective functions. Personal Conversation, 1997.
38. Milind Tambe. Agent Architectures for Flexible, Practical Teamwork. In Proc. of the 14th

National Conf. on AI, pages 22–28, July 1997.
39. Thomas A. Wagner. Toward Quantified Control for Organizationally Situated Agents. PhD

thesis, University of Massachusetts at Amherst, Amherst, Massachusetts, February 2000.
40. Ludwig von Auer. Dynamic Preferences, Choice Mechanisms, and Welfare. Springer-Verlag,

Heidelberg, Germany, 1998. Chapter 8.
41. Thomas Wagner, Alan Garvey, and Victor Lesser. Criteria-Directed Heuristic Task Schedul-

ing. Intl. Journal of Approximate Reasoning, Special Issue on Scheduling, 19(1-2):91–118,
1998. A version also available as UMASS CS TR-97-59.



42. Thomas Wagner and Victor Lesser. Toward Generalized Organizationally Contexted Agent
Control. In AAAI Workshop on Reasoning in Context, 1999. Also as UMASS CS TR 99-18.

43. Michael Wellman and Peter Wurman. Market-Aware Agents for a Multiagent World. In
Proc. of the 2nd Intl. Conf. on Autonomous Agents (Agents98), pages 115–125, 1998.

44. M.P. Wellmen, E.H. Durfee, and W.P. Birmingham. The digital library as community of
information agents. IEEE Expert, June 1996.


