
Scheduling Straight-Line Code Using
Reinforcement Learning and Rollouts

Amy McGovern, Eliot Moss, and Andrew G. Barto
amy moss barto@cs.umass.edu

Department of Computer Science
University of Massachusetts, Amherst

Amherst, MA 01003

May 5, 1999

Abstract

The execution order of a block of computer instructions on a pipelined machine can make a difference
in its running time by a factor of two or more. In order to achieve the best possible speed, compilers use
heuristic schedulers appropriate to each specific architecture implementation. However, these heuristic
schedulers are time-consuming and expensive to build. We present empirical results using both rollouts
and reinforcement learning to construct heuristics for scheduling basic blocks. In simulation, the rollout
scheduler outperformed a commercial scheduler, and the reinforcement learning scheduler performed
almost as well as the commercial scheduler.

Keywords: Reinforcement learning, Instruction scheduling, Rollouts



UMass-Amherst Tech Report Number 99-23 1

1 Motivation

Although high-level code is generally written as if it were going to be executed sequentially, most mod-

ern computers exhibit parallelism in instruction execution using techniques such as the simultaneous issue

of multiple instructions. Often pipelines within a machine differ in functionality. For example, one pipeline

may be specialized for floating-point operations and one for integer operations. In order to take the best

advantage of multiple pipelines, when a compiler turns the high-level code into machine instructions, it

employs an instruction scheduler to reorder the machine code. The scheduler needs to reorder the instruc-

tions in such as way as to preserve the original in-order semantics of the high level code while having the

reordered code execute as quickly as possible. An efficient schedule can produce a speedup in execution of

a factor of two or more.

Building an instruction scheduler can be an arduous process. Schedulers are specific to the architecture

of each machine and the general problem of scheduling instructions is NP-Hard (Proebsting). Because of

these characteristics, schedulers are currently built using hand-crafted heuristic algorithms. However, this

method is both labor and time intensive. Building algorithms to select and combine heuristics automatically

using machine learning techniques can save time and money. As computer architects develop new machine

designs, new schedulers would be built automatically to test design changes rather than requiring hand-built

heuristics for each change. This would allow architects to explore the design space more thoroughly and to

use more accurate metrics in evaluating designs.

A second possible use of machine learning techniques in instruction scheduling is by the end user.

Instead of scheduling code using a static scheduler trained on benchmarks when the compiler was written,

a user would employ a learning scheduler to discover important characteristics of that user’s code. The

learning scheduler would exploit the user’s coding characteristics to build schedules better tuned for that



UMass-Amherst Tech Report Number 99-23 2

user.

With these motivations in mind, we formulated and tested two autonomous methods of building an in-

struction scheduler. The first method used rollouts (Tesauro and Galperin, 1996, Bertsekas, et al.,1997a,b)

and the second focused on reinforcement learning (RL) (Sutton & Barto, 1998). Both methods were imple-

mented for the Digital Alpha 21064. The next section gives a domain overview and discusses results using

supervised learning on the same task.

2 Domain overview

We focused on scheduling basic blocks of instructions on the 21064 version (DEC, 1992) of the Digital

Alpha processor (Sites, 1992). A basic block is a set of machine instructions with a single entry point and

a single exit point. By definition, a basic block does not contain any branches or loops. Our schedulers can

reorder the machine instructions within a basic block but cannot rewrite, add, or remove any instructions.

Many instruction schedulers built into compilers can insert or delete instructions such as no-ops. However,

we were working directly with the compiled object file and had no method for changing the size of a block

within the object file, only for reordering the block.

The goal of the scheduler is to find a least-cost valid ordering of the instructions in a block. The cost is

defined as the (estimated) execution time of the block. A valid ordering is one that preserves the semantically

necessary ordering constraints of the original code. These constraints are that potentially conflicting reads

and writes (of both registers and memory) are not reordered. We insure validity by creating a dependency

graph that directly represents the necessary ordering relationships in a directed acyclic graph (DAG). The

task of scheduling is to find a least-cost total ordering consistent with the block’s DAG.

Figure 1 gives a sample basic block and its DAG. In this example, the original high-level code is three



UMass-Amherst Tech Report Number 99-23 3

lines of C code (Figure 1a). This C code is compiled into the assembly code shown in Figure 1b. The DAG

in Figure 1c is constructed from Figure 1b in the following way. Instructions 1 and 2 have no dependencies

and thus have no arcs into their nodes. However, instruction 3 reads from a register loaded in instruction

2 which means that instruction 2 must be executed before instruction 3. Also, if the compiler does not

know that X and Y are non-overlapping variables, it must assume instruction 3 depends on instruction 1.

Lastly, instruction 4 increments the value in the same register that instruction 2 reads, which means that

instruction 4 must be executed after instruction 2. An example of using this DAG is shown by the partial

schedule in Figure 1d. Here, instruction 2 has already been scheduled. This means that instructions 1 and

4 are available to be scheduled next. Instruction 3 must wait for instruction 1 to be scheduled before it can

become available.

    P  = P + 1;
    Y = *P;  
    X = V; 2

Available Scheduled

Not Available Available

(d) Partial Schedule(a) C Code 

11:    STQ         R1, X           2

43

(c) Dependence Dag of Instructions

3

1 2

4

(b) Instruction Sequence to be Scheduled

4:    ADDQ     R10, R10, 8  
3:     STQ        R2, Y            
2:    LDQ        R2, 0(R10)   

Figure 1: Example basic block code, DAG, and partial schedule

Using this example basic block (Figure 1) and a single pipeline machine, we can demonstrate how a

small schedule change can affect the running time of a program. Assume that the schedules in Table 1

were to execute on a single pipeline machine where all instructions except loads took one cycle to execute

and loads took two cycles to execute. Using these four instructions, we can create two valid schedules as

shown in the table. When executing schedule A, instruction 2 is executed immediately before instruction 3.

However, instruction 3 depends on the results of instruction 2, which takes two cycles to execute. This causes

a pipeline stall for one cycle. Schedule B fills the second cycle of the load in the pipeline with instruction

4. Instruction 4 does not cause a stall because it has no dependency on the data being loaded in instruction



UMass-Amherst Tech Report Number 99-23 4

2. With the stall, Schedule A takes 5 cycles to execute while Schedule B takes only 4 cycles. This example

illustrates differing execution times with only a small change in instruction ordering. On larger blocks and

machines with multiple pipelines and with the ability to issue multiple instructions per cycle, the difference

can be more dramatic.

Original Schedule Schedule A Cycle count Schedule B Cycle count
1. STQ R1, X Instr 1 1 Instr 1 1
2. LDQ R2, O(R10) Instr 2 2 causes a stall Instr 2 1
3. STQ R2, Y Instr 3 1 Instr 4 1
4. ADDQ R10, R10, 8 Instr 4 1 Instr 3 1
Totals: 5 4

Table 1: Two valid schedules and running times for a single pipelined machines where loads take two cycles
and all other instructions take one cycle.

The Alpha 21064 is a dual-issue machine with two different execution pipelines. One pipeline is more

specialized for floating point operations while the other is for integer operations. Although many instructions

can be executed by either pipeline, dual issue can occur only if the next instruction to execute matches the

first pipeline and the second instruction matches the second pipeline. A given instruction can take anywhere

from one to many tens of cycles to execute. Researchers at Digital have a publicly available 21064 simulator

that also includes a heuristic scheduler for basic blocks. Throughout the paper, we will refer to this scheduler

as DEC. The simulator gives the running time for a given scheduled block assuming all memory references

hit the cache and all resources are available at the beginning of the block.

All of our schedulers used a greedy algorithm to schedule the instructions, i.e., they built schedules

sequentially from beginning to end with no backtracking. This is referred to as list scheduling in compiler

literature. Each scheduler reads in a basic block, builds the DAG, and schedules one instruction at a time

until all instructions have been scheduled. When choosing the best instruction to schedule from a list of

available candidates, each scheduler compares the current best choice with the next available instruction.

The winner of the comparison moves onto the next comparison. After all candidates have been considered,



UMass-Amherst Tech Report Number 99-23 5

the overall winner is scheduled and the DAG is updated to give a new set of candidate instructions. Our

algorithms differ in the way in which instructions are compared at each step.

Moss, et al. (1997) showed that supervised learning techniques could induce excellent basic block in-

struction schedulers for this task. To do this, they trained several different supervised learning methods to

choose the best instruction to schedule given a feature vector over the currently scheduled instructions and

the candidate instructions. Each method learned a preference relation of choosing instruction i over instruc-

tion j at a given point in a partial schedule. The supervised learning methods used were the decision tree

induction program ITI (Utgoff, Berkman, and Clouse, 1997), table lookup, the ELF function approximator

(Utgoff and Precup, 1997), and a feed-forward artificial neural network (Rumelhart, Hinton, and Williams,

1986). More details of each method can be found in Moss, et al. (1997). They were able to show that each

method nearly always made optimal choices (i.e. 96 97% of the time) of instructions to schedule within

blocks of size 10 or less.

Although all of the supervised learning methods performed quite well, they shared several limitations.

Supervised learning requires exact input/output pairs. Generating these training pairs requires an optimal

scheduler that searches every valid permutation of the instructions within a basic block and saves the optimal

permutation (the schedule with the smallest running time). However, this search was too time-consuming

to perform on blocks with more than 10 instructions, because optimal instruction scheduling is NP-hard

(Stefanović, 1997 and Proebsting). This inhibited the methods from learning using larger blocks. Using a

semi-supervised method such as RL or rollouts does not require generating training pairs, which means that

the method can be applied to larger basic blocks and can be trained without knowing optimal schedules.

In order to test each scheduling algorithm, we used the 18 SPEC95 benchmark programs. Ten of these

programs are written in FORTRAN and contain mostly floating point calculations. Eight of the programs

are written in C and focus more on integer, string, and pointer calculations. Each program was compiled



UMass-Amherst Tech Report Number 99-23 6

using the commercial Digital compiler at the highest level of optimization. We call the schedules output by

the compiler ORIG. This collection has 447,127 basic blocks, containing 2,205,466 instructions. Although

92 34% of the blocks in SPEC95 have 10 instructions or less, the larger blocks account for a disproportionate

amount of the running time. The small blocks account for only 30 47% of the overall running time. This may

be because the larger blocks are loops that the compiler unrolled into extremely long blocks. By allowing

our algorithms to schedule blocks whose size is greater than 10, we focus on scheduling the longer running

blocks. We present timing results using the simulator.1

3 Rollouts

Rollouts are a form of Monte Carlo search, first introduced by Tesauro and Galperin (1996) for use

in backgammon. Bertsekas, et al. (1997a,b) explored rollouts in other domains and proved important

theoretical results. In the instruction scheduling domain, rollouts work as follows: suppose the scheduler

comes to a point where it has a partial schedule and a set of (more than one) candidate instructions to add to

the schedule. For each candidate, the scheduler appends it to the partial schedule and then follows a fixed

policy ! to schedule the remaining instructions. When the schedule is complete, the scheduler evaluates the

running time and returns. When ! is stochastic, this rollout can be repeated many times for each instruction

to achieve a measure of the expected outcome. After rolling out each candidate, the scheduler picks the

one with the best average running time. This process is illustrated graphically in Figure 2. In this example,

the scheduler used a stochastic rollout policy !. Each of the three instructions was rolled out five times.

The third instruction had the lowest overall average running time of 5 6 cycles and is chosen as the next

instruction to schedule. The process is then repeated at the next decision point.

1We can include actual timings in a revision, if desired. Time did not permit obtaining them before the deadline.



UMass-Amherst Tech Report Number 99-23 7

6 87 6 9

... ...
1110 7 8 9

97.2 5.6

5 7 5 6 5

... rollout with
policy !

Partial schedule p

Best average instruction

cycle time for schedule

Figure 2: Diagram of the actions of a rollout scheduler when rolling out three different instructions five
times each.

Our first set of rollout experiments compared three rollout policies !. While Bertsekas et al. (1997a,b)

proved that if we used the DEC scheduler as !, we would perform no worse than DEC, an architect proposing

a new machine might not have a good heuristic available to use as !, so we also considered policies more

likely to be available. The obvious choice for an easily available rollout policy ! is the random policy. We

denote the use of the random policy for ! in the rollout scheduler as RANDOM-!. Under this policy, the

rollout makes all choices randomly. We also tested using heuristics for ! in two ways. The first was the

ordering produced by the optimizing compiler ORIG, denoted ORIG-!. The second heuristic policy tested

was the DEC scheduler itself, denoted DEC-!. Although the full heuristics of DEC or ORIG may not be

available to an architect while designing a machine, a simpler set of heuristics (which are more complicated

than RANDOM) may be available. This allows us to understand how heuristics can help rollout schedulers.

The rollout scheduler performed only one rollout per candidate instruction when using ORIG-! and

DEC-! because each is deterministic. Initially, we used 25 rollouts for RANDOM-!. Discussion of how

the number of rollouts affects performance is presented in the next section. After performing a number of



UMass-Amherst Tech Report Number 99-23 8

rollouts for each candidate instruction, we chose the instruction with the best average running time. As a

baseline scheduler, we also scheduled each block with a valid but otherwise completely random ordering. A

time analysis of a rollout scheduler shows that it takes O n2m where m is the number of rollouts and n is the

number of instructions. A greedy scheduler with no rollouts takes only time O n . Because the running time

increases quadratically with the number of instructions multiplied by the number of rollouts, we focused our

rollout experiments on one program in the SPEC95 suite: applu. This program was written in Fortran and

focuses on floating point operations.

Table 2 summarizes the performance of the rollout scheduler under each policy ! as compared to the

DEC scheduler on all 33,007 basic blocks of size 200 or less from applu. Because each basic block is

executed a different number of times and is of a different size, measuring performance based on the mean

difference in number of cycles across blocks is not a fair performance measure. To more fairly assess the

performance, we used the ratio of the weighted execution time of the rollout scheduler to the weighted

execution time of the DEC scheduler where the weights of each block are based on the number of times that

block is executed. More concisely, the performance measure was:

ratio "all blocks rollout scheduler execution time number of times block is executed
"all blocks DEC scheduler execution time number of times block is executed

This means that a faster running time than DEC on the part of our scheduler would give a ratio of less than

one. All execution times in Table 2 are from the simulator.

Although Stefanović (1997) noted that rescheduling a block has no effect on 68% of the blocks of size

10 or less, the random scheduler performed very poorly. On applu, RANDOM was 31% slower than DEC.

Overall, RANDOM is 36 9% slower than DEC. This number is a geometric mean across five runs of all

18 SPEC95 benchmark suites. A detailed summary of RANDOM’s results on all suites in simulation can



UMass-Amherst Tech Report Number 99-23 9

Scheduler Ratio
Random 1.3150
RANDOM-! 1.0560
ORIG-! 0.9895
DEC-! 0.9875

Table 2: Ratios of the weighted execution time of the rollout scheduler to the DEC scheduler. A ratio of
less than one means that the rollouts outperformed the DEC scheduler. The entries in italics are those that
outperformed DEC.

be found in the next section. Without adding any heuristics and just using rollouts with the random policy,

RANDOM-! came within 5% of the running time of DEC. By using ORIG and DEC as !, the ORIG-! and

DEC-! schedulers were able to outperform DEC. Both were about 1 1% faster than DEC. Although this

improvement may seem small, the DEC scheduler is known to make optimal choices 99 13% of the time for

blocks of size 10 or less (Stefanović, 1997). This 1 1% improvement is over all blocks of size 200 or less.

ORIG-! and DEC-! are deterministic policies, so the numbers reported above are only across one run.

RANDOM-! and RANDOM were averaged geometrically across 5 runs. Each run of RANDOM-! on all

blocks of 200 or less from applu took about six hours. This limited the number of runs we could perform.

Part of the motivation behind using rollouts in a scheduler was to obtain efficient schedules without

spending the time to build a such precise heuristic as ORIG and DEC. With this in mind, we explored

RANDOM-! more closely in a follow-up experiment.

Evaluation of the number of rollouts

This experiment considered how the performance of RANDOM-! varied as a function of the number

of rollouts. To cover the possible space of the number of rollouts, we tested 1, 5, 10, 25, and 50 rollouts

per candidate instruction. We also varied the metric for choosing among candidate instructions. Instead

of always choosing the instruction with the best average performance, denoted AVG-RANDOM-!, we also



UMass-Amherst Tech Report Number 99-23 10

experimented with selecting the instruction with the absolute best running time among its rollouts. We

call this BEST-RANDOM-!. We hypothesized that selection of the absolute best path might lead to better

performance overall because it meant selecting the first instruction on the most promising scheduling path.

As before, we compared performance on all 33,007 basic blocks of size 200 or less from applu.

Figure 3 shows the performance of the rollout scheduler as a function of the number of rollouts. Perfor-

mance is assessed in the same way as before: ratio of weighted execution times. Thus, the lower the ratio,

the better the performance. Each data point represents the geometric mean over five different runs. Although

one rollout may not be enough to fully explore a schedule’s potential, performance of RANDOM-!with one

rollout is 16% slower then DEC. This is a considerable improvement from RANDOM’s performance of 31%

slower than DEC on applu. By increasing the number of rollouts from one to five, the performance of AVG-

RANDOM-! improved to within 10% of DEC. Improvement continued as the number of rollouts increased

to 50 but performance leveled off around 5% slower then DEC. As the graph shows, the improvement per

the number of rollouts drops off dramatically from 25 to 50.

Our hypothesis about BEST-RANDOM-! outperforming AVG-RANDOM-!was shown to be incorrect.

Choosing the instruction with the absolute best rollout schedule did not yield any improvement in perfor-

mance over AVG-RANDOM-! over any number of rollouts. We hypothesize that this is due to the stochastic

nature of the rollouts. Once the rollout scheduler chooses an instruction to schedule, it repeats the rollout

process again over the next set of candidate instructions. By choosing the instruction with the absolute best

rollout, there is no guarantee that the scheduler will find that permutation of instructions again on the next

rollout. When it chooses the instruction with the best average rollout, the scheduler has a better chance of

finding a good schedule on the next rollout. The theory developed by Bertsekas,et al. (1997a,b) also predicts

this answer.

Although the performance of the rollout scheduler can be excellent, rollouts are costly in time to run.



UMass-Amherst Tech Report Number 99-23 11

1 " 10 2" "0
1.04

1.06

1.0(

1.1

1.12

1.14

1.16

1.1(

1.2
Performance over number of rollouts

Number of Rollouts

pe
rfo

rm
an

ce

BEST!RANDOM!!

ADE!RANDOM!!

Figure 3: Performance of rollout scheduler with the random model as a function of the number of rollouts
and the choice of evaluation function. The bars above and below each data point are one standard deviation
from the mean.

As mentioned before, using 25 rollouts per block took over 6 hours to schedule one program. Although

the majority of that time is spent in the simulator, a faster simulator will not be able to make the O n2m

rollout scheduler perform as quickly as an O n greedy scheduler. Unless the running time can be improved,

rollouts cannot be used for all blocks in a commercial scheduler or in evaluating more than a few proposed

machine architectures. However, because rollout scheduling performance is high, rollouts could be used to

optimize the schedules on important (long running times or frequently executed) blocks within a program.

With the performance and the timing of the rollout schedulers in mind, we looked to RL to obtain high

performance at a faster running time. A RL scheduler would run in the O n time of a greedy list scheduler.

4 Reinforcement Learning

Reinforcement learning (RL) is a collection of methods for approximating optimal solutions to stochastic

sequential decision problems (Sutton & Barto, 1998). An RL system does not require a teacher to specify



UMass-Amherst Tech Report Number 99-23 12

correct actions. Instead, it tries different actions and observes their consequences to determine which actions

are best. More specifically, in the RL framework, a learning agent interacts with an environment over a series

of discrete time steps t 0 1 2 3 . At each time t, the agent observes environment state, st , and chooses

an action, at , which causes the environment to transition to state st 1 and to emit a reward, rt 1. The next

state and reward depend only on the preceding state and action, but they may depend on these in a stochastic

manner. The objective is to learn a (possibly stochastic) mapping from states to actions, called a policy,

that maximizes the expected value of a measure of reward received by the agent over time. More precisely,

the objective is to choose each action at so as to maximize the expected return, E "#
i 0 $

irt i 1 , where

$ 0 1 is a discount-rate parameter.2

A common solution strategy is to approximate the optimal value function, V , which maps each state to

the maximum expected return that can be obtained starting in that state and thereafter always taking the best

actions. In this paper we use a temporal difference (TD) algorithm (Sutton, 1988) for updating an estimate,

V , of V . After a transition from state st to state st 1, under action at with reward rt 1, V st is updated by:

V st V st % rt 1 $V st 1 V st

where % is a positive step-size (or learning rate) parameter. Here we are assuming that V is represented by

a table with an entry for each state.

The next section describes how we cast the instruction scheduling problem as a task for RL.

2This is the most commonly studied framework for studying RL; many others are possible as well (Sutton & Barto, 1998).



UMass-Amherst Tech Report Number 99-23 13

The RL Scheduler

As with the supervised learning results presented in Moss, et al. (1997), our RL system learned a pref-

erence function between candidate instructions. That is, instead of learning the direct value of choosing

instruction A or of choosing instruction B, the RL scheduler learned the value of choosing instruction A over

choosing instruction B. In an earlier attempt to apply RL to instruction scheduling, Scheeff, et al. (1997)

explored the use of non-preferential value functions. To do this, their system attempted to learn the value

of choosing an individual instruction given a partial schedule without looking at the other candidate instruc-

tions. However, the results with non-preferential value functions were not as good as when the scheduler

learned a preference function between instructions. A possible explanation for this is that the value of a

given instruction is contextually dependent on the rest of the basic block. This is difficult to represent using

local features but is easier to represent when the local features are used to compare candidate instructions.

In other words, it is hard to predict the running time of a block from local information, but it is not as hard

to predict the relative impact of two potential candidates. A number of researchers have pointed out that in

RL, it is the relative values of states that are important in determining good policies (e.g., Utgoff and Clouse,

1991; Harmon et al., 1995; Werbos, 1992).

To adapt the TD algorithm to learning preferences between pairs of instructions, we regarded the sys-

tem’s states to be triples, each consisting of a current partial schedule and two different candidate instruc-

tions. We represented these triples by means of a set of discrete-valued features. Each feature was derived

from knowledge of the DEC simulator. The features and our intuition for their importance are summarized

in Table 3. Although these five features are not enough to completely disambiguate all choices between

candidates, we observed in earlier studies of supervised learning in this problem that these features provide

enough information to support about 98% of the optimal choices in blocks of size 10 or less.



UMass-Amherst Tech Report Number 99-23 14

Feature Name Feature Description Intuition for Use
Odd Partial (odd) Is the current number of instructions

scheduled odd or even?
If TRUE, we’re interested in
scheduling instructions that can
dual-issue with the previous instruc-
tion.

Instruction Class (ic) The Alpha’s instructions can be di-
vided into equivalence classes with
respect to timing properties.

The instructions in each class can be
executed only in certain execution
pipelines, etc.

Weighted Critical Path (wcp) The height of the instruction in the
DAG (the length of the longest chain
of instructions dependent on this
one), with edges weighted by ex-
pected latency of the result produced
by the instruction

Instructions on longer critical paths
should be scheduled first, since they
affect the lower bound of the sched-
ule cost.

Actual Dual (d) Can the instruction dual-issue with
the previous scheduled instruction?

If Odd Partial is TRUE, it is impor-
tant that we find an instruction, if
there is one, that can issue in the
same cycle with the previous sched-
uled instruction.

Max Delay (e) The earliest cycle when the instruc-
tion can begin to execute, relative to
the current cycle; this takes into ac-
count any wait for inputs for func-
tional units to become available

We want to schedule instructions
that will have their data and func-
tional unit available earliest.

Table 3: Features for Instructions and Partial Schedule

The feature Odd Partial (odd) indicates whether the current instruction to schedule is lined up for issue

in the first (even) or the second (odd) pipeline. This is necessary because the 21064 can only dual issue

instructions if the first instruction matches the first pipeline in type and the second instruction matches with

the second pipeline. The feature Actual Dual (d) further addresses this issue by indicating whether or not

the given instruction can actually dual issue with the previously scheduled instruction. This is only relevant

if odd is true. Both odd and d are binary features.

The Instruction Class (ic) feature divides the instructions into 20 equivalence classes, where all instruc-

tions in a class match to a certain pipeline and have the same timing properties. These equivalence classes

were determined from the simulator.

The remaining two features focus on execution times. Weighted Critical Path (wcp) measures the longest



UMass-Amherst Tech Report Number 99-23 15

path from a given instruction to a leaf node in the DAG. Edges in the DAG are weighted by the latency, as

in the pipeline stall example given earlier. By scheduling instructions with higher wcp values earlier, the

lower bound of the block’s running time can be changed. Also, this may free up more instructions choices

for use later in the block. The final feature, Max Delay (e), tells the learning system how many cycles the

given instruction must wait before it can execute (i.e., how many possible stall cycles).

Using these features, states were represented in the following way. Given a partial schedule, p, and two

candidate instructions to schedule, A and B, the value of odd is determined for p, and the values of the other

features are determined for both instructions A and B. Moss, et al. (1997) showed in previous experiments

that the actual value of wcp and e do not matter as much as the relative values between the two candidate

instructions. Thus, for these features we used the signum (&) of the difference of their values for the two

candidate instructions. (Signum returns 1, 0, or 1 depending on whether the value is less than, equal to, or

greater than zero.) Thus, the feature-vector representing each triple p A B , where p is a partial schedule

and A and B are candidate instructions, is:

feature vec p A B odd p ic A ic B d A d B & wcp A wcp B & e A e B

Since there are only 28,800 unique feature vectors of this form, we could use a lookup table to represent

the value function. Further, the learning algorithm described below ensures that the vector representing

p A B is the negative of the one representing p B A ), which means that there are really only 14,400

unique feature vectors. Figure 4 gives an example partial schedule, a set of candidate instructions, and

the resulting feature vectors. In this example, the RL scheduler has a partial schedule p and 3 candidate

instructions A, B, and C. It constructs six feature vectors from this situation as outlined in the table on the

right of the figure. However, it only needs to examine at most three of the vectors to make its choice because



UMass-Amherst Tech Report Number 99-23 16

partial schedule p

A B C
candidate instructions

Instruction pair Feature vector
AB feature vec(p,A,B)
AC feature vec(p,A,C)
BC feature vec(p,B,C)
BA feature vec(p,B,A)
CA feature vec(p,C,A)
CB feature vec(p,C,B)

Figure 4: On the left is a graphical depiction of a partial schedule and three candidate instructions. The table
on the right shows the feature vectors representing this information.

of the symmetry mentioned above.

The RL scheduler makes scheduling decisions using an '-greedy action selection process (Sutton and

Barto, 1998). For each partial schedule p, the scheduler finds the most preferred action through comparison

of the values given by the current value function to all the instruction pairs (given p). With probability

1 ' , 0 ' 1, the most preferred instruction is scheduled, i.e., appended to p. With probability ' a

random but legal instruction is scheduled. We used several values for ' as described below. This process is

repeated until all instructions in the block have been scheduled.

We applied the TD algorithm (Equation 4) during this scheduling process as follows. Treating the fea-

ture vectors as states, we backed up values using information about which instruction was scheduled. For

example, using the partial schedule and candidate instructions shown in Figure 4, after appending instruc-

tion A to partial schedule p, the RL scheduler updates the values for p A B and p A C according to

Equation 4. It also updates the values of p B A and p C A with the negative of the reward used for

p A B and p A C respectively.

Note that since the value function is only defined for states where choices are to be made, the final

reward is assigned to the last choice point in a basic block even if further instructions are scheduled from



UMass-Amherst Tech Report Number 99-23 17

that point (with no choices made).

Scheeff, et al. (1997) previously experimented with RL in this domain. However, the results were not as

good as they had hoped. The difficulty seems to lie in finding the right reward structure for the domain (as

well as learning preferences instead of pure values). A reward based on the number of cycles that it takes

to execute the block does not work well because it punishes the learner on long blocks. To normalize for

this effect, Scheeff, et al. (1997) rewarded the RL scheduler based on cycles-per-instruction (CPI). Although

this reward function did not punish the learner for scheduling longer blocks, it also did not work particularly

well. This is because CPI does not account for the fact that some blocks have more unavoidable idle time

than others. We experimented with several reward functions to account for this variation across blocks. Each

reward function is described in the next section along with the results of learning using that function.

Experimental Results

To test the RL scheduler, we used all 18 programs in the SPEC95 suite. To accelerate learning, we

trained only on blocks of size 100 or less. However, this eliminated only a fraction of a percent of the total

basic blocks in the 18 programs. To establish a baseline for our results, we also scheduled all blocks in all

benchmark programs in SPEC95 using uniformly random scheduling choices. These results are summarized

in Table 4. The performance metric is the same as for the rollout experiments (i.e., Equation 1). Each ratio

is a geometric mean across 5 runs. Although the overall mean is 30% slower than DEC, several applications

ran more than two times slower than DEC.

We experimented with two different reward functions. All reward functions gave zero reward until the

RL scheduler had completely scheduled the block. The first final reward we used was:

r
cycles to execute block using DEC cycles to execute block using RL

number of instructions in block



UMass-Amherst Tech Report Number 99-23 18

Fortran programs C programs
App Ratio App Ratio App Ratio App Ratio
applu 1.294 apsi 1.371 cc1 1.121 compress95 1.106
fpppp 1.343 hydro2d 1.266 go 1.176 ijpeg 1.214
mgrid 2.159 su2cor 1.387 li 1.077 m88ksim 1.111
swim 2.070 tomcatv 1.155 perl 1.148 vortex 1.103
turb3d 1.518 wave5 1.417 C geometric mean: 1.131
Fortran geometric mean: 1.468 Overall geometric mean: 1.307

Table 4: Simulated performance of the random scheduler on each application in SPEC95 as compared to
DEC on all blocks of size 100 or less.

This rewards the RL scheduler positively for outperforming the DEC scheduler and negatively for perform-

ing worse than the DEC scheduler. This reward is normalized for block size.

We also wanted to test learning with a reward that did not depend on the presence of the DEC scheduler.

The second final reward that we used was:

r
weighted critical path of DAG root cycles to execute block using RL

number of instructions in block

The weighted critical path (wcp) helps to solve the problem created by blocks of the same size being easier

or harder to schedule than each other. When a block is harder to execute than another block of the same

size, wcp tends to be higher, thus causing the learning system to receive a different reward. The feature

wcp is correlated with the predicted number of execution cycles for the DEC scheduler with a correlation

coefficient of r 0 9. Again, the reward is normalized for block size.

For both reward functions described above, we trained the RL scheduler on all blocks of size 100 or

less from compress95. This excluded only one block from compress95. The parameters were ' 0 5 for

the first 100 epochs and ' 0 25 for the second 100 epochs. An epoch is one pass through the entire

program scheduling all basic blocks of the given size. The learning rate, %, was 0 0001. After each epoch



UMass-Amherst Tech Report Number 99-23 19

0 20 40 60 (0 100 120 140 160 1(0 200
!0.4"

!0.4

!0.3"

!0.3

!0.2"

!0.2

!0.1"

!0.1

!0.0"

dec

wcp

Mean cost difference on all blocks of size 100 or less

Epochs

Di
ffe

re
nc

e 
in

 c
yc

le
 ti

m
e

0 20 40 60 (0 100 120 140 160 1(0 200
1.02

1.04

1.06

1.0(

1.1

1.12

1.14

1.16

dec

wcp

Weighted performance Pratio to DECR on blocks of size 100 or less

Epochs

Pe
rfo

rm
an

ce
 ra

tio
Figure 5: The figure on the left shows the difference in cost across all blocks in compress95 over the 200
training epochs for both of the reward functions we tested. The figure on the right shows the corresponding
weighted performance of the system as compared to DEC for both rewards.

of training, the learned value function was evaluated greedily (' 0). Figure 5 shows the results of each

reward function on the same performance ratio as before and on the mean difference in cycle time across

blocks without regard to how often each block is executed.

As the figure shows, the RL scheduler performed the best using a reward function based on the DEC

scheduler. To test the applicability of the learned value function to other programs we used the best value

function across the first 200 epochs to greedily schedule the other 17 benchmarks. The results are shown in

Table 5.

Fortran programs C programs
App Ratio App Ratio App Ratio App Ratio
applu 1.093 apsi 1.174 cc1 1.042 compress95 1.024
fpppp 1.165 hydro2d 1.098 go 1.042 ijpeg 1.046
mgrid 1.465 su2cor 1.161 li 1.018 m88ksim 1.042
swim 1.375 tomcatv 1.057 perl 1.043 vortex 1.030
turb3d 1.231 wave5 1.197 C geometric mean: 1.036
Fortran geometric mean: 1.196 Overall geometric mean: 1.122

Table 5: Simulated performance of the greedy RL-scheduler on each application in SPEC95 as compared to
DEC using the value function trained on compress95 with the DEC scheduler reward function.



UMass-Amherst Tech Report Number 99-23 20

Table 6 shows the same ratios for learning with the wcp reward function.

Fortran programs C programs
App Ratio App Ratio App Ratio App Ratio
applu 1.247 apsi 1.307 cc1 1.059 compress95 1.031
fpppp 1.328 hydro2d 1.192 go 1.082 ijpeg 1.054
mgrid 1.812 su2cor 1.326 li 1.040 m88ksim 1.040
swim 1.076 tomcatv 1.089 perl 1.056 vortex 1.039
turb3d 1.470 wave5 1.348 C geometric mean: 1.050
Fortran geometric mean: 1.306 Overall geometric mean: 1.185

Table 6: Simulated performance of the greedy RL-scheduler on each application in SPEC95 using the best
learned value function training on compress95 with the wcp reward function.

By training the RL scheduler on compress95 for 200 epochs, we have more than halved the difference

between RANDOM and DEC for problems on which the RL scheduler had never been trained. This demon-

strates good generalization across basic blocks. Although there are benchmarks that perform much more

poorly than the rest (mgrid and swim), those benchmarks perform more than 100% worse than DEC un-

der the RANDOM scheduler. Although the RL scheduler is still inferior to DEC (46% and 37% slower

respectively), it has more than halved the difference between RANDOM and DEC.

Although these numbers are promising, we also experimented with further training and testing on each

of the benchmarks. Starting with the value function learning from compress95, we trained on each of the

other benchmark suites for 10 epochs and greedily evaluated (i.e., ' 0) the updated value function at the

end of each epoch. The best number from each of the 10 runs is reported in Table 7.

Discussion of Results

The results reveal several interesting effects. First, as one can tell from our splits of the programs into

“Fortran” and “C” categories, there is a significant difference in performance between the two. This may be

related to several factors: the code comes from different compilers; the Fortran programs use floating point



UMass-Amherst Tech Report Number 99-23 21

Fortran programs C programs
App Ratio App Ratio App Ratio App Ratio
applu 1.115 apsi 1.163 cc1 1.046 compress95 1.024
fpppp 1.153 hydro2d 1.108 go 1.039 ijpeg 1.015
mgrid 1.367 su2cor 1.184 li 1.001 m88ksim 1.015
swim 1.405 tomcatv 1.076 perl 1.031 vortex 1.020
turb3d 1.216 wave5 1.153 C geometric mean: 1.024
Fortran geometric mean: 1.190 Overall geometric mean: 1.113

Table 7: Simulated performance of the greedy RL-scheduler on each application in SPEC95 after 10 epochs
of training from the compress95 learned value function.

a lot (floating point instructions have high latencies) while the C ones do not; and we trained on a C program

and even in the re-training, did not give much time for tuning to a rather different usage of instructions. This

shows a clear opportunity for further work. For example, we could train using some Fortran blocks as well,

or train (and evaluate) separately for Fortran and C, since the two are processed by distinct compilers and

could have distinct instruction schedulers in practice.

Second, the additional training of 10 epochs seemed to help noticeably. This is interesting in that using

a large number of epochs actually degraded performance, suggesting that after an initial short period of

learning, the system was starting the unlearn (and perhaps later relearn).

Third, the wcp reward function, which is more realistic to have available in practice than the DEC

simulator reward function, while doing better than random, did not perform as well as the simulator reward

function. This is another area presenting opportunities for further work.

Finally, the “oscillations” apparent in the learning curves suggest that the problem has “hidden state”.

Actually, we know that the features we used do not capture everything needed to do perfect scheduling,

yet the DEC scheduler uses only those features and does quite well. Still, perhaps some small number of

additional features would help resolve or reduce the learning oscillations and improve performance.

There are several characteristics of the problem that perhaps are presenting themselves here. One is that



UMass-Amherst Tech Report Number 99-23 22

each basic block is a problem instance, so unlike learning problems such as puddle worlds, we must learn

general facts to carry over to other instances. It is as if we were asked to learn on several puddle worlds and

then asked to generalize to other puddle worlds that are “similar” in some way that is not easy to articulate.

Straightforward reward schemes do not work well, since the cost of interest (execution time) is not a good

measure of the quality of a schedule—our two reward functions intend to capture the “degree of difficulty”

of the problem instance, and reward based on that. Still, it seems clear that our wcp measure is not the best

metric of difficulty. On the other hand, our RL scheme clearly gains significant competency at the task.

5 Conclusions

The advantages of the RL scheduler are its performance on the task, its speed, and the fact that it does

not rely on any heuristics for training. Each run was much faster than with rollouts and the performance was

much better than the performance of RANDOM. In a system where multiple architectures are being tested,

RL could provide a good scheduler with minimal setup and training.

We have demonstrated two methods of instruction scheduling that do not rely on having heuristics and

that perform quite well. Future work could address tying the two methods together while retaining the speed

of the RL learner, issues of global instruction scheduling, scheduling loops, and validating the techniques

on other architectures.

Acknowledgments

We thank John Cavazos and Darko Stefanović for setting up the simulator and for prior work in this

domain, along with Paul Utgoff, Doina Precup, Carla Brodley, and David Scheeff. We wish to thank An-

drew Fagg, Doina Precup, and Balaraman Ravindran for comments on earlier versions of the paper. We also



UMass-Amherst Tech Report Number 99-23 23

thank the Center for Intelligent Information Retrieval for lending us a 21064 on which to test our schedules.

This work is supported in part by the National Physical Science Consortium, Lockheed Martin, Advanced

Technology Labs, and NSF grant IRI-9503687 to Roderic A. Grupen and Andrew G. Barto. We thank

various people of Digital Equipment Corporation, for the DEC scheduler and the ATOM program instru-

mentation tool (Srivastava & Eustace, 1994), essential to this work. We also thank Sun Microsystems and

Hewlett-Packard for their support.

References

Bertsekas, D. P. (1997). Differential training of rollout policies. In Proc. of the 35th Allerton Conference
on Communication, Control, and Computing. Allerton Park, Ill.

Bertsekas, D. P., Tsitsiklis, J. N. & Wu, C. (1997). Rollout algorithms for combinatorial optimization.
Journal of Heuristics.

DEC (1992). DEC chip 21064-AA Microprocessor Hardware Reference Manual (first edition Ed.).
Maynard, MA: Digital Equipment Corporation.

Harmon, M. E., Baird III, L. C. & Klopf, A. H. (1995). Advantage updating applied to a differential game.
In G. Tesauro, D. Touretzky, T. L. (Ed.), Advances in Neural Information Processing Systems:
Proceedings of the 1994 Conference (pp. 353–360). San Mateo, CA: Morgan Kaufmann.

Moss, J. E. B., Utgoff, P. E., Cavazos, J., Precup, D., Stefanović, D., Brodley, C. E. & Scheeff, D. T.
(1997). Learning to schedule straight-line code. In Proceedings of Advances in Neural Information
Processing Systems 10 (Proceedings of NIPS’97). MIT Press.

Proebsting, T. Least-cost instruction selection in DAGs is NP-Complete.
http://www.research.microsoft.com/ toddpro/papers/proof.htm.

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986). Learning internal representations by error
propagation. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, vol.1: Foundations. Cambridge, MA: Bradford
Books/MIT Press.

Scheeff, D., Brodley, C., Moss, E., Cavazos, J. & Stefanović, D. (1997). Applying reinforcement learning
to instruction scheduling within basic blocks. Technical report, University of Massachusetts, Amherst.

Sites, R. (1992). Alpha Architecture Reference Manual. Maynard, MA: Digital Equipment Corporation.

Srivastava, A. & Eustace, A. (1994). ATOM: A system for building customized program analysis tools. In
Proceedings ACM SIGPLAN ’94 Conference on Programming Language Design and Implementation
(pp. 196–205).



UMass-Amherst Tech Report Number 99-23 24

Stefanović, D. (1997). The character of the instruction scheduling problem. University of Massachusetts,
Amherst.

Sutton, R. S. (1988). Learning to predict by the method of temporal differences. Machine Learning, 3,
9–44.

Sutton, R. S. & Barto, A. G. (1998). Reinforcement Learning. An Introduction. Cambridge, MA: MIT
Press.

Tesauro, G. & Galperin, G. R. (1996). On-line policy improvement using monte-carlo search. In Advances
in Neural Information Processing: Proceedings of the Ninth Conference. MIT Press.

Utgoff, P. E., Berkman, N. & Clouse, J. (1997). Decision tree induction based on efficient tree
restructuring. Machine Learning, 29(1), 5–44.

Utgoff, P. E. & Clouse, J. A. (1991). Two kinds of training information for evaluation function learning. In
Proceedings of the Ninth Annual Conference on Artificial Intelligence (pp. 596–600). San Mateo, CA:
Morgan Kaufmann.

Utgoff, P. E. & Precup, D. (1997). Constructive function approximation. Technical Report 97-04,
University of Massachusetts, Amherst.

Werbos, P. (1992). Approximate dynamic programming for real-time control and neural modeling. In
D. A. White & D. A. Sofge (Eds.), Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive
Approaches (pp. 493–525). New York: Van Nostrand Reinhold.


