
Using Partial Order Techniques to Improve Performance of Data
Flow Analysis Based Verification

Gleb Naumovich, Lori A. Clarke, and Jamieson M. Cobleigh

email: naumovic clarke jcobleig @cs.umass.edu
Laboratory for Advanced Software Engineering Research

Computer Science Department
University of Massachusetts

Amherst, Massachusetts 01003

1 Introduction
Finite state verification techniques automatically check that
a software system conforms to a behavior specification or
property. Such techniques are becoming extremely im-
portant with the proliferation of distributed systems. Dis-
tributed systems are more difficult to understand and rea-
son about than sequential ones because of the potential non-
deterministic interleaving of execution sequences from dif-
ferent threads of control, or tasks. While testing demon-
strates the actual behavior of a system on selected test cases,
distributed systems may not even produce the same results
when re-executed with these same test cases. Finite state
verification techniques, however, are capable of verifying a
restricted, but interesting, class of properties for all possible
executions of a program for all possible test cases. Unfor-
tunately, in practice, finite state verification tools often re-
quire significant computing resources, and so there is a need
for optimizations that improve the performance of such tech-
niques.

One popular method for improving the performance of finite
state verification techniques, without compromising the re-
sults of their analyses, is partial order optimization. Such an
optimization is based on the observation that most represen-
tations of distributed systems, used in analysis, model the ex-
ecution of the system as a total order between occurrences of
events local to the tasks that execute in parallel. This means
that multiple executions exist that differ from each other only
by the relative order of appearance of events occurring in
different tasks. In many cases, these differences are not im-
portant for checking the property of interest. In such cases,
partial order reduction techniques choose and reason about a
single representative ordering.

Necessarily, whether or not two interleavings can be con-
sidered equivalent depends on the property being checked.
Thus, all partial order methods are defined for specific kinds
of properties. The approaches of Godefroid and Wolper [6],

This research was partially supported by the Defense Advanced Re-
search Projects Agency and the Air Force Research Laboratory/IFTD under
agreement F30602-97-2-0032. The views, findings, and conclusions pre-
sented here are those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, either expressed or
implied, of the Defense Advanced Research Projects Agency, the Air Force
Research Laboratory/IFTD, or the U.S. Government.

Valmari [12], and Katz and Peled [8] use partial orders for
verifying safety properties. Peled [11] proposed a partial or-
der method that allows checking stuttering-close Buchi au-
tomata properties.

Partial order methods have been shown to be successful in
improving the performance of model checkers. One case
study [1] showed that for many situations these techniques
significantly improve both time and space requirements of
the SPIN [7] model checker, thus enabling analysis of bigger
problems. Godefroid, Peled, and Staskauskas [5] describe
the design of a partial-order algorithm for a formal validation
tool used for verification of several subsystems within Lu-
cent Technologies 5ESS telephone switching system. This
case study indicated that partial order approaches may sig-
nificantly reduce analysis time for industrial software. Gode-
froid [3] uses partial order techniques in VeriSoft, a verifica-
tion tool for distributed systems implemented in C or C++.
VeriSoft was demonstrated to be effective in verifying an ex-
ample of the Lucent Technologies’ Heart-Beat Monitor of a
telephone switch system [4].

To date, partial order reduction techniques have been ap-
plied in the context of model checking approaches. Such
approaches enumerate all possible states of the system and
reason about these states. In this paper we propose a partial
order reduction for FLAVERS, a finite verification approach
based on data flow analysis [2]. Although the program model
that FLAVERS uses does not enumerate all possible states of
the concurrent system under analysis, it uses a special type of
edges to represent possible interleavings between events in
different processes. The optimization that we propose in this
paper uses partial orders to eliminate some of these edges,
thereby improving efficiency of the FLAVERS analysis.

We evaluated the benefits of this optimization on a number
of small, distributed programs. As expected, it was relatively
easy to determine if the partial order optimization technique
was applicable to a problem. For these 92 cases, the opti-
mization was applicable to 35 of them. On average, for all
applicable cases, the speedup of the FLAVERS analysis due
to the use of this optimization was 21%. For one case, the
optimization resulted in an analysis speedup of 91%.

In the next section we present a high-level overview of

1

FLAVERS and give a detailed description of the system
model that FLAVERS uses. Section 3 describes the par-
tial order optimization approach that allows us to remove
a significant number of edges from the FLAVERS program
model. In Section 4 we present our experimental results. We
conclude with observations and future research directions.

2 FLAVERS
Overview
FLAVERS (FLow Analysis for VERification of Systems)
compactly represents a concurrent software system with a
Trace Flow Graph (TFG) and uses an efficient fixed point
data flow algorithm to determine if the behavior described
by the TFG is consistent with a user-specified, event-based,
safety property. The results of the FLAVERS analysis are
conservative; in other words, the technique never claims that
a property is verified when it is not. For efficiency rea-
sons, similar to other finite state verification techniques, the
TFG model used by FLAVERS over-approximates the po-
tential executable sequences of events associated with the
program. This leads to the possibility of spurious results,
where FLAVERS reports a property violation when there is
in fact no real executable behavior of the system that would
violate that property. If FLAVERS detects a property viola-
tion, it provides the user with example paths that illustrate
this property violation. By examining such paths users can
often determine if the result of the analysis is spurious or not.

FLAVERS provides a flexible way for improving the preci-
sion of the analysis. Analysts do this by adding feasibility
constraints, which specify additional semantic information
about the system and which are used to limit the exploration
of the TFG to only those paths that satisfy these feasibility
constraints. If the constraints are well chosen by the user,
spurious paths are eliminated and the subsequent analysis
run will either verify the property or expose a counter exam-
ple that corresponds to real executable behavior and, thus,
exposes a bug in the system. FLAVERS provides automated
support for creating several classes of feasibility constraints,
for example constraints that model boolean, counter, or enu-
merated variables or model control flow through a specific
thread of control.

Unfortunately, the use of constraints leads to the need to
solve large and complex data flow problems, since the com-
plexity of the FLAVERS analysis algorithm is exponential
in the number of constraints, and so, if many constraints are
used, the analysis algorithm has to deal with vast amounts
of data. This led us to search for techniques for improving
space and time characteristics of FLAVERS. In order to un-
derstand the technique proposed in this paper, in the remain-
der of this section we describe the TFG model in detail.

TFGModel of Ada Programs
The TFG for an Ada program is based on the control flow
graphs (CFGs) for all tasks. Additional nodes and edges
are added to the TFG to represent intertask communications.

Specifically, if the code region represented by node in
one task contains a synchronization statement that can cor-
respond to one represented by node in another task, a new
node is added with incoming edges from and and out-
going edges to all successors of and . This is illustrated
in Figure 1(c). A unique initial node that has no incoming
edges and has outgoing edges to the start nodes of all CFGs
and a unique final node that has no outgoing edges and has
incoming edges from the end nodes of all CFGs are added to
the TFG.

Formally, a TFG is a labeled directed graph
initial final label , where is the set of

nodes, is the set of edges, initial final
are unique initial and final nodes, is the set of labels on
the nodes of the graph, and label is a mapping from nodes
to labels in . The set of all nodes from the CFGs for all
tasks forms the set of local TFG nodes. All other nodes,
except the initial and the final nodes, represent intertask
communications and thus are called communication nodes.

Let be the set of tasks in the program. In the TFG for an
Ada program, nodes may belong to one (local nodes), two
(communication nodes), or no (initial and final nodes) tasks.
We use function task to associate with each TFG
node the set of tasks it belongs to.

FLAVERS represents all properties and constraints as finite
state automata (FSA). Transitions in these FSAs are labels
from the TFG for the system; the FLAVERS analysis algo-
rithm propagates the states of these automata throughout the
TFG. Let be the set containing the property and all con-
straint automata used in the analysis. Let be any automa-
ton, either the property or a constraint. Let be the alpha-
bet of this automaton, that is, all events used in the transitions
in this automaton. Define alphabet to contain all events
in the property and constraint automata: .
Events from the TFG alphabet that are not present in
are not used by the property and constraints, and so they can
be replaced with a single event . (In the following we as-
sume that .)

Figure 1(a) shows a program that consists of two communi-
cating Ada tasks, Figure 1(b) shows the CFGs for these two
tasks with nodes labeled with the corresponding Ada pro-
gram statements 1, and Figure 1(c) gives the TFG for this
Ada program. The local nodes in this TFG have the same ID
numbers associated with them as the corresponding nodes
in the CFGs. The diamond-shaped nodes are the initial and
the final nodes of this TFG and two communication nodes,
labeled and . The node labeled represents the com-
munication between the tasks at entry call , and node
labeled represents the communication at entry call .

1Only the two nodes labeled and do not directly
correspond to any executable statements in the code. These two nodes rep-
resent the fact that the value of variable is on the first branch of the

statement and on the other branch.

2

task body T1 is
begin
 read(x);
 if (x) then
 T2.E1;
 else
 T2.E2;
 end if;
end T1;

task body T2 is
begin
 select
 accept E1;
 or
 accept E2;
 end select;
end T2;

(a) Code

read (x)

if (x)

 begin T1

end T2

begin T2

select

acc E2acc E1

T2.E1T2.E2

end T1

T1 T2

 x==true x==false

1

3

4

7

8

9

1211

10

13

2

5

6

(b) CFGs

read (x)

initial

E2

E1
acc E2acc E1

final

x==falsex==true

T2.E1 T2.E2

 1

2

3

5

6

7

8

9

12

4

10

11

13

(c) TFG

Figure 1: An example

read (x)

initial

E2

acc E2acc E1

final

x==falsex==true

T2.E1 T2.E2

E1

2

4

5

6

7

8

11 12

13

Figure 2: The TFG after removal of some -labeled nodes

Note that some nodes in the TFG are labeled . We assume
that the labels on the corresponding nodes in the CFG are not
in the alphabet for this example.

Theoretically, all -labeled nodes can be removed from the
TFG in a safe manner, with the results of the FLAVERS
analysis on the reduced TFG being the same as the results
on the original TFG. When a -labeled node is removed, an
edge is constructed from each predecessor of this node to
each successor of this node. For nodes with multiple suc-
cessors and predecessors this may lead to a quadratic blow-
up in the number of control edges in the graph. We use a
simple heuristic that removes -labeled nodes only where
this does not lead to an increase in the number of edges in
the TFG. In addition, we do not remove -labeled nodes in
the situation where this would result in two communication
nodes being direct successors of one another. Figure 2 shows
the TFG from Figure 1(c) after the -labeled nodes that are
not immediate predecessors of communication nodes are re-
moved. The dashed edges between the nodes in Figure 2 are
explained below.

In addition to edges that represent control flow within a sin-
gle task, TFGs include edges that represent the fact that

during execution of a concurrent program, execution of a
statement may immediately precede execution of a statement
from another task. Thus, we divide the set of TFG edges
into two sets, one including edges that represent control flow
within a task, and another including edges that represent the
may immediately precede relation. The latter kind of edges
is referred to as MIP edges. For Ada programs, we create a
MIP edge from node to node and a MIP edge from node

to node if there is a possibility that during some execu-
tion of the system regions of code that correspond to these
two nodes may execute in parallel and if neither of nodes
and is a -labeled node2. We use an efficient data flow
algorithm [9] that computes a conservative estimate of such
node pairs . Figure 2 shows the TFG where the MIP
edges are shown as dashed lines. Note that each such line
represents two edges, going in opposite directions.

The number of MIP edges in the TFG for a program depends
on the synchronization pattern between the tasks in this pro-
gram and the number of nodes with labels other than . In
general, the number of MIP edges is quite large, far exceed-
ing the number of control edges. This means that the anal-
ysis algorithm has to propagate information through a large
number of edges in the graph, which may lead to poor perfor-
mance. Thus, a reduction in the number of MIP edges would
reduce the run time of the analysis algorithm. In addition,
such a reduction could improve the precision of the analysis
(the number of false negative results), because some paths
through the graph that do not correspond to any real execu-
tions of the program would be eliminated. Note that such a
reduction has to be safe with respect to a property, which
means that the reduction does not eliminate sequences of
events that correspond to real program executions that vio-
late the property. In the next section we introduce such a
safe MIP edge reduction based on partial orders.

3 Reduction of MIP Edges
2The traversal of such -labeled nodes from different tasks does not af-

fect the property and constraints.

3

initial

final

x==falsex==true

T2.E1 T2.E2

read (x)

acc E1 acc E2

2

4

5

6

7

8

11 12

13

E1

E2

Figure 3: The TFG after the MIP optimization

We identify two disjoint subsets, local and global, of the
TFG alphabet , where local contains all events from
that satisfy the condition that every automaton containing
in its alphabet contains events from a single task in the TFG.
Formally, event local if

automaton
task

task label label

Note that this condition never holds for labels on communi-
cation nodes, because for any communication node with
label , set task contains some two tasks and and so

.

global is defined simply as local . We call
events from local local events and events from global
global events. Also, we refer to nodes labeled with lo-
cal events locally-labeled and to nodes labeled with global
events globally-labeled. For the purposes of this optimiza-
tion, we define the initial and the final node of the TFG to be
globally-labeled. Note that this separation of the TFG nodes
into locally- and globally-labeled is property- and constraint-
specific.

The idea behind the partial order reduction of the MIP edges
is based on this distinction between locally- and globally-
labeled nodes. Intuitively, the order of the execution of
two locally-labeled nodes that belong to different tasks does
not matter for checking of the property of interest, because
traversal of these two nodes by the analysis algorithm af-
fects disjoint subsets of the property and constraint automata.
Thus, there is no need to represent interleavings of such two
locally-labeled nodes by creating MIP edges between them.

To define the reduction algorithm more precisely, we intro-
duce the notion of marked nodes. To compute such nodes,
we locate all non- labeled nodes in the TFG such that
there is a path in the task of from some globally-labeled
node to , where the only nodes on this path between
and are -labeled nodes. (Note that a path can be a single
edge if is ’s direct predecessor.) We call such nodes

marked. All other nodes are unmarked. Since each commu-
nication node belongs to two tasks, it is marked if there is a
path in one of these tasks from some globally-labeled node
to this communication node, where the only nodes on this
path are -labeled nodes.

Once all marked nodes in the TFG are computed, we remove
an existing MIP edge from node to node if either (1)
is not a globally labeled node and not a direct predecessor of
a communication node; or (2) is not a marked node.

Figure 3 shows the TFG for our example after this partial
order reduction of MIP edges was performed. The nodes
marked by the reduction algorithm have thicker boundaries.
Using this optimization we are able to remove 14 of the 20
MIP edges in Figure 2. For example, the MIP edge from
node 2 to node 12, present in Figure 2, was removed by the
optimization because node 2 is a locally-labeled node that
does not have communication nodes as successors. The MIP
edge from node 11 to node 6 was removed because node 6 is
not marked. (Note that all MIP edges in Figure 3 are unidi-
rectional, while all MIP edges in Figure 2 are bidirectional.)

We proved that this partial order-based reduction is safe.
This proof is based on the induction on the number of MIP
edges removed by the optimization. We prove that a removal
of a MIP edge satisfying the requirements above only elim-
inates paths in the TFG that do not violate the property or
do not correspond to real program executions. We do not
present this proof here because of space limitations.

4 Experimental Results
We ran an experiment that evaluates the speedup obtained by
using this partial order optimization for a number of small
concurrent Ada benchmarks. In the following discussion of
the results we will refer to the version of FLAVERS that uses
this optimization as the optimized version and to the version
of FLAVERS that does not use this optimization as the un-
optimized version. We used a Pentium II 400 MHz, with 384
Mb of memory, running Windows NT 4.0 with Service Pack
3. The FLAVERS toolset is implemented in Java; we ran our
experiments on the JVM supplied with Visual Cafe 2.5a.

In total, we used 16 different programs, ranging from 2 to
16 tasks and from 84 to 750 lines of code, and 41 different
properties. Some of these programs are scalable, and so in a
number of cases we used several sizes of the same program.
This scaling of the programs and also using different sets
of constraints and different properties yielded 92 different
problems. For each analysis run, we measured the number
of -, locally-, and globally-labeled nodes in the TFG, as
well as the number of MIP edges in the original TFG and the
number of MIP edges left after the reduction was performed.
We also measured the time taken by the optimization and the
subsequent run of the FLAVERS analysis algorithm.

Out of these 92 examples that we ran, in 57 cases the par-
tial order optimization was not applicable, either because the

4

Nodes Unoptimized Optimized
System Local Global MIP Edges MIP Time, s State Prop, s MIP Edges MIP Time, s State Prop, s
Chiron 45 68 51 236 0.02 1.51 166 0.19 1.37
Chiron 45 68 51 236 0.02 0.71 166 0.18 0.45
Chiron 45 70 51 236 0.02 0.69 166 0.18 0.46
Chiron 45 68 51 236 0.02 1.60 166 0.13 1.04
Chiron 45 68 51 236 0.01 0.70 166 0.19 0.46
Cyclic 2 17 16 9 190 0.01 0.25 50 0.09 0.11
Cyclic 2 17 12 9 116 0.01 0.11 59 0.10 0.09
Cyclic 4 35 16 21 608 0.02 0.91 273 0.10 0.21
Cyclic 4 33 32 21 1552 0.04 70.91 448 0.14 6.59
DPFM 2 8 18 8 136 0.01 0.08 64 0.09 0.08
DPFM 2 8 9 8 80 0.01 0.08 64 0.08 0.07
DPFM 3 11 27 10 216 0.01 0.10 104 0.09 0.09
DPFM 3 12 9 10 96 0.01 0.08 96 0.09 0.09
DPFM 7 23 63 18 536 0.02 2.02 264 0.13 0.92
DPFM 7 24 9 18 160 0.01 0.21 160 0.10 0.21
DPFM 10 32 90 24 776 0.04 66.52 384 0.18 25.22
DPFM 10 33 9 24 208 0.01 0.20 208 0.11 0.20
DPH 2 22 4 16 122 0.01 0.08 110 0.09 0.08
DPH 3 32 4 22 282 0.01 1.80 266 0.09 1.77
MMGT 47 16 78 1312 0.04 3.27 1280 0.15 3.19
TWH-P 5 11 84 4480 0.19 1.91 2933 0.25 0.76
TWH-P 11 7 16 232 0.01 0.09 202 0.09 0.08
TWH-I 5 11 102 6534 0.21 352.81 4644 0.37 221.94
TWH-I 13 7 18 276 0.01 0.09 243 0.09 0.09
RW 2 14 9 12 112 0.01 0.09 96 0.09 0.08
RW 2 15 5 12 88 0.01 0.09 88 0.09 0.08
RW 4 26 9 20 176 0.01 0.16 160 0.10 0.16
RW 4 27 5 20 152 0.01 0.16 152 0.10 0.16
RW 6 38 9 28 240 0.01 0.99 224 0.10 0.99
RW 6 39 5 28 216 0.01 0.92 216 0.10 0.92
RW 8 50 9 36 304 0.01 13.80 288 0.11 13.37
RW 8 51 5 36 280 0.01 9.56 280 0.12 9.57
Ring 2 13 26 20 556 0.02 0.31 388 0.10 0.24
Ring 3 19 39 28 1992 0.05 5.17 1270 0.15 3.25
Ring 4 25 52 36 4356 0.14 193.62 2692 0.29 117.82

Figure 4: Results of the experiment

examples had no MIP edges to start with3 or had no local
events. Note that for such cases the partial order optimization
does not have to be carried out in full, since one pass over
the TFG, property, and constraints is sufficient to figure out
if any TFG nodes are locally-labeled. Here we present the
results only for the 35 examples where the TFG contained
some MIP edges and local events.

Figure 4 shows the results of running the two versions of
FLAVERS on these 35 examples. The first column of the
table in gives the name of the program used in the example.
For some examples we checked multiple properties, which
explains the presence of the same program name in multi-
ple rows. Most of these programs are well-known examples

3Although all examples are concurrent, in some of them all threads of
control but one contained only -labeled nodes, and so no MIP edges were
created, according to the simple optimization described in the beginning of
Section 3.

from the concurrency literature, such as the dining philoso-
phers and readers-writers examples.

The next three columns list the number of -, locally-, and
globally-labeled nodes in the TFG. The columns 4-7 list the
number of MIP edges, time for adding the necessary MIP
edges to the TFG, and the time for the FLAVERS analysis
algorithm in the unoptimized version of the algorithm. The
last three columns are the same data for the optimized ver-
sion of the algorithm, where the time for adding the neces-
sary MIP edges to the TFG includes the time for performing
the partial order optimization4.

It can be seen from the table in Figure 4 that in some cases

4Instead of implementing this approach in the way described in Sec-
tion 3, where some of the existing MIP edges are removed as an optimiza-
tion, in our implementation we create only those MIP edges that would not
be removed by the optimization

5

this optimization improves the run time of the FLAVERS
analysis algorithm by an order of magnitude. In the best
case, we removed 74% of the edges and on another prob-
lem we saw a speedup of the analysis of 91%. More often,
the improvements are not as striking but still quite signifi-
cant. Only in 7 examples the optimization failed to remove
any MIP edges. Out of the examples that benefited from
the optimization, on average we removed 25% of the edges,
with standard deviation .219. This led to an average speedup
of the analysis algorithm of 21%, with standard deviation
.2578. The extra overhead in performing the optimization
is small, less than .2 seconds for all cases, which is small
compared to the run time of the analysis algorithm.

We mentioned in Section 2 that this partial order optimiza-
tion has the potential of improving the precision of the anal-
ysis. One benefit of this improved precision is that the user
may not need to use some of the constraints that have to be
used with the unoptimized version. (The constraints improve
the analysis precision, and some of these improvements may
not be necessary if the TFG itself is precise enough.) For
each problem where the unoptimized version gave a conclu-
sive result, we also ran the optimized version with a smaller
number of constraints. It turned out that the precision im-
provement resulting from the removal of MIP edges was
never sufficient to obtain conclusive results with some of the
constraints missing.

5 Conclusion
We have shown how a simple optimization of the program
model used by FLAVERS can significantly reduce time re-
quirements of the data flow analysis of user-specified proper-
ties of concurrent software. This optimization is dependent
on the property of interest and the feasibility constraints that
the analysis uses. In particular, this optimization tends to
work well with analyses that use feasibility constraints mod-
eling variables local to tasks, because labels that represent
operations on such variables tend to be local.

As presented in this paper, this optimization is specific to
the Ada concurrency model. The only Ada-specific fact that
this approach uses, however, is the presence of communi-
cation nodes in the TFG. The proposed approach for apply-
ing FLAVERS to concurrent Java programs [10] models the
Java concurrency without using the Ada-style communica-
tion nodes. We believe that with some simple modifications,
this partial order optimization can be easily extended to this
Java-specific program model.

Potentially, the partial order optimization of FLAVERS de-
scribed in this paper can be further improved. For exam-
ple, all -labeled nodes can be considered as locally-labeled
nodes. This could lead to a further reduction in the number of
MIP edges, although it could have the undesired side-effect
of increasing the size of some feasibility constraints neces-
sary for the analysis. We plan to experiment with this trade-
off. In addition, we plan to explore a number of directions for

further improvements of FLAVERS. For example, variables
can be represented symbolically during the analysis, instead
of being represented by finite state automata. This would re-
move the need to create and store variable automata and thus
is likely to improve the analysis performance. We expect
this and other optimizations to further improve both space
and time requirements of the FLAVERS analysis, increasing
its applicability to a wider range of concurrent programs.

REFERENCES
[1] J. C. Corbett. Evaluating deadlock detection methods for con-

current software. IEEE Transactions on Software Engineer-
ing, 22(3):161–180, March 1996.

[2] M. Dwyer and L. Clarke. Data flow analysis for verifying
properties of concurrent programs. In Proceedings of the Sec-
ond ACM SIGSOFT Symposium on Foundations of Software
Engineering, pages 62–75, December 1994.

[3] P. Godefroid. Model checking for programming languages us-
ing VeriSoft. In Proceedings of the 24th ACM Symposium on
Principles of Programming Languages, pages 174–186, Jan.
1997.

[4] P. Godefroid, R. S. Hanmer, and L. J. Jagadeesan. Model
checking without a model: an analysis of the Heart-Beat Mon-
itor of a telephone switch using VeriSoft. In ACM SIGSOFT
Proceedings of the 1998 International Symposium on Soft-
ware Testing and Analysis, pages 124–133, Mar. 1998.

[5] P. Godefroid, D. Peled, and M. Staskauskas. Using partial-
order methods in the formal validation of industrial concur-
rent programs. IEEE Transactions on Software Engineering,
22(7):496–507, July 1996.

[6] P. Godefroid and P. Wolper. Using partial orders for the effi-
cient verification of deadlock freedom and safety properties.
pages 332–342.

[7] G. J. Holzmann. Design and Validation of Computer Proto-
cols. Prentice Hall Software Series, 1991.

[8] S. Katz and D. Peled. Verification of distributed programs us-
ing representative interleaving sequences. Distributed Com-
puting, (6):107–120, 1992.

[9] G. Naumovich and G. S. Avrunin. A conservative data flow al-
gorithm for detecting all pairs of statements that may happen
in parallel. In Proceedings of the Sixth ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, pages
24–34, Nov. 1998.

[10] G. Naumovich, G. S. Avrunin, and L. A. Clarke. Data
flow analysis for checking properties of concurrent Java pro-
grams. Technical Report 98-22, University of Massachusetts,
Amherst, Apr. 1998. To appear in proceedings of the 1999
IEEE/ACM SIGSOFT International Conference on Software
Engineering, May 1999.

.
[11] D. Peled. Combining partial order reductions with on-the-

fly model checking. In Proceedings of the 6th International
Conference on Computer-aided Verification, pages 377–390,
June 1994.

[12] A. Valmari. A stubborn attack on state explosion. In
Computer-Aided Verification 90.

6

