University of Massachusetts, Amherst Technical Report Number 99-26 1

Reusing Old Policies to Accelerate Learning on
New MDPs

Daniel S. Bernstein
{bern@cs.umass.edu}
Department of Computer Science
University of Massachusetts
Ambherst, Massachusetts 01003

April 7, 1999

Abstract

We consider the reuse of policies for previous MDPs in learning on
a new MDP, under the assumption that the vector of parameters of
each MDP is drawn from a fixed probability distribution. We use the
options framework, in which an option consists of a set of initiation
states, a policy, and a termination condition. We use an option called
a reuse option, for which the set of initiation states is the set of all
states, the policy is a combination of policies from the old MDPs,
and the termination condition is based on the number of time steps
since the option was initiated. Given policies for m of the MDPs
from the distribution, we construct reuse options from the policies and
compare performance on an m + 1st MDP both with and without
various reuse options. We find that reuse options can speed initial
learning of the m + 1st task. We also present a distribution of MDPs
for which reuse options can slow initial learning. We discuss reasons
for this and suggest other ways to design reuse options.

1 Introduction

Recently, researchers in the field of artificial intelligence have begun to stress
the importance of life-long learning (Nilsson, 1995; Thrun, 1996). Much of
machine learning up until now has been geared towards learning solutions
for single problems. However, most researchers would agree that it would
be more useful to have systems that can solve several problems over time,

using the knowledge obtained from previous problem instances to guide in
learning on new problems.

As a concrete example, consider an automated house. This is a house
that automatically performs functions for the family residing in it. These
functions could include preparing meals, turning lights on and off at ap-
propriate times, taking out the garbage, or vacuuming the carpets. The
house may have a learning component that allows it to tailor itself to the
particular family inhabiting it. It can be viewed as a learning agent that
adjusts its behavior based on feedback from the family members. Since dif-
ferent families have different needs, every time a new family moves into the
house, the learning agent faces a new environment, i.e., a new task. The
agent could start the learning process anew every time a new family moves
into the house. However, this would be inefficient because some behaviors
will be useful for almost any family. For instance, it is usually good for the
lights of a given room to be turned off when no one is in the room. What is
required is a way for the agent to learn how to learn, by generalizing across
tasks, while still being able to exploit the specifics of each task. Besides the
automated house example, other possible applications of knowledge transfer
across learning tasks include a robot factotum that performs various tasks
in an office building (this is Nilsson’s, 1996, challenge), a space exploration
robot that goes on missions to different planets, or a chess player that faces
different opponents.

We will discuss the issue of performing multiple tasks in the realm of
reinforcement learning (RL). An RL task is typically modeled as a Markov
decision process (MDP), and most RL algorithms are aimed at finding a good
partial policy for the accessible states of an MDP. Given a set of MDPs, the
already established techniques can be used to learn a policy for each MDP
independently. However, if there is some overlap between good policies for
the MDPs, we would like our agent to discover this “structure” and use it
to accelerate future learning.

In this paper, we consider fixed distributions of MDPs. Policies for some
of the MDPs in the distribution are combined and can be used to accelerate
learning on a new MDP drawn from the distribution. The combination
of policies is used as the policy for an option (Sutton, Precup & Singh,
1998). We will refer to our constructed options as reuse options because
they reuse old policies. One benefit of our approach is that it requires
only policy information from the old MDPs and nothing else. We do not
care how the policies were obtained in the first place. They could have
been obtained using supervised learning or even hand-coded by the system
designer. Furthermore, we put no special restrictions on the distribution

from which the MDPs are drawn. Another advantage is that the reuse
option does not put any constraints on what can be learned in the new
MDP. The option can be used often to direct exploration during the initial
phases of learning and can then be used less frequently when the agent has
discovered structure specific to the task at hand.

The issue of solution reuse across multiple tasks has been considered
in the supervised learning literature (Thrun, 1996; Baxter, 1997), and is
starting to be considered in RL (Thrun & Schwartz, 1995; Boyan, 1998;
Hauskrecht et al., 1998; Parr, 1998; Ryan & Pendrith, 1998; Sutton, Precup
& Singh, 1998; Van Roy, 1998; Perkins & Precup, in prep.). However, this
work is still in its early stages, and few experiments designed explicitly to
test across-task transfer have been run.

The structure of the paper is as follows. First we discuss RL, options,
and an algorithm for learning with options. In Section 3 we present reuse
options. In Section 4 we describe the domains for our experiments. The
two types of experiments along with their results are presented in Section 5.
In Section 6 we present an example in which reuse options actually retard
learning. Finally, in Section 7 we discuss directions for future research,
including ways to adapt our techniques to more difficult problems.

2 Reinforcement Learning

2.1 Markov Decision Processes (MDPs)

In the RL framework (Sutton & Barto, 1998), a learning agent interacts with
its environment at some discrete time scale t = 0,1,2,3,.... At each time
step, the agent perceives the state of the environment, s; € S, and chooses
a primitive action, a; € As,. One time step later, the environment produces
a numerical reward, r;;; € R, and a next state, s;+;. The union of the
action sets is denoted by A = [J,c 5 As. If S and A are finite, then the envi-
ronment’s transition dynamics are modeled by state-transition probabilities
and expected rewards:

Py = Pr{st+1 =5 |s=s,a, = a} and
rey = E{rt_H | st =s,ap = @a,S441 = 3'},

for all 5,8’ € S and @ € A,. The agent learns a policy, = € RISIXIAL
which is a mapping from states to probabilites of taking each action. The
agent’s objective is to maximize the expected discounted future reward. This
expected reward starting from a state s and thereafter following policy 7 is

called the wvalue of state s and is expressed formally as:

V7Ti(s) = E{Tt+1 + T2 + YTy e | s = S,W}y

where v € [0,1) is a discount-rate parameter. We also denote the action-
value function, which computes the expected discounted future reward start-
ing from a state s, taking an action a, and thereafter following =:

Q" (s,a) :E{Tt+1 +77“t+2+727“t+3+"' St = S,a¢ Zaﬂf}-

For this paper, it will be useful to have a notion of a most stochastic pol-
icy that maximizes exploration while still choosing actions that are greedy
with respect to a value function. Under a most stochastic policy, if there
are ever two actions that are both optimal with respect to the value func-
tion, they will each have equal probabilities of being taken. Formally, most
stochastic policies always satisfy the following equation:

L oie o
rsay {7 fo = aEmaric, Q7(5,0)
0 otherwise,

where ns = [{a € Asla = argmaxgea, Q™ (s,a)}|. Note that every action-
value function has associated with it exactly one most stochastic policy.
Since each MDP has exactly one optimal action-value function, each MDP
has exactly one most stochastic optimal policy.

2.2 Distributions of MDPs

Here we define a distribution of MDPs over a finite state set S and finite
action sets Az, s € S. Each MDP can be described by its state-transition
probabilities p?, and expected rewards r?,. (We chose to ignore other in-
formation about the distribution of rewards.) Thus, an MDP can be viewed
as a vector with 237 ¢ |A4||S| real-valued components. A distribution of
MDPs is defined as a probability distribution over the space of these vectors.

2.3 Q-learning

One strategy for direct learning on finite MDPs is to approximate the opti-
mal action-value function:

Q*(s,a) = m7§XE{Tt+1 + YTt + VPris o | sp =800 = aﬂT}-

An algorithm called one-step Q-learning is used to approximate Q@* (Watkins,
1989). Using this method, after action a; is taken at state s;, yielding reward
7141 and next state sy11, Q(s¢,a¢) is updated by:

Q(se,at) < Q(sg,ar) + a |11+ max Q(spr1,a) — Q(sy, ay)
a€As;

fix this where « is a positive step-size parameter.

2.4 Options and Macro Q-Learning

The term option is used for the generalization of primitive actions to include
temporally extended courses of action (Sutton, Precup & Singh, 1998). In
this paper, we will be dealing with a special case of semi-Markov options
in which the option “times out”, i.e., terminates after some fixed period
of time has elapsed. These options consist of three components: a policy
7 € RISXIAL 4 time limit 4 € Nt, and an initiation set Z C S. An option
(Z,m,B) is available in state s if and only if s € Z. If the option is used, the
actions are selected according to w for § time steps. The agent can select
another option when a given option terminates.

We note that a primitive action « is a special case of an option as defined
above. Each action corresponds to an option that is available exactly when
a is available (Z = {s : a € A}), that always lasts exactly 1 step (6 = 1),
and that always selects a (7(s,a) = 1,Vs € Z). Therefore, we can view the
agent as choosing entirely among options.

The concept of an action-value function generalizes naturally to an op-
tion-value function. We define Q*(s,0) to be the maximal expected return
given that the agent starts in state s and takes option 0. As in the case
of primitive actions, this leads to a Q-learning-type update rule. When an
option terminates, its value is updated with the cumulative discounted re-
ward obtained during its execution and the maximum option-value at the
resulting state. This is expressed formally in the following equation:

Q(st,01) < Q(s,0)) + a |7 +9F max Q(sp4r,0) — Q(st,00) |
OEOst+k

where r = 141 +yripo+- - +v¥"rp and k = B for option 0. When these
backups are performed in addition to those performed in standard one-step
Q-learning, the resulting algorithm is called Macro Q-learning (McGovern,
Sutton & Fagg, 1997).

3 Reuse Options

In this section, we describe reuse options and how they are used. The
intuition behind reuse options comes from the simple idea that an agent’s
probability of behaving a certain way should be proportional to how often
that behavior has been successful in the past. When a reuse option is being
executed, the probability of an action being chosen at a given state is related
to the number of policies in which that action is one of those taken at that
state. We now formalize this notion. Given a set of policies 7, mo, ...
we let s be the policy formed by averaging all the policies:

> Tmy

1
v = —(m1 + 7o+ 4 Ty).
m

We refer to ms as the mized policy.

To illustrate how the mixed policy extracts structure from a set of poli-
cies, consider the following example. We are given two policies for a domain
in which |§| =2 and |A| = 3:

a; a2 asg ay az as
m=|s;|1 0 0| and m2=|s;|0 1 0
wly 4o wlo 4
The resultant mixed policy is shown below:
a; ay as
™ = | 81 % % 0
201 3 3

From state sq, action a3 is never chosen by either of the policies. Conse-
quently, it is never taken from s; while the mixed policy is being executed.
From state s9, all actions have a non-zero probability of being chosen in at
least one of the policies. However, a9 is optimal in both policies, while the
other two actions are not. This is taken into account in the mixed policy,
in which all actions have a non-zero probability of being chosen, but as is
given a higher probability than the other actions.

A reuse option, (S, mpr,n), is formed from the mixed policy, where n €
N7 is the option time-limit. Reuse options execute m); for exactly n time
steps, and can be initiated from any state. Given a reuse option, Macro
Q-learning can be used, with an option set consisting of all the primitive
actions plus the reuse option.

Figure 1: The eight gridworlds contained in the finite distribution.

4 Domains

4.1 Gridworld

In order to clearly demonstrate our techniques, we first consider a simple
domain in which an agent must find the shortest path from a single starting
position to a single goal on a grid. The states are the cells on the grid, and
there are four primitive actions: up, down, left, and right, which have
a stochastic effect. With probability 0.9, the agent moves in the intended
direction, and with probability 0.1, it is equally likely to move in each of
the other three directions. If an action takes the agent into a wall, then
the agent does not move. A reward of 0 is obtained at every time step,
except when the action taken in that time step leads to the goal, in which
case the reward is +1. In order to ensure that the aim is to reach the goal
as quickly as possible, there is a discounting factor (y = 0.9). This task
is episodic, with a new episode starting whenever the goal state is reached.
The start state is in the lower-left corner of the grid, the goal state is in
the upper-left corner, and a wall separates the upper and lower halves of
the grid. There is a single opening in the wall, and it is the position of this
opening that determines the MDP that the agent faces. Thus, we have a
finite distribution consisting of 8 MDPs. The gridworlds in the distribution
are shown in Figure 1. Note that there is significant overlap in optimal
policies for the MDPs in the distribution. For instance, the optimal actions
for the entire top part of the grid are the same for each task. Also, the
action down is not optimal from any of the states that are above or below
the wall in any of the gridworlds.

Score
23

Figure 2: RL Darts.

4.2 RL Darts

The second domain we used for experiments was the RL Darts game. In this
version of darts, a player starts with a score of zero and throws darts at the
board, one at a time. The board is divided into seven wedges, with distinct
point values ranging from —3 to 3 (see Figure 2). Unlike in regular darts,
the point values are not displayed next to the wedges. Each time a dart is
thrown, the point value corresponding to the wedge that is hit is added to
the player’s score (for simplicity, we do not allow the score to drop below
zero). The object of the game is to reach a target score, T', exactly in as
few throws as possible. Again, unlike in regular darts, the target score is
not known to the player. If a throw ever causes the score to go above T', the
score is reset to its previous value.

RL Darts can be formulated as a finite MDP in the following way: The
states are the scores 0,1,...,7. There are seven primitive actions, corre-
sponding to the wedge that the player chooses to aim at. These actions
have a stochastic effect. With probability 0.75, the player hits the wedge
that she is aiming at, and with probability 0.25, the player is equally likely
to hit any of the other wedges. There is a reward of 0 for every time step,
except for the one during which the target score is reached, in which case
the reward is 1. There is a discounting factor v = 0.9. The task is episodic,
with an episode corresponding to a complete game. If we vary the target
score, T, from 1 to 60, we form a finite distribution consisting of 60 MDPs.
Here the policy overlap may not be as obvious as in the gridworld domain.
In particular, there is no state-action pair for which 7,(s,a) = 1. However,
there is still invariance across the tasks. For instance, the optimal action
from state 0 is to throw at the +3 wedge in all but two of the games in the

distribution (the games for which T'=1 or T' = 2). Also, it is never optimal
to throw at the 0, —1, —2, or —3 wedges from a reachable state. There are,
however, unreachable states in the MDPs (e.g. a score of 31 when T' = 30),
at which all actions are considered optimal.

5 Experiments

In order to perform experiments, we had to choose the policies to use in the
construction of the reuse options. For our initial tests, we tried to construct
what would intuitively be considered a “best possible” reuse option. For a
finite distribution of MDPs (which is all we consider in our experiments),
this is called a complete reuse option. Suppose the distribution contains
m MDPs. (When we say that a finite distribution “contains” m MDPs,
we mean that each of the m MDPs is equally likely to be drawn from the
distribution.) Then the complete mixed policy, 7¢,, is the average of the
most stochastic optimal policies of the m MDPs, and the n-step complete
reuse option is (S, 7, n).

Of course, it is not realistic to assume that the agent has a policy for
every MDP in the distribution. Thus, we define an incomplete reuse option
to be an option whose policy is the average of the most stochastic optimal
policies of some k¥ MDPs drawn from the distribution. We note that it is
still not reasonable to assume that the agent has access to an optimal policy
of any of the MDPs, and future work will include tests in which the mixed
policy is formed on-line using policies generated by an algorithm such as
Q-learning.

5.1 Experiment 1

The first experiment was designed to test the effect of reuse options on ini-
tial exploration. Our hypothesis was that for some distributions of MDPs,
exploration with a reuse option would be biased to get the agent more re-
ward than if it did not have a reuse option. In this experiment, there was
no learning. We drew MDPs from the distribution and measured the per-
formance of the agent as it chose each of the options in its set with equal
probability at each choice point. The following four sets of options were
compared:

1. Primitive actions

2. Primitive actions with 1-step complete reuse option, (S, 74, 1)

70]

Primitive actions with
o 1-step complete reuse option

Primitive actions

mean steps to goal = 593
mean steps to goal = 160

Number of episodes
Number of episodes

o L 0

0 500 1000 | 1500 2000 2500 3000 3500 4000 4500 5000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Steps to goal Steps to goal

’“ Primitive actions with " Primitive actions with

-l 5-step complete reuse option w0 5-step incomplete reuse option
(k=4)

2=0 mean steps to goal = 102
mean steps to goal = 155

Number of episodes
Number of episodes
2

3

10 10}

o 0
(] 500 1000 1500 2000 2500 8000 3500 4000 4500 5000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Steps to goal Steps to goal

Figure 3: Results of Experiment 1 in the gridworld domain.

3. Primitive actions with 5-step complete reuse option, (S, 7§, 5)

4. Primitive actions with 5-step incomplete reuse option, (S, s, 5) (with
k=4)

5.1.1 Results of Experiment 1 for Gridworld

In this experiment, we drew gridworlds randomly from the distribution and
recorded the number of steps for the agent to get from the start state to the
goal state. As described above, four different option sets were compared.
The test was repeated for 100 randomly drawn gridworlds. Due to the
nature of the domain, our distributions of total steps were skewed. These
distributions, along with their means, are shown as histograms in Figure 3.
We see that for all of the reuse options, the addition of the option leads to
improved performance. Furthermore, the results suggest that increasing the
time limit of a reuse option can increase its effectiveness.

10

“l Primitive actions “I' Primitive actions with
1-step complete reuse option
2 [mean throws per game = 386 P P P P
£ £
S & «f mean throws per game = 115
s s
2 z 20|
Throws per game Throws per game
5" Primitive actions with "“ Primitive actions with
] 5-step complete reuse option o 5-step incomplete reuse option
8 8 (k=4)
S, mean throws per game = 57 8 4
5 5 mean throws per game = 66
& w 8w
g €
2 2
DU 500 1000 1500 2000 2500 3000 00 500 1000 1500 2000 2500 3000
Throws per game Throws per game

Figure 4: Results of Experiment 1 in the RL darts domain.

5.1.2 Results of Experiment 1 for RL Darts

We drew games from the distribution and recorded the number of turns to
reach the target score for an agent choosing randomly among the options
in its set. We compared the four different option sets, and repeated the
test for 100 randomly drawn target scores. Again, our distributions of total
throws were skewed. These distributions, along with their means, are shown
as histograms in Figure 4. The results are essentially the same as in the
corresponding gridworld experiment.

5.2 Experiment 2

In this experiment, we examined the effect of the reuse option on time to
convergence. The results of Experiment 1 told us what to expect in a first
episode, and this experiment helped us to see what happens afterwards, as
the agent learns from experience. We drew MDPs from the distribution and
compared the following algorithms for solving them:

1. Q-learning

11

2. Macro Q-learning with the 1-step complete reuse option, (S, 75,, 1)
3. Macro Q-learning with the 5-step complete reuse option, (S, 74, 5)

4. Macro Q-learning with the 5-step incomplete reuse option,
(S,mar,5) (with k = 4)

To ensure that any difference in performance depended on having the reuse
option and not just any option, we introduced random options. During the
execution of the random option, all primitive actions are taken with equal
probability. Formally, the n-step random option is (S, wp,n), where

= ifa € As
VSGS,?TD(S,CL):{ AT B

0 otherwise.

We tested the following algorithm:
5. Macro Q-learning with the 5-step random option, (S, 7p,5)

Finally, for comparison, we also tested the following, non-learning, algo-
rithm:

6. Using the complete mixed policy as a fixed policy, with no learning

Whenever we used either QQ-learning or Macro Q-learning, we adopted
e-greedy action selection. That is, given the current estimates Q(s,o0), let
0" = argmax,co, Q(s,0) denote the best-valued option (with ties broken

randomly). Then the policy used to select options was

l—e+ 2% ifo=o"
(s, 0) = 2

o7] otherwise,

for all s € S and 0 € O;. We set € = 0.1 in all cases. For each experiment,
we used o = 0.1. Action-values were always set to zero at the start of a
new task. This was done to ensure a large amount of exploration. In both
of our domains, the agent does not receive any reward until it reaches a
goal state. Thus, it takes at least a few episodes for values to propagate
back from the goal state. Since it takes some time for values to change, we
force a significant amount of exploration at the beginning of learning. This
seems artificial, but recall that we are testing how the reuse options bias
exploration, not how to obtain adequate exploration.

12

Q-learning

Macro Q-learning with 5-step random option

500

N

1=}

=
T

Macro Q-learning with 5-step incomplete reuse option

Steps per episode
8
o
T

200+ Macro Q-learning with 1-step complete reuse option

Macro Q-learning with 5-step complete reuse option

100} Fixed mixed policy

Il Il Il Il Il J
0 5 10 15 20 25 30 35 40 45 50
Episodes

Figure 5: Results of Experiment 2 in the gridworld domain. Each line is
averaged over 100 runs.

5.2.1 Results of Experiment 2 for Gridworld

The aim of this experiment was to test the performance of the agent using
the six different learning algorithms described above on gridworlds drawn
from the distribution. In this case, good performance meant a short walk
from the start state to the goal state. In Figure 5, we plot time to goal versus
episode number. The data are averaged over runs on 100 randomly drawn
gridworlds. We see that one-step Q-learning is the slowest to converge.
Macro Q-learning with just a 1-step complete reuse option converged much
faster than without a reuse option. And, Macro Q-learning with a 5-step
complete reuse option was even faster. The incomplete reuse option gave
improved convergence as well. As expected, Macro Q-learning with the
5-step random option did not converge much faster than regular one-step
Q-learning. Using the complete mixed policy as a fixed policy gave good
initial performance, but it was eventually overtaken by all of the learning
algorithms, which could exploit structure specific to the particular task being
solved.

5.2.2 Results of Experiment 2 for RL Darts

Figure 6 shows a graph of the number of throws to reach the target score
versus game number for a randomly drawn target score. The data are an

13

Q-learning
350

200 Macro Q-learning with 5-step random option

250

Macro Q-learning with 1-step complete reuse option

Turns per game
n
o
S
T

180 Macro Q-learning with 5-step incomplete reuse option

100k \ Macro Q-learning with 5-step complete reuse option

Fixed mixed policy
50N\

0 I I I I I I |
0 10 20 30 40 50 60 70

Games

Figure 6: Results of Experiment 2 in the RL darts domain. Each line is
averaged over 100 runs.

average over 100 runs with randomly chosen target scores. Again, the results
obtained in this domain were similar to those obtained in the gridworld
domain.

6 A Counterexample: Moving Target

In this section we describe a distribution of MDPs for which the addition of
the reuse option to the set of options actually biases exploration in a negative
way. In this domain, the agent operates a stationary gun, which it must fire
at a target that repeatedly moves in a line from one point to another (see
Figure 7). Furthermore, the agent knows only the absolute coordinates of
the target at any given time. This can be modeled as a simple MDP. The
state is the absolute position of the target, and the actions are whether or
not to fire the gun. If the agent fires the gun at the same time that the
target is directly in front of it, it receives a reward of 4+1. If the gun is fired
at any other time, the agent receives a reward of —0.01. This is a continuing
task with a discounting factor v = 0.9. By varying the position of the gun,
we can form a distribution of MDPs.

14

Figure 7: The moving target task distribution.

6.1 Experiment

We tested to see the effect of the optimal reuse option on exploration in this
domain. As in Experiment 1 above, we compared (1) primitive actions, (2)
primitive actions with the 1-step complete reuse option, and (3) primitive
actions with the 5-step complete reuse option. For simplicity, we did not
test any incomplete reuse options. A task was drawn from the distribution,
and for 1000 time steps the agent chose randomly among the options in its
option set. This was repeated for 100 randomly drawn tasks and the means
and standard deviations of the total reward obtained are shown in Table 1.
In this domain, the option set that included the 5-step complete reuse option
yielded the least reward, and the set containing the 1-step complete reuse
option followed. In this case, it was better not to have either of the complete
reuse options. The distributions of total rewards for the three option sets
were approximately normal, so we applied a one-tailed ttest to determine
the significance of the results. Let p; be the true mean of the probability
distribution of total rewards for the ith option set. We found that pu; > po
with p < 0.001 and po > psg with p < 0.001.

To understand these results, we must analyze the complete mixed policy
for the distribution. For any given state, the most stochastic optimal policy
for exactly one of the MDPs is to fire with probability 1, while the most
stochastic optimal policy for the rest of the MDPs is to abstain from firing
with probability 1. Thus, at every state, the complete mixed policy assigns
a probability of % to fire and a probability of % to don’t fire. Therefore,
during the execution of the reuse option, the agent is less likely to fire
than if it was simply choosing each of the two primitive actions with equal
probability. This is not a good strategy. At the start of learning, the agent is
better off firing frequently because the benefit of quickly finding the target

15

Options available Mean Reward Per Run

Primitive actions 13.1 +£2.6

Primitive actions with

1-step complete reuse option 9.6 £2.7

Primitive actions with

5-step complete reuse option 4.84+2.9

Table 1: Results of the experiment in the moving target domain. Means
and standard deviations computed for 100 runs.

outweighs the small penalties incurred for firing and missing the target.
The complete mixed policy does not coincide with this reasoning because
it does not take value information into account. In the optimal policies of
the individual tasks, shooting to get a reward of +1 is equally as important
as not shooting to avoid a penalty of —0.01. If value information is taken
into account in the construction of the mixed policy, this problem can be
avoided. This suggests an extension to the reuse option in which old value
information (when available) is considered along with old policy information.

7 Discussion

In our experiments, we only considered MDPs with few states. This is ac-
ceptable as a first step, but RL algorithms must be able to “scale up” to
address real-world problems, which can have very large or even infinite state
spaces. With state abstraction, we have an implicitly represented policy,
m:SxA—[0,1]. It is possible to simulate the average of a set of implicitly
represented policies by simply choosing the output of each with equal prob-
ability. Another type of abstraction in RL is temporal abstraction. With
temporal abstraction, the agent can have multiple temporally-extended op-
tions available to it. In this case, the reuse option can simply be one option
among those available.

We note that the extent to which the reuse option can bias initial explo-
ration depends partly on the total number of options available to the agent.
As the total number of options increases, the rate at which the reuse option
is chosen decreases. It may be useful to extend our algorithm to allow the
frequency that the reuse option is chosen in the initial part of learning to be

16

independent of the total number of options available. On the other hand,
we may not want to treat the reuse option as special. Regardless, the more
general question of how the number of options available affects learning is
an important one.

Also, it is likely that the optimal time limit for the reuse option is
domain-dependent, which makes # another parameter that must be cho-
sen by the system designer. For future research, we would like to automate
the assignment of a value to 8, or change the reuse option altogether, so
that termination of the option is state-dependent.

One way to extend the reuse option is to allow its mixed policy to be a
weighted average of old policies. The weights could be proportional to the
“confidence” that the agent has in each policy. For instance, a policy that
results from 100,000 time steps of Q-learning will usually be more useful
than a policy that results from 1,000 steps of Q-learning and should thus
be given more weight. Also, if we assume that the distribution of tasks is
not fixed, but instead varies with time, we may want to give more weight to
policies that were derived more recently.

Finally, we assume in this paper that the agent is told every time its
environment changes. In some cases (e.g. those mentioned in the Intro-
duction), this assumption is realistic. However, sometimes the environment
simply changes without notice. In future work, we would like to find ways
for our learning agents to detect changes in the environment and find the
invariance across these changes. Ideally, we would like autonomous agents
that can perform multiple tasks in the world and can go long periods of time
without requiring more input from the system designer.

Acknowledgements

The author wishes to thank Andrew Barto, Anders Jonsson, Amy McGov-
ern, Doina Precup, and all the members of the ANW group for their help.
This material is based upon work supported under a National Science Foun-
dation Graduate Fellowship. Any opinions, findings, conclusions or recom-
mendations expressed in this publication are those of the author and do not
necessarily reflect the views of the National Science Foundation. This re-
search was also supported by a grant from the Air Force Office of Scientific
Research, Bolling AFB (AFOSR F49620-96-1-0254).

17

References

Baxter, J. (1997). Theoretical models of learning to learn. In S. Thrun &
L. Pratt (Eds.), Learning to Learn. Kluwer.

Boyan, J. A. (1998). Learning Evaluation Functions for Global Optimization.
PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania.

Hauskrecht, M., Meuleau, N., Kaelbling, L. P., Dean, T. & Boutilier, C.
(1998). Hierarchical solution of Markov decision processes using macro-
actions. In Proceedings of the Fourteenth Conference on Uncertainty in
Artificial Intelligence.

McGovern, A., Sutton, R. S. & Fagg, A. H. (1997). Roles of macro-actions
in accelerating reinforcement learning. In Proceedings of the 1997 Grace
Hopper Celebration of Women in Computing (pp. 13-18).

Nilsson, N. J. (1995). Eye on the prize. AI Magazine, 16(2), 9-17.

Parr, R. (1998). Flexible decomposition algorithms for weakly coupled
Markov decision problems. In Proceedings of the Fourteenth Interna-
tional Conference on Uncertainty in Artificial Intelligence.

Perkins, T. J. & Precup, D. (in preparation). Using options for knowledge
transfer in reinforcement learning.

Ryan, M. R. K. & Pendrith, M. D. (1998). RL-TOPs: An architecture for
modularity and re-use in reinforcement learning. In Proceedings of the
Fifteenth International Conference on Machine Learning (pp. 481-487).
Morgan Kauffman.

Selman, B., Brooks, R. A., Dean, T., Horvitz, E., Mitchell, T. M. & Nilsson,
N. J. (1996). Challenge problems for artificial intelligence. In Proceed-
ings of AAAI-96, National Conference on Artificial Intelligence. Menlo
Park, CA: AAAI Press.

Sutton, R. S. & Barto, A. G. (1998). Reinforcement Learning: An Introduc-
tion. Cambridge, MA: MIT Press.

Sutton, R. S., Precup, D. & Singh, S. (1998). Between MDPs and Semi-
MDPs: Learning, planning, and representing knowledge at multiple
temporal scales. Technical Report 98-74, University of Massachusetts,
Ambherst.

18

Thrun, S. (1996). Is learning the n-th thing any easier than learning the
first? In Proceedings of Advances in Neural Information Processing
Systems 8 (pp. 640-646). Cambridge, MA: MIT Press.

Thrun, S. & Schwartz, A. (1995). Finding structure in reinforcement learn-
ing. In Proceedings of Advances in Neural Information Processing Sys-
tems 7 (pp- 385-392). Cambridge, MA: MIT Press.

Van Roy, B. (1998). Learning and Value Function Approzimation in Com-
plex Decision Processes. PhD thesis, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts.

Watkins, C. (1989). Learning from Delayed Rewards. PhD thesis, Cambridge
University, Cambridge, England.

19

