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Abstract

Environmental monitoring using automated analysis of high-resolution aerial video is an

application of growing importance with its own set of technical challenges. A mosaic is a

commonly used tool for representing the enormous amount of data generated from video

sequences.  In contrast to the usual application of mosaics as a user interface, the environmental

monitoring domain requires accurate geo-corrected mosaics tied to real-world coordinates. The

standard techniques of generating seamless mosaics using only image data in a frame-by-frame

image registration process have serious problems when applied over extended periods of time

due to error accumulation, even if the errors between two successive frames are very small. Our

mosaics require both seamless registration of optical data, and the use of precise flight sensor

data (“geo-data”) to provide a globally correct track of the motion to keep errors from

propagating.

Our instrumentation package involves 3D data from GPS, a laser profiler, and an INS

system to provide an actual geographical track of the data in world coordinates, referred to as

“geo-data”.  However, there is still error in the geo-data due to inherent noise in these sensors,

and data must be interpolated because it is arriving at varying temporal rates.

      Thus, we face the problem of utilizing the geo-data to constrain the processing of the video to

generate a seamless geographically accurate mosaic, referred to as a “geo-corrected” video

mosaic.  By analyzing the motion model of the flight, a pseudo-parallel projection mosaic

representation  (P3 mosaic) is proposed to represent the geo-corrected mosaic.  Our automatic

geo-mosaic method includes local registration, track generation, matching refinement, and a two-

track-based mosaic composition.

The advantage of this approach is that sensor motion information is effectively employed in a

simple and robust model to produce effective results. The system is automatic and reliable since

self-initialization, failure detection and outlier handling are embedded in the overall system. The

two-track mosaic correction results in seamless mosaic even if the geo-data is not precise, and the

methodology allows re-correction of the geo-mosaic given additional geo-referenced information

from other sources, such as match with geo-referenced aerial images. The implementation is very

fast because no complicated nonlinear optimization procedure is involved. No calibration and
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feature extraction are needed. Experiments with real airborne video images show that the

proposed algorithms are practical in the important environmental applications.

Keywords: image registration, video mosaic, motion analysis, geo-reference image,

environmental modeling
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1. Introduction

1.1.  Environmental Monitoring

    A critical issue among nations in the coming decades will be how to manage the use of land and

natural resources. The ability to analyze vegetation and habitat from remote sensing data is

currently the central problem in natural resource management on a regional and global scale.

Unfortunately, the use of satellite data has not enabled general and automatic ecosystem modeling.

While Geographic Information Systems (GIS) have given us the capacity to store and retrieval

significant amounts of relevant data, many of the dynamic changes of interest in ecosystems take

place at a finer level of resolution than current techniques can obtain.

    Our interdisciplinary NSF environmental monitoring project is being conducted jointly by

researchers from the Computer Science Department and the Department of Forestry and Wildlife

Management at the University of Massachusetts at Amherst.  The goals of aerial image analysis

include classification of ground cover, multi-image 3D terrain reconstruction, computation of

forest biomass, and high performance computing over large image datasets. Here, we focus on a

particular aspect of our work for determination of biomass in standing forests in collaboration with

The Nature Conservancy (TNC) and the National Fish and Wildlife Foundation (NFWF).   Several

energy oriented companies are now managing large tracts of forest for their value as sequestered

carbon rather than wood products, and this practice is expected to expand as carbon emission

regulations become more strict.  We are developing a methodology for estimating the standing

biomass of forests from a combination of large-scale videography and data from a real-time

instrumentation package of GPS, a profiling pulse laser, and a two degree-of-freedom INS system.

    This paper presents results on mosaics produced from aerial analysis of forest tracts in

Crookesville, Ohio managed by the American Electric Power  (AEP) where ground truth was

available, and we were able to demonstrate accurate estimation of biomass. With continued

automation and development, this methodology could have a far reaching effect on developing a

new economic value for forested land that remains intact in their environment.   We will be

applying and refining this capability in Bolivia and Brazil in the near future.
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1.2.  Goals of the Aerial Mosaic Process

    Our specific goal here is to develop automated tools that can correlate video mosaics from high

resolution low-altitude video sequences with lower resolution high-altitude aerial image data or

satellite image data that are of lower spatial resolution as a tool for interpreting the lower

resolution data. We only deal with wide-angle video mosaicing in this paper, but we will be using

both zoom and wide-angle video in the future.  The highest resolution data (zoom video) will be

displayed to an environmental expert as a magnified view to allow accurate specification of

training labels for species classification. Consequently, the video mosaics must be registered to

high altitude photogrammetrically accurate ortho-rectified images (i.e. a geo-referenced image) to

provide the environmental expert with a realistic visualization interface.

    The previous manual approach used by our forestry experts [1] only utilized a fraction of the

data that is available in the GPS-logged video through human judgement of feature matches on

images at different resolutions displayed on multiple screens.  Obviously, automatic mosaics of

tree canopy that are geo-referenced are of critical importance when huge amounts of video data are

to be processed.  Our planned Bolivian project involves over 600 sites and probably more than 20

hours of video, and is impossible without automation.

1.3 Related Work

    Creating panoramic images and high quality mosaic images from video sequences (or a

collection of images) has attracted significant attention in the research community, industry, and

government (through the DARPA Video and Surveillance program (VSAM)) [2-11].  Applications

span a variety of fields, including panoramic photography, video compression, surveillance, and

virtual environments. The existing mosaic methods can be divided into three classes: cylindrical

mosaics, free mosaics and global registration-based mosaics.

    Cylindrical Mosaics - In this approach, a camera pans around a scene to obtain a complete

description of the surrounding environment, and a full view (360-degree) panorama is generated.

Apple’s QuickTime VR [2] captures a 360-degree panoramic image of a scene with a camera

rotating horizontally from a fixed position. The overlap in images is registered first by the user and
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then “stitched” together by the software at the best match. Recently Kang & Weiss [3] analyzed

the error in constructing panoramic images and proposed a technique that has the advantage of not

having to know the camera focal length a priori.  In order to create a panorama, they first had to

ensure that the camera is rotating about an axis passing through the nodal point. The correct focal

length is determined by iterating the process of projecting original video images onto cylindrical

surfaces given an estimate of the focal length. In other work, in order to generate panoramic

mosaics from video on a hand-held camcorder, Sawhney et al [4] provided a method for automatic

detection of a loop closure to warp the conic mosaic into a cylindrical mosaic.  Zhu et al [5, 18]

proposed a similar methodology independently to deal with more complex camera motion - 3

degree-of freedom (DOF) rotation, zoom and small translation. Due to scale change and

accumulating error, this required warping from a deformed conic mosaic to a cylindrical

panorama. Generally speaking, in this class the loop closure constraint is used to connect first and

last matched frames.

    Free Mosaics - In this class, only an implicit assumption is made about constrained camera

motion (e.g. pan) or scene structure (e.g. a planar scene).  Mann and Picard [6] discussed different

transformation models – affine, bilinear, projective and pseudo-projective – to register and reduce

the set of images into a single, larger composite frame. The final image mosaic is not a full 360-

degree view, nor is 3D geometrical correctness guaranteed. Peleg and Herman [7] use manifold

projection to enable the fast creation of low distortion panoramic mosaics under a more general

motion than exact panning. The basic principle is the alignment of the strips that contribute to the

mosaic, rather than the alignment of the entire overlap between frame. However, the issues of

camera focal length changes and/or depth changes are not considered in this approach. The aim of

the mosaic is for entertainment rather than applications requiring geometric precision. Morimoto

and Chellappa [8] presented a fast 3D stabilization and mosaic construction system. A small set of

automatically selected and tracked feature points is used and an extended Kalman filter framework

is employed to estimate the 3D rotation between frames. Fast implementation on a Datacube

MV200 platform is reported, and the system has been tested under a variety of situations that

include dominant forward and lateral translations with small rotations, as well as panning.

    Problems in Generating Precise Mosaics - Experience with the first two classes of mosaic

generation techniques indicates that attempts at registering a large set of images with
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photogrammetric precision result in significant difficulty.  Since most of the mosaic methods

operate on video images in a sequential, pairwise manner, small errors in registration accumulate

from one pair of images to the next. The cumulative effect produces significant error in the

position of the final image, even when the individual registration error between frames is very

small. These errors are unavoidable if no other constraints are provided.

    Global registration-based mosaics - Full view panoramic mosaic generation tries to solve this

problem by matching the last frame with the first frame and forcing the original mosaic to warp to

a cylinder. Some researchers use more general global constraints to ensure that the final mosaic

(composed of all the images) is globally registered.  Shum & Szeliski [9] proposed a global

registration strategy for a full view panorama, which establishes point correspondences in a set of

images. Minimizing the projected difference of these points results in global alignment; however,

the search required to determine many point correspondences can be quite slow.  Sawhney et al

[10] developed a local-to-global algorithm which use constraints between non-consecutive but

spatially neighboring frames. A global consistency estimation of alignment parameters is

iteratively performed in order to match each frame to a consistent mosaic coordinate system. The

large number of parameters makes computation prohibitive for more than a few frames. Practical

application of this algorithm requires efficient optimization strategies. Davis[11] provided an

efficient method for finding a globally consistent registration of all images by solving a sparse

linear system of equations. However the sparse linear system is valid only if any image can register

only with a few other images.

1.4 Geo-Mosaic

Recently there have been a few reports on geographically-corrected (“geo-corrected” for

short) mosaics. Kumar, et al [12] presented a geo-registration method that consists of (1) video-

to-video frame alignment and local mosaic every second or so, (2) coarse indexing of the video

mosaics in a high-attitude reference image using the geo-data, and (3) the fine geo-registration

between the local video mosaics and the reference image. The time taken in the first step ranged

from 30 seconds to 2 minutes for a triple of frames, each of size 320x240, on a Pentium 200MHz

machine [12,13]. Step 2 and 3 rely on the matches between the video and the reference imagery

that have a large time gap, and hence have quite different appearances. The fine geo-registration
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requires knowledge of a reference image (geo-referenced aerial image with broader coverage)

and accompanying co-registered DEM (digital elevation map).  Twelve parameters are estimated

by a nonlinear optimization performed in an iterative manner, requiring significant

computational overhead. Bethel [14] reported the results on modeling of airborne pushbroom

imagery – photography with a 1D scan system [15]. The orthorectified imagery is produced by

exploiting control points and linear features (semi-automatically), and exploiting GPS/INS data

wherever possible.

Our problem is that we will be acquiring immense amount of aerial video data that requires

precise registration with broad coverage high-attitude data from a photogrammetrically

accurate camera. Therefore given the geo-data from our instrumentation package defining the

3D global track of the camera, and range to the terrain at the center of each frame, what is a

computationally efficient and fully automatic methodology for generating a seamless geo-

corrected mosaic from a video sequence, in the absence of a high-attitude aerial image and

an accompanying co-registered DEM ?

    Global registration might work if the global constraints involve registration across multiple

images, but it is likely to be computationally expensive and there is no guarantee that it will be

sufficiently accurate for our environmental monitoring application.

    The solution to this quite challenging problem is enabled by a sophisticated aerial

instrumentation package the augments the video data with 3D motion, location and range data. The

geographical data (“geo-data”) from our aerial instrumentation package - GPS, Laser, and INS -

provides information that constrains (without accumulating error) the track of the global sensor

motion and also gives distance to the often irregular terrain surface (e.g. tree canopy). However,

there are still complex problems because each of the 3D aerial sensors has its own inherent noise

characteristics, and each sensor collects data at varying temporal rates, which leads to temporal

error as the data must be synchronized through interpolation.  Thus, we must apply the 3D geo-

data to fuse the 2D image sequences into a seamless and globally geo-corrected mosaic, which

subsequently must be easily matched with high-altitude photogrammetric images.

     In this paper we present a novel method for using this information to obtain seamless and geo-

corrected mosaics. Besides the suitable problem modeling and the complete and full-automatic

algorithms, the novelty of our work lies in a two-track geo-mosaic composition method that
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achieves the required mosaic fidelity even if the geo-data is not accurate. The methodology allows

re-correction of the geo-mosaic when given further geo-referenced information from other sources,

such as a match with geo-referenced aerial images. Moreover no complex global optimization is

used, and the algorithm is robust and fast. Our resulting mosaics are shown to be far more

geographically accurate in the sense of geo-correction than a free mosaic. With no effort yet

expended on code optimization and speedup, the video alignment step of our experimental

prototype system takes only about 1 second for a pair of 320*240 color images on a Pentium 233

MHz PC, and the geo-correction and mosaic generation steps take far less time. The system has the

potential to process data at video rate in the future.

    The paper is organized as follows. In the next section, the airborne camera geometry and

interframe motion models are given, and a pseudo-parallel projection mosaic representation is

proposed. Section 3 describes a robust estimation algorithm for local image registration.

Correction of mismatches guided by the geo-data and registration refinement for image mosaics

are discussed in Section 4.  This involves computing an estimated track from image registration

and an expected track from geo-data. The central algorithm of creating a video mosaic that is both

seamless and geo-corrected is presented in Section 5. Section 6 gives experimental results with real

forestry video images over The Nature Conservancy (TNC) test site in Ohio. We compare results

from a free mosaic (using commercial software of VideoBrushTM), a geo-only mosaic (i.e. only

using the 3D aerial instrumentation), and a geo-corrected mosaic. A discussion and conclusion is

given in the last section.
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2. Motion and Mosaic Models

2.1. Geographical data and geometry

    The set of 3D geographical aerial data coming with the image sequences are captured with a

“labtime”, a common computer clock time in milliseconds that is used to synchronize the data.

The set of sensor data and their recording rates are as follows:

Video Image Sequences are captured at a 30 Hz frame rate for both wide-angle video and

zoom video.

A laser range profiler gives the distance D in meters of a point laser beam from aircraft to

ground at 238Hz.

A Inertial Navigation System (INS) – the Watson box gyro provides rotation angles in

degrees at 11 Hz. with

tip - the angle between gravity and the z axis of the aircraft in the direction of flight;

tilt - the angle between gravity and the z axis of the aircraft perpendicular to flight; and

heading - the clockwise direction-of-flight angle from north.

          We use (!, ", ##to represent the heading, tip and tilt in radians.

GPS  - this is standard GPS measuring the position of the camera at 1Hz (in future

experiments differential GPS will be employed) with

altitude - the altitude of the aircraft from sea level in meters,

A/C northing and A/C easting - Universal Transverse Mercator (UTM) coordinates.

We use Tw = ),,( ane TTT t to denote the 3D coordinates (east, north, altitude) of the camera

center in a ground coordinate system.

    It should be noted that the different devices, because they operating at varying rates, require us to

employ linear interpolation to synchronize timing information from GPS running at 1 Hz to put all

the temporal data in a common coordinate system.  Of course this adds in additional error and must

be accounted for in the geo-corrected mosaicing process.
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    The relationship between camera coordinates X = (Xt,Yt,Zt)t  at time t and ground coordinates

Xw = (Xw , Yw , Zw)t can be expressed as (Fig. 1)
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where super index (t) and sub index t mean time t (or frame t).

Fig. 1. Flight geometry
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2.2. Interframe motion model

    Equation (1) expresses the relation between the moving camera coordinate system and the

fixed ground coordinate system. In order to determine the relationship between two successive

video images, the interframe motion transformation must be derived.  A 3D point Xt = (Xt,Yt,Zt)t

with image coordinates (ut, vt) at current time t will have moved from 3D point Xt-1 = (Xt-1, Y t-1,

Z t-1)t with the image point (ut-1, vt-1) at reference time t-1. The relation between the 3D

coordinates is

TRXX $%* tt 1

where

t
zyxttwtwtwtw ttt ),,()(, ,1,

11
,1,

1
,

+

*
**

*
* %*%% ww TTERTRRR

The inter-frame rotation matrix R has the same form as Rw except that ),,( #"!  is substituted by

inter-frame rotating angles ),,( ,-. . If the rotation angles are small between the successive

frames, e.g., less than 5 degrees , R can be approximated as

$
$
$

%

&

'
'
'

(

)

/
$
$
$

%

&

'
'
'

(

)

/

 1   -     -
     1         

   -     1   

1          -            -
   cos       sin  
    sin-     cos  

-,

-.

,.

-,

-..

,..

R (4)

The first approximation is made when . is not very small, and the second is made when all of

the three angles are very small. Suppose the camera focal length f does not change during the
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ttt uMu /*1 (6)
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For vertical tracking movement of the airborne camera (Fig. 1), involving tip, tilt, heading

and range changes, we have very small - and ,.  If the change in range (for the part of an image

under consideration) is small relative to the range, then equation (6) can be treated as a 2D rigid

inter-frame motion model, where  /1 tt ZZs */  is a scale factor associated with range changes,

(tu, tv) is the translation vector representing (tilt/X-translation, tip/Y-translation), and . is the

heading change.   

When the inter-frame heading angle . is also very small, equation (6) can be further

simplified as
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      In Section 3, given more than 2 pairs of corresponding points between two frames, we can

obtain the least squares solution for the motion parameters, s, tu, tv and ., in equation (9). The

approximation errors are especially small for the narrow horizontal strip (the center scan lines) in

the center of each image that will be used in our image mosaic algorithm (Fig. 3). For large

heading angles, the results can be refined by an iterative warp-then-refinement method (Section

4). We argue here that even if general and optimal methods are always expected and progresses

are frequently reported in motion analysis, a simplified and pragmatic model, given the specific

task and the available data, is often more reliable and more efficient.
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Fig.2. Pushbroom camera model and P3 mosaic
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Notice that the scale 1/ D0 roughly maintains the aspect ratio of the mosaic image. The frame

coordinates at time t can be expressed as
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where Ty is the offset of the camera center at time t from the reference frame.  Semi-parallel

means that in the direction of motion (Y axis) the image obeys parallel projection, while the

image along the X axis is a perspective projection.  The relation between the mosaic coordinates

and frame coordinates is
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stst %  is the projection of the image center in the mosaic image at time t. If

the image sequence is dense enough, and the velocity of the camera translation is constant or is

known (i.e., Ty is known), we can use the scan lines near the center of the image (i.e. vt = 0 so

that we need not know Z in equation(12)) to construct the mosaic. Otherwise this 2D image

mosaic cannot be generated from 2D registration of the image sequence if the ranges (Z) of the

scene change, and are not known. Moreover this kind of mosaic image obeys different

projections in the x and y directions, which is not expected in the geo-mosaics that we need. If

the ego-motion of the camera is not an ideal linear pushbroom, the situation is even more

complex.

(2). Full-parallel-projection mosaic (textured DTM)

A full parallel-projection mosaic can be expressed as

$
$
$

%

&

'
'
'

(

)

$
$
$

%

&

'
'
'

(

)

%
$$
$
$

%

&

''
'
'

(

)

 D
Y
X

1        0       0 
0        0  

 0      0        

0

f
f

w

wv

wu

f

f

(13)

It is actually a textured digital terrain map (DTM) – i.e. a texture-mapped range image on an

(X,Y) grid). A full parallel-projection mosaic is achievable if a 3D DTM is available, and the

match between 3D range map and 2D images is known [12]. In other words, we know the 3D
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motion of the camera, intrinsic parameters of the camera, and the depth of every image point.

The relation between the mosaic coordinates and frame coordinates is
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where ),( ftft vu is the projection of image center at time t in the mosaic image.

(3). Pseudo-parallel-project mosaic (P3  mosaic)

A full-parallel-projection mosaic is very different from a perspective projection in the sense that

distant objects do not appear smaller than nearby objects, which is ideal for our geo-based mosaic.

However we need the full 3D range map of the scene, and most of all, we need to match every image

with the 3D model. Obviously the problem becomes one of 3D reconstruction from multiple

calibrated images when the 3D map is not available a priori. Can we obtain the 2D geo-corrected

mosaic in a much more efficient manner?

Recall that range information is available along the motion track of the camera center by our

instrumentation. If we assume that the scene has constant depth D in the X direction in the

camera’s field of view, then a pseudo-parallel-projection mosaic (P3  mosaic)  can be constructed
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The image transformation from a perspective image to a P3 mosaic is
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where ),0( ptv is the projection of center of the image at time t in the mosaic image, and D(vt) is

the range in the track connecting the image centers of frame t-1, t and t+1. The properties of a P3

mosaic are quite similar to a full-parallel-projection mosaic. Moreover it is much easier to

construct. Notice that there is no difference between equations (15) and (13); however the

generation of P3 mosaic in equation (16) is different from textured DTM. In the following section

we will present a fast and robust method to construct a geographically-corrected P3 mosaic.
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2.4.  Generalization of P3  mosaic geometry

    In this subsection we generalize the linear pushbroom camera model to the real motion model

of the airborne-mounted camera when the motion has 6 degrees of freedom (Fig. 1, equation (1)).

During forward motion, we assume that the camera’s tip and tilt do not change very much during

a long flight, i.e. the plane does not “accumulate” large tip and tilt, B and #& However, the

heading angle ! can change significantly over a long flight. A 2D rigid motion model can be

derived from equations (1) and (3) in a manner similar to equation (6).  Let u = (u,v,1)t be the

coordinates in the mosaic coordinate system (i.e. frame t =0), and ut = (ut,vt,1)t in the current

frame (i.e. frame t), we have

tt uPu % (17)

where
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and

000 ,,/ /DfTT/DfTTDDS yvxut /// (19)

In equation (19), (Tx ,Ty) is the X and Y coordinates in the reference camera coordinate system of

the ground point (Xg ,Yg) in equation (3), and we have (Tx ,Ty) = (-Xg ,Yg) in our coordinate system

definition. equations (17)-(19) implies that the mosaic image obeys parallel projection and the

camera image approximately obeys a weak-perspective projection

(ut,vt) = (f X/Dt, f Y/Dt)

where Dt is the average depth of the portion of an image in time t that will be used in the mosaic.

In other words, the original image is approximated by a weak-perspective projection of a “virtual

camera” X’gY’gZ’g with nodal point at (Xg
(t),Yg

(t),Zg
(t)+D t) (see Fig. 1).   

It seems that with all the 3D geographical data and a robust 2D image registration process,

our image mosaicing becomes a simple problem. However either of them alone will not result in

both a seamless and geographically corrected mosaic. Using frame-by-frame image registration

alone, we can achieve a seamless mosaic, but it will not exhibit geographical accuracy due to
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from-frame-to-frame error accumulation, even if the errors between two successive frames are

very small. These errors stem from model approximation, scene complexity, and image

registration errors. On the other hand, the 3D geographical data (from GPS, laser ranges and

INS) provides a globally correct track of the motion without error propagation. However the

inherent (absolute) errors in the instrumentation are large, and how to match the 3D data with the

2D image is still a problem. The following sections describe an effective method to combine two

different sources of data to achieve the seamless and geo-corrected mosaic, without camera

calibration, 3D reconstruction or complex nonlinear global registration.

3. Initial Registration

The inter-frame image displacements are estimated by using a pyramid-based matching

algorithm. The hierarchical algorithm consists of four steps: pyramid construction, hierarchical

block matching, match evaluation and robust estimation of motion parameters.

Step 1: Generate the pyramids for the current and the reference (preceding) images. For

computational efficiency, the final image displacements are only given for non-overlapping

image blocks of a given size, say 16'16, in the finest layer (i.e. original image) of the reference

frame. The matching process is carried out from coarse to fine resolution layers, starting from a

layer with certain image size, e.g., 2 times as large as the matching block size. The list of the

blocks is represented by their center coordinates {(ui,vi), i=0, ...,B-1} in the reference frame.

Step 2: Determine the image displacements.  For each block in a layer of the reference frame,

the absolute difference operation (a simple version of correlation) is carried out in an adaptive

search window over the current frame pixel by pixel. Matches with largest correlation values are

determined and the one with smallest displacement is selected as the best match. Notice that

there may be several best matches due to similar patterns within the search window. The search

window is “adaptive” in that the initial size of the search window is about half the image size in
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the first layer, but it is reduced in the finer layers. The motion vectors for these blocks are

presented by {(+ui, +vi), i=0, ...,B-1}.

Step 3: Evaluate each match by combining a texture measure with the correlation

measurement. This step is important because the confidence values will serve as weights in the

parameter estimation. The evaluation of the matching itself is calculated from the normalized

absolute difference of each block as

4
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where ),( ii vuW  is the block centered at (ui,vi), Nw is the pixel number in the block, I(.) and I’(.) are

the intensity values (0-255) in the reference and current frames, respectively. The texture is

measured as the normalized average magnitude of the gradient image of the reference frame

inside a given block i
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where gmax is the maximum value of average magnitudes of all the blocks. The initial weight for

the ith match is computed as
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where 7 = 8.0 in our experiments. Note that )0(
i

w = 1 iff di=gi=1, and )0(
i

w =0 if di=0 or gi=0.

Step 4: Estimate inter-frame motion parameters. We use a weighted least mean square

(WLMS) method to iteratively estimate the inter-frame motion parameters 8 = (tu, tv ,., s) in

equation (9). The objective function is

4 *% %
i

i
k

i
rk

i
rk

i i
(k)wJ 222 |)(min ’|))((   ,))(()( uu 8 (21)

where ui = (ui,vi)t, u’i = (ui ++ui ,vi++ vi)t , i = 0,..., B-1, and the weight updating function is
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where the scale factor 9  is estimated as [16,17]

4826.1*|)(| )(k
i i

rmedian%9

assuming that the residuals can be modeled as a noisy Gaussian distribution (residuals for the

non-dominant components are the outliers). It has been pointed out in [17] that a median-based

estimate has excellent resistance to outliers. The iterative algorithm is given as follows.

__________________________________________________

(1): Initialize : k=0, ).0,0,0,0((-1) %8

(2): Find 8(k) using WLMS method.

(3). Compute the distance || )1()()( **%+ kkk 888 , and estimate the scale factor 9 based on the

current residuals.

(4). If  :
8

8
(

+ ||
)(

)(

k

k
(e.g. 1.0e-3), or  :9 ( , or iterating count k > MaxK (e.g., 20), then stop; else

update the weights  )(k
i

w , assign k = k+1, and then go to step (2).

_______________________________________________

    The final result from this algorithm is the dominant motion of the points that satisfy the 2D

rigid motion. Those points that do not satisfy the motion model – e.g. those having obvious

different ranges from the average range of the entire image and the mismatched points - are

treated as outliers by changing the weights in equation (22). Interested readers can find the

difference between our approach and the approach in [17] in the objective function, which is

based on residuals between the motion data and the parameter model, rather than an expensive
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intensity difference between two images. Instead of directly applying the Geman-McLure

function as in [17], the weight function in our approach combines the measures of block match

reliability and the data-model residuals.

4. Correction and Refinement

4.1. Global tracks from image registration and geo-data

     Here we define a track as a sequence of 2D rigid motion parameters ; = (;(0), ;(1),..., ;(F)),

where ),,,( )()()()()( ttt
y

t
x

t STT !%;  in equations (17)-(19), and F is the frame number. As in Section

2, select the first frame as the reference frame where the mosaic coordinate system is generated.

We can find the geometric transformation between the current frame and the first frame

recursively from equations (6) and (17), hence the “estimated track” from the image is

IPMPMP %%< %%=;
%

* 0
0

1
)(   ;,...,1, Ftt

t

j
tjt

t
I (23)

and the image track length (measured in pixels) is calculated as
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We can also find the track on the ground from the geo-data, as

FtDDYX ttt
g

t
g

t
GR ,...,1),/,,,( )0()()()()()( %!*%; (25)

where  ( )()( , t
g

t
g YX ) is the corresponding point of the image center at frame t (equation(3)), A(t) is

the heading angle, and D(t) is the average range of the ground points between  ( )()( , t
g

t
g YX ) and

( )1()1( , ** t
g

t
g YX ) (see Fig.1 and Fig. 3). The track length  (measured in meters) on the ground can be

calculated as
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From equation (19), the effective focal length for the camera image and also the mosaic image

can be estimated as

G

I
L
L

Df 0% (27)

so the “expected” geo-corrected mosaic track is
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where t
t DD %)( . (Both of these two notations are used in the paper for convenience).

Up to this point we have two initial tracks – one from the image, another from geo-data.

Ideally, if there are no errors in models, data acquisition, and processing, they would be identical,

but unfortunately, these conditions can never be satisfied. Notice the distinctly different ways

that the tracks are derived. The estimated track from the image is the composition of interframe

transformations with accumulating error, while the expected track is captured directly from

absolute 3D geo-data, with its associated inherent absolute error, but is free from error

propagation.

Fig.3. 2D image mosaic geometry

4.2.  Match correction and refinement

In this subsection we discuss how to correct the mismatch between successive frames and

refine the registration by referencing the geo-data track. If the initial estimation of interframe
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motion parameters are significantly different from the results of the geo-data, and/or the

weighted frame difference is very large, geo-data are used to estimate the initial values of the

“expected” motion parameters, and then the corresponding frames are re-matched. Given that our

goal for image registration is to create an image mosaic, the weight function employed for the

image difference is a 1D Gaussian

2

2

2
2
1),( >?

?>

v

evuh % (29)

which favors those points near the center scan-lines of the frames used in the mosaic images

(refer to Fig.3). With the initial motion vectors of each block from the given initial interframe

motion parameters, the match process will start from a suitable intermediate layer in which the

initial displacements are detectable.

Even if no mismatch occurs, the refinement process is needed when the rotation angle . is

large due to that . instead of sin. is used in motion estimation. The refinement can be performed

by iteratively warping the current image and re-matching the warped image with the reference

image. We emphasize that Mt in equation (6) is used to warp the image, even if we still use linear

equation (9) to estimate the motion parameters 8 (m)= (tu, tv, ., s)|m, where (m) denotes the

iteration count, so that errors will be reduced with decreasing residual rotating angles. The initial

motion parameters 8 (0) for refinement are from the initial or previous match, while the initial

weighting function is modified as
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The warping in the mth iteration can be expressed by
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while the objective function is modified as
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The final transformation matrix for the current frame t is
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After registration correction and motion refinement, we re-compute the “refined” estimated track

and the expected track, described in subsection 4.1. Notice that the geographical data is only

used to correct the possible mis-registration between successive frames; it is possible to use

motion smoothness constraints if the geo-data is not available, since the refinement of the motion

parameters does not rely on the geo-data. From the estimated track, a seamless mosaic can be

obtained. However the correction and refinement in this manner cannot correct the estimated

track due to accumulating errors.

5. Geo-Mosaic Composition

    We proposed a two-track method to build a geo-mosaic – a mosaic that is both seamless and

geo-corrected. We already have two “tracks” of motion transformation parameters: the refined

estimated image track ;I and the updated expected track from geo-data, ;D. They are used to

calculate two additional tracks: the primary track (“global-corrected track”) ;G that matches the

global geographical track and the secondary track (“local-stitching track”) ;L that guarantees

precise local stitching. The primary track ;G is simply the expected track ;D, or a smooth

version of it if ;D is very noisy.  The secondary track ;L is calculated as follows:

,...1,)()1()()( %%=; * tt
I

t
G

t
L

t
L MPP  (34)

where

)()( t
L

t
L P=;  is the (secondary) stitch transformation parameters and matrix of frame t

)()( t
I

t M=8  is the interframe transformation from image registration of frame t and t-1

)1()1( ** =; t
G

t
G P  is the (primary) geo-transformation parameters of frame t-1
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Now, how can we achieve precise local registration and correct the global track at the same

time? From frame t, suppose we warp N+1 scanlines into the mosaic. These scanlines are

expressed in the mosaic image, i.e., we use the inverse transform that maps from the mosaic to

the original image frames.  The transformation for the ith scanline is estimated as the linear

interpolation of each parameters between )(t
L;  and )(t

G;

Ni
N

iNi t
G

t
Lt

i ,...,1,0,
)( )()(

)( %
;$;*

%;  (35)

The mosaic process is to transform a line in frame t and paste it to the ith scanline in the

mosaic (i=0,1,...,N). The first scanline from frame t will be precisely stitched to the last scanline

from frame t-1, since the transformation between them is just the interframe image

transformation )(t
IM ; while the last scanline from frame t satisfies the geometrical transformation

from the global track constraint, )(t
GP .  Fig. 3 shows the geometry of line-by-line mosaic. More

suitable interpolation methods can be used by considering the ranges along the line v = 0.

5.1. Explanation of the geo-mosaic geometry

The line-by-line 2D rigid transformation sequences capture some of the range changes and

perspective distortion between the image centers of the two temporally adjacent frames.  Let

tLLvLuL
t

L SATT |),,,()( %; , tGGvGuG
t

G SATT |),,,()( %; . In our flight setting, the flight moves along

the Y axis, so the number of scanlines from frame t is || )1()( **% t
vG

t
vG TTN . From the mosaic

geometry we know that the relation between scanline i in the current frame t and the mosaic

coordinate vi is

)( )(t
vGi TvNi **% (36)

so equation (34) can be re-written as

Nivii ,...,1,0   , %+;$;%; (37)

where the super index (t) is dropped off for convenience, and

),,,( iiviuii SATT%;
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Thus the line-by-line 2D rigid transformation sequence can be represented by a unified equation
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where ),,,( iiviuii SATT%; is a function of vi . Equation (38) is a nonlinear transformation in

general. If we assume A+ =0, the following homogeneous transformation can be derived from

equations (37) and (38)
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where 111 ATAT tt SSC +$+*% , 222 ATAT tt SSC +*+% , ),(3 uv
t TTC ++*% T  (t denotes transpose),

and ),( vu TT ++%+T , ),( vu TT%T , )cos,sin(1 !!*%A , )sin,(cos2 !!%A .

Fig. 4. Examples of line-by-line transformations

      Fig. 4 shows some simple examples of the transformations, corresponding to the following

four special cases.

 (a) +S @0                 (b) +Tu @ 0                (c) +Tv @0            (d) +! @0
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(1) If uT+ =0, A+ =0, S+ =0, but @+ vT 0, the two-track transformations bring scaling ( v1 T+* )

in the v direction

$
$
$

%

&

'
'
'

(

)

$
$
$

%

&

'
'
'

(

)

+*

!!

!*!

%
$
$
$

%

&

'
'
'

(

)

11            0                   0  
     Scos        sinS  
 T   sin   cos  

v

v

u

t

t

i

i
v
u

T
T

SS

w
wv
u

(2) If vT+ =0, A+ =0, S+ =0, but @+ uT 0, the two-track transformations bring shearing in the

u direction
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(3) If %+ uT 0, vT+ =0, A+ =0, but @+S 0, the two-track transformations bring perspective

effect to the image
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(4) If %+ uT 0, vT+ =0, S+ =0, but @+A 0, the two-track transformations cannot be expressed

as a linear transformation in equation (38). However they are very close to a projective

transformation:
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For the real geographical image mosaic, the difference between the interframe

transformations from image registration and the geo-data is very small, so the line-by-line

transformations compensate the original distortion due to 3D geometry and 2D perspective
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projection, and bias due to error propagation, rather than bring in additional distortion to the geo-

mosaic. In fact, the two-track methods can correct the track of the free mosaic to any expected

track if the track is smooth. It is clear that the two-track algorithm is computationally fast.

6. Experimental Results

Fig. 5. shows four frames of a 53-frame sampled video sequence for which a full set of geo-

data are available. The original image sequence is sub-sampled to 1 frame per second with image

size 320*240 in our experiment (see online MPEG file TR99-28-1.mpg). Recalling the data

rates for GPS/INS/Laser data, every digitized frame is linearly interpolated to correspond to a

GPS location and INS rotation angles for the camera. Between the center of consecutive frames

there are about 238 range samples.

It should be noted that there are obvious illumination changes due to auto iris effects (see

Fig. 5 (c) and (d)). The interframe translation along the Y axis is about 60-70 pixels, which is

more than 1/4 of the image height. The algorithms for local registration and refinement are

effective in the construction of a seamless free mosaic (shown at 20% scale in Fig. 6; the full-

resolution mosaic can be found online in JPEG file TR99-28-2.jpg).  Although it appears to be

seamless, there are obvious differences between the estimated track from image registration and

the expected track from the geo-data.

(a)  (b)

(c)  (d)

Fig. 5. Sampled frames from the forestry video sequence
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 Fig. 6. Our free mosaic    Fig. 7. VideoBrush mosaic      Fig. 8. Geo-corrected mosaic

(a) (b)

Elevation Zw

v  coordinate of the geo-corrected m
osaic
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0 10 20 30 40 50 60
0.998

1

1.002

1.004

1.006

1.008

1.01

1.012

1.014
Interframe scale changes

frame

sc
al

e

Fig. 10. Interframe scale changes

By using the two-track method described in Section 5, a seamless, geo-corrected mosaic is

created (Fig. 8; TR99-28-3.jpg). The (translation components of) the expected track and the

estimated track are superimposed in the geo-corrected mosaic in red and white respectively. The

translation components of the two tracks are found to be very close to each other except for

certain locations. Fig. 9 (a) and (b) show the comparisons of the headings and scales of the two

tracks, respectively. The global trends of the headings are similar, but the scales are quite

different, which is obvious by comparing the mosaics in Fig. 6 and Fig. 8. The expected scales

Headings from Image (blue*)
and geo-data (red *)

Scales from Image (blue*)
and geo-data (red *)

Interframe scale changes
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are calculated from the absolute geo-data, but the estimated scales are accumulated from

interframe motion parameters. Although the estimated interframe scales are within 0.998 –1.012

(Fig. 10), which is quite close to the real situation, the accumulating errors are as large as 30%

by the end of the 53 frame sequence.  Readers should note that we will be doing sequences of

many minutes to hours in the future.

The two-track method corrects this accumulating error frame by frame, while maintaining

precise stitching of successive frames. To show the role of the secondary (stitch) track, we

compare our geo-corrected mosaic to a geo-only mosaic where only the normalized expected

transformation is applied.  It is obvious that the geo-only mosaic is not seamless even though the

global track is faithful to the geographical data, which is not accurate enough for a seamless

mosaic. The geo-corrected mosaic satisfies both of the requirements. Fig. 11 is a comparison of a

sub-image (33% scale in the figure) of the same portion of the geo-corrected mosaics and geo-

only mosaic. The entire geo-only mosaic can be found in the online JPEG file TR99-28--4.jpg.

  

(a) geo-corrected                              (b) geo-only

Fig. 11. Zoom-in comparison of geo-corrected and geo-only mosaic

     

(a) geo-corrected                              (b) VideoBrush

Fig. 12. Zoom-in comparison of geo-corrected and VideoBrush mosaic
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For comparison, we also generated a free mosaic using the evaluation version of a

commercial software VideoBrush 2.0 (Fig. 7; TR99-28-5.jpg). From their published papers [4,

7] related to this system and the mosaic results, we find that no scaling is applied to the mosaic

and the track is smoothed.  While the mosaic is seamless, and color/ luminance blending is

handled, it is not geo-corrected; for example the scale is not changed as a function of ranges of

ground points. To evaluate our geo-mosaic result, we superimpose both our geo-mosaic and

VideoBrush’s mosaic on the high attitude image which is taken at 5k ft above the ground at

about the same time as the video sequence. This high-attitude image has then been warped into a

geo-reference frame.  Therefore the warped high-attitude image is an approximation of a parallel

projection. To register the mosaics with the high-attitude image, we manually select two points

in the high-attitude image and find corresponding points in both the geo-mosaic and VideoBrush

mosaic respectively; and use 2D rigid transformation of translation, rotation and scaling. Note

that no deformation is brought in; only the scaling and orientation of each mosaic are changed.

Fig. 12 is a comparison of a sub-image of the same portion of the geo-corrected mosaics and

VideoBrush mosaic superimposed on the high attitude image. The entire mosaic can be found in

the online JPEG files TR99-28-6.jpg (geo-mosaic) and TR99-28-7.jpg (VideoBrush mosaic).

Image points along the center track in our geo-mosaic register precisely with the high-attitude

image, and at the border of the mosaic there are only small errors (due to the assumption of the

constant range on u direction- a discussion and extension is given in the next subsection). As

expected, the VideoBrush mosaic cannot register with the high-attitude image (Fig. 12b).  It

should be noted here that two feature points are selected in the head and tail of both of the

mosaics; one of them is under the white circle (O) in each of the image in Fig. 12. Notice the

obvious different location errors of a white building (pointed by an arrow) below the road in the

right of each image. The reason for large offset in VideoBrush’s mosaic is that it does not change

the scales with the change of the ranges, which is obvious in this part of the scene.  Remember

that the video used in this example is only about 1 minute, but we are carrying out experiments

on much longer image sequences in actual environmental applications.
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Fig. 13.  Two tracks: global corrected and local precise

    In the geo-corrected mosaic of Fig. 8, the matching of the 2D image with the 3D geo-data are

also shown.  Each red circle and the attached number indicate the center of each frame and the

ground altitude in meters of that point. The radius of the red circle represents the error in pixels

corresponding to a )5 m location error on the ground. The recovered altitudes of the flight and

the altitudes of the ground along the track are shown beside the geo-mosaic as histograms. The

geo-corrected mosaic image matches quite well with the geo-data, for example, the roads and the

grassland in the mosaic image. Fig. 13 shows the 4 components of the two tracks: the global-

corrected tacks and local- stitching tracks that has the image mosaicing process incorporated.

They lay close to each other, but differences exist.

Global-corrected (red*) and
 local- stitching (blue +) track: Tv

Global-corrected (red*) and
 local-stitching (blue +) track: Tu

Global-corrected (red*) and
local- stitching (blue +) track: !

Global-corrected (red*) and
 local- stitching (blue +) track: S
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7. Conclusion and Discussion

    A new method of creating a seamless and geo-corrected video mosaic has been presented. By

analyzing the motion model of the flight, a pseudo-parallel projection mosaic representation  (P3

mosaic) is developed to represent the geo-corrected mosaic given the available geographical

data. A complete geo-mosaic method, including local registration, track generation, matching

refinement and two-track-based mosaic composition are provided. The advantages of this

approach are that sensor motion information is effectively employed in a simple model to

produce effective results, and a fast, robust and practical implementation is achieved.

    Comparing with Kumar et al‘s geo-registration method [12], our approach has three distinctive

features. (1) Large geo-referenced video mosaic from a long image sequence can be generated

before the match of video and reference imagery. Thus the computational burden for the

registration of overlapped video frames (or a video mosaic in every 1 second) with the reference

image can be greatly reduce, if we have to do so. (2) Only geo-data from GPS/INS/Laser are

used to generate a geo-mosaic, without the need of a geo-referenced image and the

accompanying DEM. Notice that besides the computational burden and difficulties in matching

two different kinds of images in their method, the error in 3D DEM may distort the video mosaic

such that seamless-ness may not be guaranteed. (3) Our algorithms are fast and reliable. The time

for frame alignment is about 1 s for a pair of images comparing to their 30s – 2 mins for a triple

of images on the similar machine. This is due to the different modeling and methodologies.

     However we should point out that there are limitations in our current implementation. One

potential weakness of our current work is the assumption of constant range along the x-axis. The

simplified model we use is due to the availability of range along the optical axis and hence along

the center line of the flight path. As a result, image points along the center track in our geo-

mosaic register precisely with the high-attitude image, but at the border of the mosaic there are

small errors. This can be improved by the following extensions.
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  - Generalization of the geo-corrected mosaic method. If a DEM is available or motion parallax

can be reliably applied, more complicated model, e.g. projective transformation model can be

utilized between two video frames.  Note that the way a geo-mosaic is created – one strip from

each frame, and one transform per scanline, so projective transformation would model the depth

change along x axis well without dramatically increasing the computational burden if pointwise

3D data is a applied. Geo-referenced DEM can be used to generate the corresponding “projective

track”, and the same two-track method can be applied except that the transformations between

scanlines are changed to projective transformation. In the absence of a available DEM, motion

parallax can be explored – though with some difficulties.

   - Registration of aerial image and video mosaics. With a geo-reference aerial imagery

available, the registration can be carried out to reduce the error from the model simplification,

without the need of a accompanying DEM. After a few reliable matches along the boundary of

the video mosaic are established, the same technique of line-by-line transformations can be used

before or after the generation of the video mosaic. The geo-registration between the aerial image

and a few video images provide more accurate global track, while seamless and high quality

mosaic can be guaranteed by our approach.

We will be carrying out a project in the Noel Kempff Mercado National Park expansion

zone in Bolivia as part of a potential purchase of land area half the size of Massachusetts.  We

hope to demonstrate in that biomass survey that we can provide more accurate estimates of

biomass at a considerably lower cost than the present method of extensive ground plot

monitoring and statistical extrapolation.  This geo-corrected mosaics are a key part of this

process.
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