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Abstract

We consider a special case of partially observable
Markov decision processes that arises when state
information is perfect but arrives with a delay. We
first formulate the decision process in its standard
form and derive the Bellman equation that corre-
sponds to it. We then introduce a second decision
process that has a much simpler Bellman equa-
tion than the first, and is therefore, in general,
much easier to solve. We demonstrate that even
though the two decision processes have different
optimal value functions, their optimal policies are
the same. Exploitation of this result may lead to
vast computational savings.

Introduction

Markov decision processes (MDPs) (Howard 1960) pro-
vide a useful framework for planning under uncertainty.
In the standard MDP formulation, it is assumed that, at
each stage of a decision process, the agent has access to
perfect information about the system’s state. However,
many real-world decision processes violate the assump-
tion of perfect state information. MDPs with imperfect
state information are typically referred to as partially
observable MDPs (POMDPs)(Sondik 1978). A special
case of POMDPs arises when the agent receives state
information that is perfect but arrives with a delay.

As discussed in (Zelevinsky 1998), the control of
movement in biological systems may be thought of as
planning with delayed state information because visual
and proprioceptive information is relayed along neural
pathways that have non-negligible transmission times®.
Another domain in which decisions are frequently based
on delayed state information is medical decision mak-
ing. Here, state information may be delayed because
the results of biochemical or other laboratory tests only
become available after several days, or because test re-
sults only convey information relating to events much
prior to testing (as, for instance, in AIDS tests).

Tn humans, proprioceptive delays are roughly 30 ms,
visual delays roughly 120 ms. Compared to the duration of
a typical point-to-point arm movement, which is about 500
ms, these delay are quite significant.
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Background

We are concerned with decision processes of the fol-
lowing form. We have a system with a finite num-
ber of states s € S and an agent that has available
a finite number of actions a € A. For each triple
(a,s,s') € A x 8%, we have a value pa(s’|s) € P4 that
specifies the probability of the system moving from s to
s’ if action a is implemented. For each pair (s, a), there
is an expected immediate cost g(s,a), and the total ex-
pected cost along any system sample trajectory is de-
fined as the infinite discounted sum Y, v*g(sk,ax),
with discount factor v € (0,1]. The agent cannot ob-
serve the system’s current state (and, by extension, it
cannot observe the immediate cost g(s,a)). Instead,
it observes the state the system was in 7 stages be-
fore. The history of the agent’s observations and actions
up to stage k, Hy = (so,a0,---,Sk—r, 8k—r,- -, 8k—1),
defines a probability distribution over possible current
states s € S. With regard to determining this prob-
ability distribution, some of the information in Hy, is
redundant. In particular, from the Markov property of
the system’s state transitions, it follows that

p(sk|Hg)

P(Sk|S0, @0, ., Sk—r,Ak—7,. .., k1)

= p(sk|sk—T7ak—T7"'7ak—1)'
The truncated history
I, = (Sk_.,—,ak_.r,. .. ,ak_l) €elT=8SxA"

therefore constitutes a sufficient statistic for the deci-
sion process, and we shall refer to it as the agent’s
information state. Note, also, that the information
state transition I — Iry; occurs with probability
Pay_. (Sk—r+1[Sk—7).

A policy for the decision process may now be defined
as a function 7 : Z — A. For each I € Z, the expected
total cost associated with policy 7 equals

o0
VI(I) = E<$ > Ag(sjpa)|To=T4, (1)
j=0
where the expectation is taken with respect to the joint

distribution of the random variables involved in the
information-state transitions Iy — I, I} = Io,....



A decision process P =<7, A, Py, g> is then defined
as follows. Given the information-state space Z, action
set A, transition-probability set P4, and cost function
g, find a policy 7 that minimizes the expected total cost
V™(I) for all T € 7.

The solution to this problem is typically obtained in
two steps: First, for all I € Z, we solve the Bellman
equation
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with
g(I,a)= E{g(s,a)[I}
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Second, using

7* = argmin |g(I,a) + ’yZp(s'|s)V(I') , (@)
a T
we determine an optimal policy.

It should be clear that, for most decision processes
of this type, the solution of the Bellman equation will
require vast computational resources. This is not only
so because of the size of Z, which is exponential in 7,
but also because of the complexity of computing the
expected immediate cost g(I,a). From (3), it can be
shown that the computation of g(I,a) has a complexity
of O(7|82|). Fortunately, the latter complexity may be
avoided if the decision process is appropriately reformu-
lated.

Alternative Formulation

Let us consider a decision process Pr =<7, A, P4, g, >
that is identical to P, except that the expected total
cost associated with a policy 7 is now defined as

VI =Ex{ > Vg(sj—rraj)|To=13.  (5)
=0

This is a time-shifted version of cost function (1),
from which it is obtained by replacing g(sg,ay) with
g(sk—r,ar_r). Conceptually, this means that costs are
assigned based on where the system was 7 stages before
rather than were it is currently.

The Bellman equation for P;,

VD) = min |E{g(s ,a

+7 ) pMV(T)
-

—)Io =1}

, VI€T,(6)

is, in general, much easier to solve than the one
for P. Since s_, and a_, are known when Ij is
given, E{g(s_;,a_;)|Ip} reduces to the single term
g(s—r,a ;)

From the above, it is clear that, if a decision process
P can be reformulated as a decision process P, vast
computational savings are possible. Of course, such a
reformulation can only make sense if a solution to P;
is also a solution to P. As we shall see shortly, this is
indeed the case.

Theorem (Time-Shift Equivalence). Let P, be the
decision process <Z, A, P4, g-> defined above, and let
wr : Z — A be an optimal policy for P;. Then «} is
also an optimal policy for the decision process P.

Proof. We start by noticing that P and P, are identical
except for their definition of cost. In P, a given policy
7 has an associated total cost

o0
V(I =E< S > vg(sj,a)|lo=Tp,
=0

while, in P;, the same 7 has an associated cost
Vi) =

T
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Separating past and future costs, we may rewrite the
latter expression in the form
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j+
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Vi) = B,
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= K(I)+~y"V™(D),

with

An optimal policy for P; is therefore a policy that, for
all T € 7, satisfies

mr(I) = argmin V(I)
= arg m}n [K(I) + 7TV”(I)] .



Now note that K(I) is a function only of s_,,
a_,,...,a_1, which are fixed when I is given. Hence,
K(I) is independent of 7, and the above equation re-
duces to

*(I) = argmin 4"V (I)

= argmin V"(I).

This establishes that an optimal policy for P is also an
optimal policy for P (and vice versa).

Example

To illustrate the relationship between P and P, we
consider the following medical decision process. A per-
son’s hormone level may be in one of five different
states, S = {0,1,2,3,4}. The hormone level may be
altered by application of one of two drugs, each of
which may be given in dosages of 04 pills. One drug
lowers the hormone level, the other increases it, so
that A = {—4,-3,-2,-1,0,1,2,3,4}. Drug applica-
tion alters the hormone level according to the equation
s' = B(s + a + w,), where w, is random variable that
follows the discrete uniform distribution on the integers
—lal,...,|al, and B(z) is a function defined as follows:
B(z)=0ifx <0,B(x) =z if0 <z < 4,and B(z) =4
if x > 4. Drugs are given once a day. Also once a day,
a blood sample is obtained from the patient and is sub-
mitted to biochemical analysis. The analysis results,
which become available a day later (7 = 1), give accu-
rate information about the patient’s hormone level at
the day of testing. It is desirable to have a hormone
level of 2. Deviation from the desired level leads to a
cost of 1, and drug usuage leads to side-effects with cost
la], so that g(s,a) = |a| if s =2, and g(s,a) = |a| + 1
otherwise. Long-term and short-term costs are given
equal weight (v = 1). Even though there is no discount-
ing, it should be clear that there exist policies whose
infinite-horizon costs are less than infinity. (Note that,
if the hormone level is 2 and no drug is taken, the level
remains at 2 and no cost is incurred.)

The above decision process has the general form P,
and its solution may be computed using equations (2)
and (4). It may also be reformulated as a decision pro-
cess P. We computed optimal cost functions and opti-
mal policies for both formulations. The set of optimal
policies for P is shown in Table 1, and, as expected, we
found that the set of optimal policies for P, was the
same as for P. From the proof of the above theorem,
we know that the optimal cost function for P, should
differ from the one for P by K(I) (recall that v = 1),
which in the present example is equal to g(s_1,a_1).
The optimal cost functions for P, and for P (values in
parentheses) are shown in Table 2, and it may be ver-
ified that the differences between the two optimal cost
functions are as expected.

Previous Previous Cell Count
Dosage 0 1 2 3 4

-4 {1 {13 {0,1} {0,1} {0, 1}
-3 it {13 {0,1} {0, 1} {0, 1}
2 it {13 {o,1} {o,1} {0}
-1 v {1 {0y {0} {0}
0 v {1 {oy {13 {1y
1 oy {0y {0} {13 {1}
2 {0y {10} {1,04 {-13 {1}
3
4

{-1,0p {104 {104 {1}  {-1}
{-1,0p {104 {104 {1}  {-1}

Table 1: Optimal policies

Previous Previous Cell Count
Dosage 0 1 2 3 4
-4 13.00 13.00 7.78 13.00 13.00
(8.00) (8.00) (7.78) (8.00) (8.00)
-3 12.00 12.00 7.71 11.71 11.71
(8.00) (8.00) (7.71) (7.71) (7.71)
-2 11.00 11.00 7.20 10.20 10.20
(8.00) (8.00) (7.20) (7.20) (7.20)
-1 10.00 10.00 6.00 8.00 8.00
(8.00) (8.00) (6.00) (6.00) (6.00)
0 9.00 9.00 0.00 9.00 9.00
(8.00) (8.00) (0.00) (8.00) (8.00)
1 8.00 8.00 6.00 10.00 10.00
(6.00) (6.00) (6.00) (8.00) (8.00)
2 10.20 10.20 7.20 11.00 11.00
(7.20) (7.20) (7.20) (8.00) (8.00)
3 11.71 11.71 7.71 12.00 12.00
(7.71) (7.71) (7.71) (8.00) (8.00)
4 13.00 13.00 7.78 13.00 13.00

(8.00) (8.00) (7.78) (8.00) (8.00)

Table 2: Optimal value functions for P; and for P (val-
ues in parentheses)



Summary

When an observation delay is introduced into a fully
observable MDP, we obtain a new decision process
that is only partially observable. If the delay has a
constant duration of 7 stages, the truncated history
I €7 =5 x A" constitutes a sufficient statistic for
the decision process, and a policy that minimizes to-
tal expected discounted cost may be found from (2)
and (4). However, vast computational savings are pos-
sible if, rather than using (2) and (4), the problem is
first reformulated by replacing cost function (1) with its
time-shifted version (5). This results in a new decision
process that has a different optimal value function than
the original one, but has the same optimal policies and
is much easier to solve.
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