Generating problem episodes for a multi-agent
system: The TAEMS Grammar Generator
UMASS Computer Science Technical Report
1999-31

Brett R. Benyo, M.V. Nagendra Prasad, Victor R. Lesser
June 17, 1999

1 Abstract

Empirical studies are an important method of determining the roles of different
algorithms in multi-agent systems research. In order to run multi-agent exper-
iments, one needs a method of generating problem instances for the agents to
solve. These problem instances can then be converted into TAEMS task struc-
tures, which are hierarchical abstractions of the problem solving process that
describe alternative ways of accomplishing the desired goal. Most real applica-
tion domains constrain the morphology of the task structures, therefore in order
to generate appropriate problem instances, a model of the environment that the
multi-agent system is operating in is needed. We present the TAEMS grammar
generator, a environment modeling tool capable of capturing the constraints
present in the domain task structures, along with the uncertain and dynamic
nature of most real world environments.

2 Introduction

Multi-agent problem solving is becoming a new computing paradigm and presents
many new challenges. A multi-agent system is a collection of entities called
agents that use their knowledge and beliefs about their environment to perform
actions. In this work, we are primarily interested in cooperative groups of semi-
autonomous agents that coordinate with each other to achieve a global goal.
Knowledge engineering is an important part of constructing such a system, for
we have to specify what knowledge each agent has, what each agent can do,
and endow the agents with knowledge and capabilities to respond to dynamic
environments.

In order to represent the knowledge an agent has and the actions an agent
is capable of, we use the TAEMS (Decker & Lesser 1993) modeling language.
Using TAEMS, we can specify not only the actions an agent has available, but
also how these actions affect each other and the environment. In addition, we
can represent other agents and their possible actions. Our representation of
actions gives the agents a statistical view of the possible outcomes of the ac-
tions, and an idea of how these outcomes can vary over time. One limitation
of a TAEMS representation is that TAEMS does not have strong support for
representing contingency. A TAEMS task structure is more of a static snapshot
of the problem an agent faces at a given time, it is not a representation of all
the things that could happen. To get around this limitation, we can use the
generator to represent the dynamic nature of real world environments.

Problem solving begins when an agent generates or receives a goal tree called
a TAEMS task structure together with performance objectives that could in-
clude hard deadlines. The top level of this tree represents the main goal that
the agents need to achieve. Successive levels represent subgoals that can be
combined in some way to achieve the higher level goal. The bottom most level
(leaves of the tree) represent individual actions that the agents can perform.
There may be many different subsets of actions that an agent can perform to
achieve a top level goal, each with different quality, cost, and durations. It is the
agent’s job to determine which set of actions to perform to best solve the top
level goal given the stated performance objectives. This determination process
usually involves coordination among the agents. Figure 2 is an example of a
TAEMS task structure, and a detailed description of TAEMS can be found in
section 3.

A set of TAEMS task structures that represent the actions of all agents in
the system is called an episode. Each task group in the episode has an arrival
time, and possibly a deadline. No quality can be accumulated before the arrival
time, or after the deadline. The role of the generator is to create an episode
from a model of the environment. The environment is modeled as a generator
function that takes a set of parameters and uses graph grammar productions to
create episodes.

We present a graph grammar based task structure generator powerful enough
to model the topological relationships occurring in task structures representing
many real life applications. The generator can operate in three different modes.
First, the generator can generate tasks from a centralized perspective. In this
case, the generator is in a sense simulating the environment by giving tasks to
the agents to perform. The generator can also generate tasks from an agent’s
perspective. In this case, the generator is acting as a component of an agent.
The task structure it creates then represents the tasks that the agent has decided
to undergo on its own based on, for instance, task recognition, sensor events,
or requests for goals to be performed by other agents. Finally, the generator
can operate in a dynamic mode, inserting events into the system that can cause

existing task structures to be modified. These event rules of the generator can
be used to simulate a dynamic component of a domain problem solver, such as
a learning component. The generator allows a researcher to quickly run experi-
ments in different domains without the need to create a domain specific problem
solver and environment model.

This generator is implemented in Java, and can be run as a stand-alone com-
ponent, or in conjunction with our MASS multi-agent survivability simulator
(Vincent, Horling, Wagner & Lesser 1997). The simulator is domain indepen-
dent, and thus is capable of simulating any environment that can be represented
in the TAEMS language. We have used it to simulate many environments such
as an intelligent home (Lesser et al. 1998), a robotic delivery system, and an In-
ternet based portfolio management system. The generator operates as an agent
component that communicates with the simulator, providing the simulator with
a statistical description of the outcomes of each possible agent action. This sta-
tistical description called the objective view, or the objective task structure.
The generator also provides each agent with what is called a subjective view or
subjective task structure. The subjective view may not be completely accurate,
since it represents the agent’s beliefs about the tasks. For example, an agent
may believe that a certain action will be completed in five units of time, when
in fact the action will take ten units.

Figure 1 shows the system architecture of the simulator. “The generator”
is actually a set of generator components, each fully functional. Each generator
component that is responsible for simulating the affect of the environment on
its agent by providing that agent with tasks to perform. Alternatively, one gen-
erator component can be singled out to simulate the whole environment, and
provide tasks to all other agents. These generator components that are also
responsible for informing the simulator of tasks that the agent has decided to
perform.

Work on the generator started in 1996 (Prasad, Decker, Garvey & Lesser
1996) in response to a desire to continue the work by Decker (Decker & Lesser
1995) on studying the roles of different coordination mechanisms in different
task environments. The original generator created in 1996 (Prasad 1996) was
used to produce static task structures. After creating the task structures, the
generator would shut down. In order to study survivable systems, we needed
a generator that is capable of modeling a more dynamic environment. Thus,
work since 1996 has been focused on the dynamic capabilities of the generator,
and integrating the generator with the MASS environment. Through the use of
event rules and triggers, the generator can modify task structures while they are
being executed by agents by sending events to the simulator. In addition, the
generator can add, omit, or change portions of a task structure before delivering
it to an agent to simulate the agent having incomplete or incorrect knowledge
of the environment. These capabilities also allow the generator to be used in
a completely different context; the generator be used to simulate an agents do-

Agent Agent Agent

Generator | Control Generator | Control Generator | Control

Problem Solver Problem Solver Problem Solver
Communication Communication Communication
KQML messages
e I
[Communications Module j Database
v A
>' Execution Module TAEMS DB
] A Resource Models
=7 Resource Manager Resource DB
A
@ ~.| Event Engine
u SIMULATOR)

Figure 1: System architecture of the MASS simulator

main specific problem solving component or learning component.

In sections 3 and 4, we will briefly introduce TAEMS and graph grammars.
In the fourth section, we will discuss the enhancements that were made to the
generator to support dynamic and uncertain environments. These sections are
intended to make the reader familiar with the concepts, and not necessarily
get bogged down by the implementation details and the generator syntax. In
Section 6, we give a description of the input and output of the generator, with
the detailed syntax. Specific examples are given the following section.

3 TAEMS

TAEMS (Task Analysis, Environment Modeling, and Simulation) (Decker &
Lesser 1995; Decker 1995) is a formal domain-independent language for repre-
senting tasks and problems. A TAEMS model of an environment specifies the
actions that are available to the agents and relationships between those actions.
In addition, the performance of all actions are described through discrete prob-
ability distributions in terms of quality, cost, and duration. A TAEMS task
structure is a graph (usually a tree, however it is not required to be a tree)
with a single root node, called the task group, or the top level task. Internal
nodes in the graph are TAEMS tasks, and leaf nodes are executable TAEMS
methods. The methods represent actions that can be executed directly by the
agents. Each method is described by its quality, cost, and duration distribu-
tions. When a method is executed, its quality, cost, and duration are chosen
by the simulator from these distributions. The results of methods can then be
combined into the more abstract tasks, through a quality accumulation function.

Figure 2 gives an example of a TAEMS task structure representing the ac-
tivities of a Internet information gathering agent. The top level task, Process-
Query represents the problem at the most abstract level. The problem pre-
sented to this agent is that of responding to a request for information from
an outside source, such as a user-interface agent. Completing the Process-
Query task involves completing the three subtasks, Formulate-Plan, Get Data,
and Return-Results. Formulate-Plan and Return-Results are terminal methods,
which means that they are represented at their most detailed level, and thus
can be executed directly by the agent. The effect that executing these method
has is represented by a TAEMS outcome, depicted by the quality, duration,
and cost distributions shown underneath the method box. The Formulate-Plan
method has a 100 percent chance of returning a quality of ten, taking five units
of time to complete, and incurring no monetary cost. The quality accumulation
function of a task tells how to combine the quality of its subtasks to derive
the quality of the parent task. The quality accumulation functions in Figure
2 are printed directly below the task boxes. For Process-Query, the function
is “g-min”, meaning that the quality of Process-Query is the minimum of the

Process Query

q_min
enables enables
IFormulate Plan Get Data Return Results
Q: 100% 10) Q: 100% 10
D: 100% 30 q-mm D: 100% 30
C: 100% 0 Cc: 100% 0

Get Info Agent enables [Query Info
Address Agent

Q: 99% 30 1% 0

D: 100% 5 q-sum
C: 100% 0
Ping Info enables | Query Info
Agent 1 Agent 1
0l: Q: 50% 20 50% 30
Q: 100% 5 D: 100% 25
D: 70% 2 30% 3 c: 100% 0
c: 100% 0
02:
Q: 100% 0
D: 100% 10
C: 100% 0

Figure 2: TAEMS task structure for a information gathering agent

qualities of its three subtasks. This means that all three subtasks must be exe-
cuted for Process-Query to have any degree of success at all.

Get-Info-Address is a method that represents asking a matchmaking service
for the address of an information source agent. The Get-Info-Address method
has a one percent chance of returning a zero quality. Zero quality represents
failure; the method has no degree of success at all. If this is the case, due to
the “g-min” accumulation functions, there is no way that Process-Query can
achieve any quality greater than zero. This represents the case that our agent is
unable to get the address of any information source agents, and thus is unable
to process the query. This is an example of the static nature of a TAEMS task
structure. We have no direct way of saying in TAEMS, “If Get-Info-Address
returns 0 quality, abort Process-Query and do something else” If we had another
way of finding out the address of an information agent (such as asking a peer
agent), we could represent that as an alternative in the TAEMS structure by
by making it and “Get-Info-Address-From-Matchmaker” submethods of “Get-
Info-Address” with a quality accumulation function of “g-max”.

In addition to tasks, methods, and outcomes, TAEMS structures consist of
interrelationships, also called non-local-effects, between tasks and methods. In-
terrelationships describe the way in which the outcomes of methods can affect
other tasks or methods. For example, Figure 2 contains many enables rela-
tionships. An enables between task 1 and task 2 means that task 2 can not
accrue any quality until task 1 has completed and the results of its execution are
available. Another example of an interrelationship is uses, which is a relation-
ship between a method and a resource. Uses means that the method requires a
certain number of units of the resource to be available in order to execute. The
exact number is specified in the parameters of the uses relationship. Another
common interrelationships are facilitates between two methods, which means
that the facilitated method can run faster, or achieve more quality, if the facili-
tating method has completed execution.

4 Graph Grammars

Graph grammars are a powerful tool used in a number of domains (Mullins &
Rinderle 1991; Nagl 1979) to capture and characterize the underlying structural
regularities. They offer a structured way to describe topological relationships
between entities in a domain. Graph grammars are fundamentally similar to
string grammars (Nagl 1979) with the difference lying in the productions. A
graph production is a triple p = (g;, g», &) where (g; is the subgraph to be re-
placed (left hand side) and (g, is the subgraph to be inserted in its place in
the host graph. &) is the embedding transformation. A number of schemes for
graph grammars have been proposed and the primary differences between them
arise from the differences in the embedding schemes. Much of the traditional

literature in graph grammars does not deal with attribute valued nodes and
edges and stochastic productions. We need attributes to capture a number of
other aspects of domain semantics in addition to the topological relationships
between entities. Stochasticity in the productions adds more power to the mod-
eling potential of these grammars by capturing aspects of uncertainty in the
domain. Accordingly, we call our grammars Attribute Stochastic Graph Gram-

mars (ASGGs).

Let a graph G = (V,E), where V is the set of vertices (also referred to as
nodes) and E is the set of edges. Nodes and edges can have labels. An Attribute
Stochastic Graph Grammar is defined as a 8-tuple < X, A,,, 3¢, A;, A, Aa, S, P >,
where the nonterminal node alphabet (X,,), the terminal node alphabet ¥;, and
the edge-label alphabet (A) are finite, non-empty, mutually disjoint sets, A,,, A;
and A are the respective sets of attributes, S € X,, is the start label and P is a
finite nonempty set of graph production rules (Sanfeliu & Fu 1983). A graph pro-
duction is a 5-tuple p; = < g}, g%,&, Pr(pi),d > where Y. Pr(p;) =1 (pj € P
and gli, called the left hand side, is a single node, and g%, called the right hand
side, is a graph with a single root node. § is a set of attributes that will be given
to the root node of gi. These attributes are passed on to the TAEMS task or
method that the root node of g represents.

There are actually two different types of graph productions, both with the
same format given above. A production, sometimes called a rule, is a task rule
when the root node of the right hand side g%, is a non-terminal node. The other
case is that g’ is identical to g{. This type or production is called an attribute
rule, and it is a unitary rule. Attribute rules do not change nodes into something
else, all they do is copy a new set of attributes, § to the node gi. Since the node
of an attribute rule is not changed, the left hand side can be a terminal. In fact,
these attribute rules are usually used to give new attributes to terminal nodes.

Let G’ be a graph derived from S using P. Rewriting this graph involves what
is called a LEARRE method (Mullins & Rinderle 1991): Locate a subgraph g’
that is isomorphic to the left hand side, gli of production p; € P, establish
the Embedding Area in G’, Remove g’ along with all the edges incident on it,
Replace g’ with g& and Embed it to the host graph G’ - g’. (Figure 3 shows a
simple example)

The graphs we deal with are always directed, so the parents of a node are the
set of nodes that have outgoing edges connecting them to the node in question.
The children of a node are the nodes that are at the other end of an outgoing
edge. The left hand side of a rule is always a single node, and the right hand
side always has a single root node. The embedding rule will replace the single
root node of the left hand side with the subgraph of the right hand side. The
parent nodes of the old left hand side node will now point to the root node of the
new subgraph. Any children of the left hand side node that are not present in
the new subgraph are now disconnected, and thus are removed. If any nodes in

& = @
() (o) ()

Embedding:
Connect T1 to parents(S)

Figure 3: Example of a Graph Grammar Rewriting

the right hand side graph are already present in the graph, those nodes inherit
all links and attributes of the original leaves.

The grammar also specifies a start node, that will become the top level
TAEMS task. The production list is searched for the set of productions whose
left hand side node matches the start node. There can be multiple grammar
productions with the same left hand side, provided that their probabilities sum
to no 1.0. One of those productions is chosen randomly, based on the specified
probability distributions. This process is repeated for every new node added
to the structure. If no rule can be found, that node is a terminal, and thus a
TAEMS method.

5 Dynamic Environments

The graph grammar defined in the previous section is quite capable of generat-
ing static task structures and simulating the domain problem solving component
of an agent (Prasad 1996). However, in a dynamic environment changes may
occur, such as resource failures or malevolent intrusions, that could cause the
environment to behave differently from what is expected by the agent. For
example, an agent has certain expectations about the cost and time for exe-
cuting certain methods. If the method requires the use of a resource, these
expectations will be based on the access characteristics of that resource. If a
change in the environment causes a change in the access characteristics of the
resource, then the agent’s expectations about the cost and time required for
that method could be incorrect. As an example, consider a method that in-
volves reliable transfer of data over a network. If a link in that network fails,
it may take a lot longer than the agent expected for the data transfer to succeed.

The point of all this is that if the generator is to simulate the environment
properly, it must account for the fact that an agent’s beliefs about the environ-

ment may not be correct. The generator does this by creating two views of a
task structure, the objective view which represents the true quality, cost, and
duration distributions of the methods, and the subjective view, which represents
the agent’s beliefs about the quality, cost, and duration distributions. In the
data transfer example described in the previous paragraph, the objective view
would have a higher average duration for the data transfer task than the sub-
jective view, since the agent believes that the network is operating correctly,
when in fact part of the network is down.

In addition to containing different quality, cost, and duration distributions,
the objective and subjective views can differ in a multitude of other ways. First,
the agent might not be aware of all of the task interrelationships. An agent might
not know that a method is dependent on the state of a certain resource, it might
be incorrect in its belief about how much of a certain resource is required, and
it might not know that a method is affected by the results of another method
executed by a different agent. Also, an agent might believe some relationships
exist when in fact they do not. All of these things are represented by TAEMS
non-local effects, also called task interrelationships. The objective view could
contain a different set of interrelationships than the subjective view. The inter-
relationships present in the subjective view are not necessarily a subset of those
in the objective view, since the agent might believe in interrelationships that do
not exist.

The objective view can also contain entire task subtrees or methods that
are not present in the subjective view. This would represent a way of solving a
problem that the agent is unaware of, but the agent might become aware of, and
able to execute, at a later time. Also, the tasks in the objective view could con-
tain different quality accumulation functions, which determine how the quality
in the subtasks is to be combined, than in the subjective view. For example, an
agent might believe that both of a tasks subtasks must be executed in order for
the task to accrue any quality, when in fact, either of the two subtasks executed
alone would do the job.

The differences between the objective and subjective views can be used to
simulate malevolent intrusions into the system. An outside force could modify
or destroy one of the agents, or could affect the environment in a number of
ways. If this happens, elements of the system will not behave as they are sup-
posed to. For example, a new agent could be placed in the system whose only
goal is to use up as many resources as possible. This agent could attempt to
avoid detection by sending a false subjective task structure to the other agents
when they want to coordinate. The intrusive agent’s objective view would con-
tain the method outcomes that consume many resources, while the subjective
view that gets communicated to the real agents would contain method outcomes
with little to no resource usage.

Since there are so many ways for the objective and subjective views to dif-

10

fer, the generator must provide ways for the problem designer to specify what
goes in the objective view, and what goes in the subjective view. Once these
views are generated, the agent is provided with a problem to solve, and a set of
beliefs that it must work with. The problem then becomes one of scheduling,
coordinating with other agents, and executing the tasks.

5.1 Reactions and Event Rules

In a dynamic environment, changes that affect the quality, cost, or duration of
methods might occur at any time. If changes occur, the objective task struc-
ture would have to be modified while the agents are working. For example, if a
network link all of a sudden fails, the duration of any method that sends data
over that link would need to be increased, to reflect the fact that that data
now has to find an alternate route to its destination. In addition to random
environmental changes, the environment can be modified by the actions of the
agents. For example, one agent might be able to repair a faulty network link,
or a malevolent agent might actually cause failures to occur.

The generator can be used to model dynamic changes in the environment
through the use of a special kind of graph grammar rule, called an event rule
or reaction. An event rule is a 6-tuple er; = < g/, \, ¢!, &, Pr(p;),d > where
> Pr(pj) =1| (p; € P and g} is a single node, and g is a graph with a single
root node. £ is the embedding transformation, which is the same as in section
4, and ¢ is a set of attributes. A is an event. The reaction will not execute until
that event occurs, and gf exists in the task structure. One thing to note is that
resources are actually special nodes in the TAEMS task structure with local
state, so a resource node could be modified by an event rule. For a resource
node, or any terminal node, g¢ would equal gi, and the effect of the event rule
would come from the new set of attributes, ¢

There are many different ways for an event to be triggered. Methods com-
pleting execution or methods achieving a quality, cost, or duration greater than
or less than a certain threshold, can trigger an event. Also, a trigger could be
a method’s execution resulting in a certain outcome. In addition events can be
set to trigger at a certain time. Since the generator knows in advance which
events it has reactions for, it knows which events it cares about. Therefore, the
generator can then place triggers for only those events that reactions exist for
in the TAEMS task structures.

For example, consider a malevolent agent that purposely overloads a net-
work connection by executing a method called Flood-Network. We would set

up an event rule that looks like:

R = < NetworkResource, FloodN etworkCompletes, NetworkResource, 1.0,
state = overloaded >

11

Then, the generator will place a reaction trigger in the attributes of the Flood-
Network method. This trigger will cause an event called “FloodNetworkCom-
pletes” to be created when the method Flood-Network has finished executing.
We could also have made the trigger go off when Flood-Network starts execu-
tion, or after Flood-Network as been executing for a certain length of time.

5.2 Simulating a Problem Solving component

Building a domain specific problem solving component can be a complex task,
and such a component would have to be recreated for each new domain. These
generator reactions and event rules can also be used to simulate the problem
solving or learning components of an agent. The agent designer can use event
rules to modify the subjective task structure of an agent, thus changing the
agent’s beliefs about the problem to be solved. It might take many rules to
completely simulate the problem solving activities of an agent, however usually
useful results can be obtained from only simulating some of an agents problem
solving capabilities.

For example, consider a agent who tries to execute a method that sends
data over a network. Initially, that agent will have an expected quality, cost,
and duration distribution for that method that may look something like

Method: Send Data

Standard Outcome:
Quality: 100% 10.0
Duration: 100% 5.0
Cost: 100% 1.0

This says that the agent believes that sending this data will always take 5
time units, at a monetary cost of 0, resulting in 10 units of a quality, which
is an abstraction of the agent’s progress toward its goals. Now, assume that
the malevolent agent described in the previous section does its deed and floods
the network. The resulting reaction and event rule would cause the Network
resource to perform much worse than before. Now, if the Send-Data method is
executed again, the duration would be greater than 5. A learning module of a
problem solving component could recognize the discrepancy between the agent’s
beliefs and the actual results, and modify the expected duration distribution ac-
cordingly. However, if such a component is not available, the generator’s event
rules can be used to simulate this behavior. An event rule can be created with a
trigger that goes off if the duration of Send-Data is greater than 5. The actual
rule could simply change the duration distribution to reflect the greater uncer-
tainty.

12

As another example, consider the information gathering agent, whose task
structure was depicted in Figure 2. Lets assume that the agent attempts to ping
the information source agent through the “Ping-Info-Agent1” method and fails
(achieves a quality of 0 from outcome 02). This means that the information
gathering agent was unable to contact the appropriate information source agent.
One possible resolution to this problem is to ask another information gathering
agent to see if it can respond to this query. Since this agent failed at processing
this query, maybe it can contract out the query to another agent. In this case,
we want to abort the ProcessQuery task structure and begin a new structure,
ContractQuery. ContractQuery would be a task structure that represented the
agent broadcasting the query to other agents, receiving bids, choosing a con-
tractor, and finally delivering the end results computed by the contractor back
to the interface agent. This can be represented by a reaction that triggers when
Ping-Info-Agent1 results in outcome O2. The associated event rule would cause
the current task structure, ProcessQuery, to abort, and a new task structure,
ContractQuery, to be instantiated.

6 Generator Syntax

The generator operates on two types of files, a script file which tells it which
task structures to generate when, and a set of grammar files which contain the
graph grammar rules for generating an individual task structure. The generator
outputs a log file, which records the actions taken by the generator, and a tex-
tual TAEMS file that contains the TAEMS task structure. When the generator
is added as a component of an agent in our Java Agent Framework (Horling
1998), the generator also outputs the TAEMS structure as a Java class for use
by other components of the agent.

In this section, we will create a grammar input file example to produce a
task structure for a set of four information gathering agents. The first agent,
the Interface Agent, has the job of interacting with the user. The user will
input a query, and the Interface Agent will then ask a Task agent to do the
work. The Task agent might need to contact a few Information agents to gather
the data it needs to answer the query. The Information agents query a source
of information, such as a database, to answer requests from the Task agent.
These agents learn about the existence of each other through the services of a
matchmaking agent, called the Broker agent. For simplicity, the Broker agent
was not modeled, but it could easily be added. This system is an example of the
Warren portfolio management architecture [11]. An example of a task structure
that we want to produce with this grammar is given in Figure 4.

The graph grammar text file, which is case-sensitive, is parsed by the JavaCC

Compiler Compiler from SUN Microsystems [11]. The input file consists of four
different types of statements: task rules, attribute rules, the start symbol, and

13

enables

Proc. User
Request

Get Stock
Info

Process
Query

Ask Broker For
Task Address

Interface Agent

enables

Send Task, Wait
For Results

Process

Client Request

Process
Client Request

[Formulate Plan]

(

Return Results
to UI Agent

Task Agent Task @
Get Data

enables

Interface Agent

Return Results
o User Interface

Interface Agent

)

Ask Broker for Q
Info Agent A

uery Info
gent

)

Task Agent

Task Agent

Figure 4: Example of a Warren task structure

14

Return
Results

Information Agent 1

Query Info
Source

Information Agent 1

Return
Results

Query Info
Source

Information Agent 2

Information Agent 2

extra TAEMS structures.

We will start our Warren grammar file by defining the start symbol. This is
probably the easiest part of constructing a graph grammar. The start symbol
will become the top-level task of the task structure. The format for a start
symbol declaration is given below. In this section, the formats for grammar file
entries will be written in the standard font, and the examples that will make
up the actual Warren grammar input file will be given in the typewriter font.

(START-SYMBOL symbol)
(START-SYMBOL Get-Stock-Info)

Next, we need to define the structure of our task tree. A task rule will take
a nonterminal node and add some subtasks to it. These subtasks are also non-
terminal nodes which can be expanded through other task rules, or changed to
terminal methods by the attribute rules described in the next section.

The format for a task rule is:

(TASKRULE lhs label rhs (labell label2...) probability p count integer sub-
jective attributes ((attribute value)...))

The required elements of a task rule are the left hand side (lhs) and the right
hand side (rhs). If no probability is specified, the probability that the rule fires is
1.0. If multiple rules exist with the same left hand side, their probabilities need
to sum to 1.0. If they don’t, a warning will be output to the log file. The count
field specifies how many times this rule can fire during one generation. This is
used for recursively generated task structures that might have multiple nodes
with the same name. The default count is infinity. The subjective keyword is
used if you want the rule to fire only when constructing the subjective view. If
the subjective keyword is present, the rule will not fire when constructing the
objective view. The attributes allowed in the attribute section are listed below.
The format for some of the non-trivial values (such as the non-local-effects) are
given in a following section.

e gfn: Quality Accumulation Function (g-seq, q-max, g-min, g-sum, g-seq-
sum, g-seq-min, g-seq-max, g-exactly-one, g-sigmoid)

e agents: Agent assigned to this task (can be inferred from subtasks)
e deadline: The time at which this task needs to be completed by

e carliest start time: The earliest time at which work on this task can com-
mence.

e cnables: This task enables another task. This will create a TAEMS NLE
with this task as the enabling task.

15

e uses: This task uses some resource

e other TAEMS non-local effects, such as facilitates, hinders, or disables

Our Warren task structure will use the following task rules. Note the prob-
ability field of the Get-Data task rules. There is a fifty percent chance that the
first Get-Data rule, which has the Task agent ask Info Agent 1 for the data, is
used, and a fifty percent chance that the next rule, which has the Task agent
ask Info Agent 2 for the data, is used.

(TASKRULE 1hs Get-Stock-Info rhs (Process-User-Request Process-Query Process-Cl
ient-Request-1 Process-Client-Request-2) probability 1.0 attributes
((g-fn gq_sum)))

; Interface Agent

(TASKRULE 1hs Process-User-Request rhs (Ask-Broker-For-Task-Address Send-Task-W
ait-For-Results Display-Results-To-User) probability 1.0 attributes ((gq-fn q_se
q_sum)))

; Task Agent
(TASKRULE 1hs Process-Query rhs (Formulate-Plan Get-Data Return-Results-To-UI-A
gent) probability 1.0 attributes ((q-fn q_seq_sum)))

; 50% chance of Querying Info Agent 1 and 50% for querying Agent 2

(TASKRULE 1lhs Get-Data rhs (Ask-Broker-For-Info-Address Query-Info-Agent-1) pro
bability 0.5 attributes ((q-fn q_seq_sum) (enables Return-Results-To-UI-Agent))
)

(TASKRULE 1lhs Get-Data rhs (Ask-Broker-For-Info-Address Query-Info-Agent-2) pro
bability 0.5 attributes ((q-fn g_seq_sum) (enables Return-Results-To-UI-Agent))
)

; Information Agent 1
(TASKRULE 1lhs Process-Client-Request-1 rhs (Query-Info-Source-1 Return-Results) probability

; Info Agent 2
(TASKRULE 1hs Process-Client-Request-2 rhs (Query-Info-Source-2 Return-Results) probability

Attribute rules are used to specify attributes for the terminal methods.
(ATTRIBUTES method label probability p subjective ((attribute value)...))

The probability field is optional, and the default value is 1.0. If there are
multiple attribute rules for a method, their probabilities must sum to 1.0. The
subjective field is also optional. If a subjective agent is set, these attributes
will only apply to the subjective view of that agent. If this is the case, there

16

must be another attribute rule for this method that specifies the objective view
attributes. By default, if subjective is not declared, the rule applies to the ob-
jective view. For example if we had the rules:

(ATTRIBUTES taskl attributes (attribute-setl)
(ATTRIBUTES taskl subjective attributes (attribute-set2))

then, the objective view of taskl would have attribute-setl, and the subjec-
tive view of taskl would have attribute-set2.

The types of attributes available are given below.

agents: Which agent(s) are assigned to this task

outcomes: quality, duration, and cost distributions

e reactions

enables, facilitates, hinders, uses, limits

A TAEMS method might have multiple outcomes. An outcome consists of
three distributions, quality, duration, and cost. A distribution is a list of numer-
ical pairs. The first number in a pair is a percentage p, the second number is a
value, v. The semantics are that the quality, duration, or cost will be equal to
v, p percent of the time. All of the percentages in a distribution list should sum
to 1.0. For example, to specify that the 25% of the time the quality will be 10,
and 75% of the time the quality will be 5, one would write: (quality (0.25 10)
(0.75 5)). The outcome attribute is a list of outcomes. There can be multiple
outcomes, each of which has a certain probability of occurring. Multiple out-
comes are used to create a subjective view that is different from the objective
view. A subjective outcome that is different from the objective outcome can
be defined with the subjective keyword. Note that the subjective keyword is
optional. At least one outcome must not have this keyword, since at least one
outcome must be defined for the objective view. If no subjective outcomes are
defined, the subjective view is equal to the objective view.

(outcomes (density percentage subjective (duration distribution) (quality dis-
tribution) (cost distribution) ...))

Some of the attribute rules in our Warren grammar are shown below. Note
that the Query-Info-Agent-1 rule has two outcomes entries, both representing
the same actual outcome. The first outcome entry is for the subjective view,
which is what the agent will believe the result of Query-Info-Agent-1 will be.
The other is for the objective view, meaning that this is what the real result of
Query-Info-Agent-1 will be. The result of this is that the Task agent believes
that Query-Info-Agent-1 has a twenty-five percent chance of returning a quality

17

of 500, when in fact Query-Info-Agent-1 will always return a quality of 0, repre-
senting failure. This attribute rule is modeling a situation where Info-Agent-1
is malfunctioning, but the Task Agent is unaware.

(ATTRIBUTES Display-Results-To-User (
(agents Interface_Agent)
(outcomes ((duration (1.0 3)) (quality (1.0 10)) (cost (1.0 0))))))

(ATTRIBUTES Ask-Broker-For-Info-Address (

(agents Task_Agent)

(outcomes ((duration (1.0 12)) (quality (0.01 10) (0.99 0.1)) (cost (1
.0.0))))))

(ATTRIBUTES Query-Info-Agent-1 (

(agents Task_Agent)

(outcomes (subjective Task_Agent (duration (1.0 28)) (quality (.75 0.1)
(.25 500)) (cost (1.0 0)))

((duration (1.0 28)) (quality (1.0 0.0)) (cost (1.0 0))))))

(ATTRIBUTES Query-Info-Agent-2 (
(agents Task_Agent)
(outcomes ((duration (1.0 28)) (quality (1.0 4)) (cost (1.0 0))))))

(ATTRIBUTES Return-Results-To-UI-Agent (
(agents Task_Agent)
(outcomes ((duration (1.0 8)) (quality (1.0 10)) (cost (1.0 0))))))

(ATTRIBUTES Return-Results-To-Agent-b (
(agents Information_Agent_2)
(outcomes ((duration (1.0 5)) (quality (1.0 5)) (cost (1.0 0))))))

Non-local-effects (NLEs) are specified as attributes of a rule. An NLE at-
tribute has the following general format:

(type outcome outcome label (affected method or resource) ((subjective (from
| to | none)) | objective | no-objective)((distributions)...))

The type must be one of the supported NLE types, currently enables, disables,
facilitates, hinders, uses, or limits. The outcome field is optional, and is used
when this NLE originates from a specific outcome of the method. By default,
an NLE will be active no matter what outcome results from the execution of
the method. If the outcome field is specified, the NLE will only be active if
that specific outcome occurs. The distributions can be either cost (for a uses),
delay (for all NLEs), duration (for a uses, facilitates, hinders), or quality (for
facilitates, hinders). Some specific examples are given below.

18

(uses NetworkBandwidth (consumes (1.0 5)))

If we model the bandwidth of the network our Warren agents are operating
in as a resource, a uses NLE like this will represent this method using five units
of the resource.

(enables Query-Info-Agent)

This means that whatever method this attribute is assigned to enables the
Query-Info-Agent method.

(hinders methodx (quality (1.0 0.5)) (duration (1.0 2)))

This means the associated method hinders methodx by causing methodx’s
quality to decrease by a factor of 2 and methodx’s duration to increase by a
factor of 2

Interrelationships can be in any of three different views, the objective view,
the subjective view of the “from” tasks agent, and the subjective view of the
“to” tasks agent. By default, an interrelationship is in all 3 views. The only
exception to this is if the rule that the NLE definition is an attribute of is a
subjective rule ((ATTRIBUTE blah subjective (...))), then by default it is NOT
in the objective view.

Take the following example:

(ATTRIBUTES Return-Results subjective (
(uses NetworkBandwidth (cost (1.0 5)))))
(ATTRIBUTES Return-Results (

(uses NetworkBandwidth (cost (1.0 25)))))

By default, the (uses NetworkBandwidth 25) is present in the objective and
subjective view of this agent. The (uses NetworkBandwidth 5) is present only
in the subjective view. So, there are 2 uses relationships in the subjective view.
To change the default behavior, you can use three keywords, placed just before
(or after) the distribution definition:

e objective: This interrelationship will be put in the objective view
e no-objective: This interrelationship will not be put in the objective view
e (subjective (from | to | none)): This IR will be put in the specified sub-

jective views.

19

For example, if we change the uses NetworkBandwidth 25 definition to: (uses
NetworkBandwidth (subjective none) (cost (1.0 25))), then it will not be put
in the subjective view, only the objective view. For an enables relationship, we
might do: (enables blah (subjective from)), specifying that this relationship will
be in the enabling agent’s subjective view, and not the enabled agent’s view.
The enabling agent is called the “from” agent, and the enabled agent is the “to”
agent.

The rest of the attribute rules present in our Warren example are given be-
low. These rules all have non-local-effects as attributes.

(ATTRIBUTES Ask-Broker-For-Task-Address (

(agents Interface_Agent)

(outcomes ((duration (1.0 5)) (quality (1.0 10)) (cost (1.0 0))))
(enables Send-Task-Wait-For-Results)

(enables Formulate-Plan)))

(ATTRIBUTES Send-Task-Wait-For-Results (

(agents Interface_Agent)

(outcomes ((duration (1.0 127)) (quality (.05 35) (.75 50) (.20 75)) (c
ost (1.0 0))))

(enables Display-Results-To-User)))

(ATTRIBUTES Formulate-Plan (

(agents Task_Agent)

(outcomes ((duration (1.0 5)) (quality (1.0 10)) (cost (1.0 0))))
(enables Get-Data)))

(ATTRIBUTES Ask-Broker-For-Info-Address (

(agents Task_Agent)

(outcomes ((duration (1.0 12)) (quality (0.01 10) (0.99 0.1)) (cost (1
.0 0))))

(enables Query-Info-Agent)))

(ATTRIBUTES Query-Info-Source-1 (

(agents Information_Agent_1)

(outcomes (subjective Information_Agent_1 (duration (1.0 16)) (quality
(.50 50) (.5 100)) (cost (1.0 0)))

((duration (1.0 16)) (quality (1.0 0.0)) (cost (1.0 0))))

(enables Return-Results-To-Agent)))

(ATTRIBUTES Return-Results-To-Agent (

(agents Information_Agent_1)

(outcomes (subjective Information_Agent_1 (duration (1.0 5)) (quality (
1.0 5)) (cost (1.0 0)))

20

((duration (1.0 5)) (quality (1.0 0)) (cost (1.0 0))))))

(ATTRIBUTES Query-Info-Source-2 (

(agents Information_Agent_2)

(outcomes ((duration (0.8 16) (0.2 32)) (quality (1.0 40)) (cost (1.0 O
)))

(subjective Information_Agent_2 (duration (1.0 16)) (quality (1.0 40))
(cost (1.0 0))))

(enables Return-Results-To-Agent-b)))

Reactions are specified as attributes of a task or method, and thus specified
in the grammar file as attributes of a rule. There are two different types of
triggers that a reaction can have. First, the reaction could fire if a method com-
pletes execution and results in a specific outcome. If the outcome that occurs
matches the label specified in the reaction, the reaction will fire and an event
will be created. The second type of reaction will fire if a specific cost, duration,
or quality value is reached.

(reactions (label label (trigger-type trigger-value) (view (sub | obj)* (monitoring-
interval interval))

The trigger types are:

(global — timenum). Will fire after num time units have elapsed

(outcome — triggeroutcome — label). Will fire if the method’s execution
results in this outcome

quality — minnum). Will fire if the quality is less than num

quality — maznum). Will fire if the quality is greater than num

(
(

e (duration — minnum). Will fire if the duration is less than num
(duration — maznum). Will fire if the duration is greater than num
(

cost — minnum). Will fire if the cost is less than num
e (cost — maznum). Will fire if the cost is greater than num

The view field specifies which task structures are to be affected by this rule.
The options are “sub” for the subjective view and “obj” for the objective view.
It is possible to specify both the objective and subjective view in the view field,
this is the default. By default, these reactions only check the quality, cost, and
duration values against the trigger conditions after execution has completed.
However, reactions can monitor the quality, cost, and duration of a method
while that method is executing. In order to do this, a monitoring interval which
specifies how often to check the trigger condition needs to be set. For example,

21

you might want the reaction to fire if the quality is still less than 2 after 10
time units of execution have passed. To do this, you would use the monitoring-
interval keyword, and set the interval to 10.

Two examples of reactions in are given below. The first reaction will fire
if the method “Ask-Broker-For-Info-Address” method fails, where failure is de-
fined as completing with a quality less than 2.

(ATTRIBUTES Ask-Broker-For-Info-Address (
(g-fn q_max)
(agents Task_Agent)
(outcomes ((duration (1.0 12)) (quality (0.01 10) (0.99 0.1))
(cost (1.0 0))))
(reactions (label BadBroker (quality-min 2)))))

(EVENTRULE lhs Ask-Broker-For-Info-Address (view obj sub) event BadBroker rhs (Ask-Broker-1.
probability 1.0 attributes((q-fn q_seq_sum) (agents Task_Agent)))

The failure of “Ask-Broker-For-Info-Address” means that the Task Agent
was unable to discover the location of an appropriate Information Agent from
the Broker Agent. This means that the Task Agent’s job of processing the query
can not be completed. A dynamic Task Agent, complete with a domain problem
solver, might be able to figure out another way to locate an Information Agent.
We can use the generator and its event rules to simulate this domain problem
solving action.

If the “Ask-Broker-For-Info-Address” method fails, a BadBroker event is
created. This event will be matched with the above event rule. This causes the
Ask-Broker-For-Info-Address method to be replaced by an Ask-Broker-For-Info-
Address task which has three subtasks, the methods Ask-Broker-1-For-Address,
Ask-Broker-2-For-Address, and Choose-Address. The “(view obj sub)” param-
eter tells the generator to modify both the objective and subjective views. Mod-
ifying the objective view tells the simulator about the change, and modifying
the subjective view tells the agent about the change. This reaction simulates
problem solving component querying two different Broker Agents for an address
and choosing one.

We can also use reactions and event rules in a different way, to simulate a
change in the environment. In this case, we would want to modify the objective
view, which represents what is true, and not the subjective views of the agents,
which represent what the agents believe to be true. For example, assume that
at time 500, we want to simulate an intrusion in the system that results in one
of the Information Agents becoming compromised and sending out incorrect
information. We set up another reaction, with a global-time trigger set to 500.

22

This reaction will fire off an event labeled Intrusion, which makes the quality
of the Information Agent’s query zero. The parameter “(view obj)” means that
only the objective view will be changed and not the subjective view. Thus,
the Task Agent will not know that Query-Info-Source-2 is doomed to failure.
Discovering this fact would be a job for a detection and diagnosis component,
with help from a learning component.

(ATTRIBUTES Query-Info-Source-2 (
(g-fn q_max)
(agents Task_Agent)
(outcomes ((duration (1.0 16)) (quality (1.0 10)) (cost (1.0 0))))
(reactions (label Intrusion (global-time 500)))))

(EVENTRULE 1lhs Query-Info-Source-2 (view obj) event Intrusion rhs (Query-Info-Source-2)
probability 1.0 attributes(
(outcomes ((duration (1.0 16)) (quality (1.0 0)) (cost (1.0 0))))))

7 Script Input File

The script input file tells the generator when to generate each task structure.
Structures can be generated periodically or aperiodically, an infinite number of
times, or a set number of times. The task structures to be generates can be
chosen randomly from a set of structures. The format for the script file is given
below.

GRAMMAR: (DETERMINISTIC | NONDETERMINISTIC) START: value
TBTS: value COUNT: value PROBABILITY: value
FILE: grammar input file name PROBABILITY: value

A deterministic entry will only specify one grammar input file, and have
all probability fields automatically set to the default of 1.0. The START field
specifies at what time step to begin the first generation of this task structure on.
The default value is time step 0. The TBTS field stands for “time between task
structures”, and specifies the interval between successive generations of the task
structure. TBTS is a required field, with no default value. The COUNT field
says how many times to generate this task structure, and it has a default value
of infinity. For example, if the start value is 10, the time between successive task
structures (TBTS) is 10, and count is 5, then the task structure will be gener-
ated and presented to the appropriate agents on time step 10, 20, 30, 40, and 50.

A non-deterministic entry specifies a set of grammar files that can be used
for generation. The probability field on the GRAMMAR line gives the proba-
bility that any task structure from this set is generated. For example, with a
start of 10, tbts of 10, count of 5, and a probability of 0.5, there will be a fifty

23

percent, chance that a task structure is generated from the set at time 10, and a
fifty percent chance of a structure being generated from the set at time 20, and
so on. Following the GRAMMAR line, comes a set of FILE lines. Each of these
lines gives the name of one grammar input file. The probability fields on these
lines give the relative probabilities that this file will be used for generation as
opposed to the other files. All of these fields must sum to 1.0. For example,
the following statement will generate one task structure at time 10, with a 50
percent chance of generating from grammarl, 25 percent chance of generating
from grammar 2, and a 25 percent chance of generating from grammar3.

GRAMMAR: NONDETERMINISTIC START: 10 TBTS: 10 COUNT: 1
FILE: grammarl PROBABILITY: 0.5
FILE: grammar2 PROBABILITY: 0.25
FILE: grammar3 PROBABILITY: 0.25

8 Conclusions and Future Work

The grammar generator in an interesting component of a multi-agent system
that can be used in many different capacities in order to make system design and
implementation easier. First, the generator serves as a model of the environ-
ment, providing task structures to the agents and to the simulation framework.
The dichotomy of the objective and subjective views allows the simulation of
uncertainty and malevolent intrusions in the environment. The new dynamic
components, the event rules and reactions, allow the simulated environment to
change over time. In addition, these event rules can be used to simulate agent
learning and problem solving. Therefore, the system designer need not develop
a domain specific problem solver for each new domain in order to study a multi-
agent system operating in that domain.

The generator is fully integrated with our MASS simulator, however it can
also be run in a stand-alone mode. In this mode, the generator simply outputs
task structures that can be used by another component. This stand-alone mode
has been used by scheduling researchers trying out new scheduling technologies
on the task structures. Of course, with no simulation environment, reactions
and the dynamic portions of the generator are unaccessible.

The TAEMS grammar generator has seen wide use in our MASS simulator
environment, modeling problems from an Intelligent Home domain (Lesser et
al., 1998), a robot transportation domain, and a financial portfolio management
domain. In addition, the reaction and event rule mechanisms will begin to see
more wide spread use when more survivability issues are investigated. In addi-
tion, the generator and simulator were used as tools in a course project for a
multi-agent problem solving seminar taught here at UMASS. Also, the graph

24

grammars are being investigated for use as input to a organizational designer.

References

[1]

[10]

K.S. Decker and V.R. Lesser 1993. “Quantative Modeling of Complex En-
vironments” In International Journal of Intelligent Systems in Accounting,
Finance, and Management. Special Issue on Mathematical and Computa-
tional Models and Characteristics of Agent Behavior, Volume 2, pp. 215-
234.

K.S. Decker 1995. Environment Centered Analysis and Design of Coor-
dination Mechanisms. Ph.D. Dissertation, University of Massachusetts,
Ambherst.

K.S. Decker, A. Pannu, K. Sycara, and M. Williamson. “Designing Be-
haviors for Information Agents”, in Proceedings of the First International
Conference on Autonomous Agents(AGENTS-97), Feb. 1997.

B. Horling 1998. “A Reusable Component Architecture for Agent Construc-
tion,” Masters Thesis, University of Massachusetts, Amherst.

V. Lesser, M. Atighetchi, B. Benyo, B. Horling, A. Raja, R. Vincent, T.
Wagner, P. Xuan, S. XQ. Zhang, “Multi-Agent System for Intelligent En-
vironment, Control”. In Technical Report TR-98-40, 1998, University of
Massachusetts.

S. Mullins and J.R. Rinderle 1991. “Grammatical Approaches to Engineer-
ing Design”, part i. Research in Engineering Design 2:121-135

M. Nagl 1979. “A Tutorial and Bibliographic Survey on Graph Grammars”.
In V. Claus, H. Ehrig, and G. Rosenberg, eds. Graph Grammars and their
Application to Computer Science and Biology, LNCS 73. Berlin: Springer-
Verlag, pg 70-126.

M.V. Nagendra Prasad, K.S. Decker, A. Garvey, V. Lesser. “Exploring
Organizational Designs with TAEMS: A Case Study of Distributed Data
Processing”, 777

A. Sanfeliu, and K.S. Fu 1983. “Tree-graph Grammars for Pattern Recog-
nition”. In Ehrig, H.; Nagl, M.; and Rozenberg, G., eds., Graph Grammars
and their Application to Computer Science, LNCS 153. Berlin: Springer-
Verlag. 349-368.

R. Vincent, B. Horling, T. Wagner, and V. Lesser, 1998. ”Survivability
Simulator for Multi-Agent Adaptive Coordination”, In International Con-
ference on Web-Based Modeling and Simulation, San Diego, CA

25

[11] The Java Compiler Compiler (JavaCC), Sun Microsystems.
http://www.sun.com/suntest/products/JavaCC/index.html

26

