
Using Options for Knowledge Transfer
in Reinforcement Learning

Theodore J. Perkins and Doina Precup

CMPSCI Technical Report 99-34

May 1999

NOTE: This paper is available by anonymous ftp from the site ftp.cs.umass.edu
in the directory pub/techrept/techreport/1999

Abstract

One of the original motivations for the use of temporally extended ac-
tions, or options, in reinforcement learning was to enable the transfer of
learned value functions or policies to new problems. Many experimenters
have used options to speed learning on single problems, but options have
not been studied in depth as a tool for transfer.

In this paper we introduce a formal model of a learning problem as a
distribution of Markov Decision Problems (MDPs). Each MDP represents a
task the agent will have to solve. Our model can also be viewed as a partially
observable Markov decision problem (POMDP), with a special structure that
we describe. We study two learning algorithms, one which keeps a single
value function that generalizes across tasks, and an incremental POMDP-
inspired method maintaining separate value functions for each task.

We evaluate the learning algorithms on an extension of the Mountain
Car domain, in terms of both learning speed and asymptotic performance.
Empirically, we find that temporally extended options can facilitate trans-
fer for both algorithms. In our domain, the single value function algorithm
has much better learning speed because it generalizes its experience more
broadly across tasks. We also observe that different sets of options can
achieve tradeoffs of learning speed versus asymptotic performance.

1

1 Introduction
Temporally extended actions have been extensively studied in recent work as a
powerful tool for generalization in reinforcement learning (e.g. Singh, 1992a,b;
Kaelbling, 1993a; Lin, 1993; Dayan & Hinton, 1993; Thrun & Schwartz, 1995;
Dietterich, 1998; Parr & Russell, 1998; Hauskrecht et.al, 1998; Mahadevan et.al,
1997; McGovern et.al, 1997; Sutton, 1995; Precup & Sutton, 1998). They provide
a well-defined mathematical framework for reasoning about encapsulated behav-
iors, allow us to incorporate prior knowledge into learning agents and construct
control hierarchies. They have proven useful in speeding learning by biasing state
space exploration and accelerating temporal credit assignment.

One of the original motivations for studying temporally extended actions was
as a tool for transferring knowledge between tasks (Kaelbling, 1993b; Singh,
1992a; Moore et.al, 1998; Sutton, Precup & Singh, 1998; Drummond, 1998). The
idea is that an agent would be asked to solve a number of different, but related,
problems. This could mean achieving different goals in an operating environment
or perhaps acting in different environments. By recalling control policies, ac-
tion values, or environment models from previous learning experiences, new tasks
ought to be solvable with less effort than by an agent with zero prior knowledge.
Using options to transfer knowledge has been studied (in the above-mentioned
research) mostly in the case of an environment that is fixed, except for a goal
state that changes location in different tasks. In our formulation, the dynamics of
the tasks may differ in any way – transition probabilities, rewards, and absorbing
states.

In our model, an agent is faced with a probability distribution over a finite
set of MDPs. The agent solves one task after another, with each new task drawn
according to the task distribution after an absorbing state of the previous task is
reached. The tasks are defined on a common state-action set. When the agent
starts a new task, it does not know what task it is solving because the states look
the same in all tasks. However, as it experiences the task, the agent may come to
identify the problem it is solving. We believe this is a very plausible model for
the problems facing intelligent agents. A person is rarely asked to solve the exact
same task again, but it is common to have to solve similar tasks over and over,
without knowing exactly what task one is solving when one starts. For instance,
in driving to work every day, weather, road conditions, etc. make for a somewhat
different task each time. Such examples are ubiquitous in daily life, at different
time scales and different complexities. Very similar models have recently been
proposed for the same purpose of studying knowledge transfer with different sets

2

of temporally extended actions by Kalmar and Szepesvari (1999) and Bernstein
(1999).

With this as a model for our agent’s environment, we can study the transfer
value of a set of options – that is, which options best help the agent to transfer
learned knowledge to new tasks. Asymptotic performance of a learning sytem
is always an issue, but when studying transfer, we are particularly interested in
learning speed. The main purpose of transfer, after all, is to accelerate learning on
new tasks as a result of previous experience.

The rest of the paper is organized as follows. In section 2 we define our model
of the learning problem formally and introduce the Friction Mountain-Car do-
main that we use in the learning experiments. Section 3 presents two learning
algorithms that suit the problem definition. Sections 4 and 5 present a series of
experiments analyzing knowledge transfer in this domain.

2 Problem Definition
A task distribution consists of a finite set of MDPs and
a probability distribution over . Each MDP is finite and episodic. All
MDPs share the same state set and actions, but they may differ in their transition
probabilities, rewards and absorbing states. The true state of the environment can
thus be described as a pair specifying the task the agent is currently trying
to solve, and the state of that task. However, the agent perceives only the part
of that pair; it is not informed directly of which task it is solving. Note that this
formulation fits the definition of a Partially Observable Markov Decision Process
(POMDP), where the state of the task is observed but not the identity of the task
itself.

The agent begins its life in some task drawn randomly according to . When-
ever an absorbing state of the current task is reached, the agent is informed that it
solved the task and is given a new task drawn according to . The agent’s goal
is to maximize expected return within each episode.

The definition of a task distribution allows the MDPs to be arbitrary. In prac-
tice, one would probably be concerned with cases where there are commonalities
among the tasks, so that knowledge transfer makes sense. We might imagine that
there is some relatively small set of parameters that distinguishes the tasks from
each other, and that the tasks’ transition probabilities and rewards are dependent
only on these few parameter values. Or it might be that the transition probabili-
ties and rewards fall within certain bounds. In the Friction Mountain Car domain,

3

gravity

GOAL

friction

velocity
Figure 1: Friction Mountain Car

which we describe next, each task is uniquely determined by just two parameters
– the mean and variance of a friction coefficent random variable.

2.1 Friction Mountain Car
To illustrate this framework, we consider an extension of the Mountain Car prob-
lem, a standard illustration used for reinforcement learning. In the original prob-
lem, a car begins in a valley and must drive to the top of the hill on the right as
quickly as possible (see figure 1). The speed of the car when it reaches the goal
does not matter, only the time it takes to get there. The car can accelerate forward
or backwards (right and left in the figure), or just coast. The car’s engine is not
strong enough to drive straight up the right hill, so it typically has to back up part
way on the left hill and then accelerate forward to gain enough momentum to get
up the right hill. In fact, depending on the strength of the engine, the car may have
to go back and forth several times before building up enough speed to reach the
top. The rewards are -1 on every time step (no discounting) until the car reaches
the goal, which ends the task.

We add a friction term to the physics of the mountain car. For simplicity, we
model sliding friction. Every single task has an associated friction coefficient
distribution . On each time step an instantaneous friction coefficient is drawn,
independent of state and friction history, to determine the deceleration of the car
due to friction during the time step. A friction distribution with lowmean might
represent a task where the road is clear, and an with high mean a case where

4

the road is rough or there is debris.
A friction distribution, along with the standard parameters of the Mountain

Car problem, fully specifies the transition probabilities of a Friction Mountain
Car task. Though it is not required by our algorithms, in our experiments we
always use a uniform distribution over tasks. Thus, when we specify a set

of friction distributions, we implicitly define an entire task distribution for
the Friction Mountain Car.

3 Algorithms
We use the options framework to describe temporally abstract actions (Sutton,
Precup & Singh, 1998). An option consists of a policy , a
termination condition , and an initiation set . Given an MDP
and set of options , the optimal option-value function is given by:

(1)

where denotes the event of being initiated in , is the total discounted
reward received during the execution of , is the discount factor for future re-
wards, is the time at which the option terminates, and is the termination state
of the option. If the agent can compute the correct , then it can just pick op-
tions greedily according to this value function, and its behavior in the given MDP
would be optimal with respect to that set of options.

We use two different algorithms for computing option-value functions that can
be used for behaving, given our problem definition. The Average Value Function
(AVF) algorithm is the simpler one and it requires virtually no prior knowledge.
AVF completely ignores the fact that multiple tasks are being solved and keeps a
single state-option value function over the state space. We use standard SMDP
Q-learning backups (Bradtke & Duff, 1995; Parr, 1998) to learn the value func-
tion. If the agent observes state , chooses option , and as a result ends up in state
and receives return along the way, the value of the state-option pair is

updated by:

(2)

where is the learning rate.
In general, there is no theoretical guarantee for the performance of the AVF

algorithm. In the worst case, for instance, we can imagine a pair of linear MDPs

5

with diametrically opposed rewards. AVF would learn a value function with no
useful information. Of course, in this case no value function transfer is possible.

Our second algorithm is nearer the other end of the spectrum in terms of prior
knowledge required and theoretical guarantees. We have noted that our task dis-
tribution model can also be thought of as a POMDP, where the state of the task
is observed but not the identity of the task itself. Although solving POMDPs is
very difficult, we incorporate ideas from POMDP theory in our algorithm. In par-
ticular, the agent keeps beliefs about the state it is in and uses these in its action
selection.

The Separate Value Functions algorithm (SVF) maintains an option-value func-
tion for each task . The agent also maintains a set of beliefs about
which task it is currently executing. Let be the belief of the agent that it is solv-
ing task . On starting a trial, the beliefs are initialized to the distribution
over the tasks for all :

After each action, the transition to the new observed state gives the agent infor-
mation about which task it is in, and the belief about being in each task is updated
according to the probability of the observed transition in the task. Updating is
done in the standard Bayesian way. Specifically, on seeing the transition from
state to by action , the beliefs change by:

(3)

where is the probability of the observed transition in task . For temporally
extended options the beliefs are updated by the same equation at each step while
the option is running. This update rule assumes that the rewards do not convey
specific information regarding the current task. If the rewards come from a dis-
crete distribution that is different for each task, they can be accounted for in the
same way in which we account for the transition probabilities.

If the agent is in state and has a set of beliefs , it assigns
value to its options by computing a belief-weighted average of the option values
for each task. In other words, the option it considers best to choose given and
the beliefs solves the problem:

6

The SVF algorithm incrementally learns the value functions for each of the
separate tasks. Each time an option is executed, SVF updates the action values for
every task, whether the agent is actually in that task or not. To do so, it uses the
SMDP Q-Learning backup, where now the are replaced by the
specific for the task. However, the learning rate is additionally multiplied by the
posterior belief that the agent is in the task – i.e. after the option has finished.

This correction accounts for the fact that Q-values are being updated even
when the agent is solving a different task. All the value functions converge
with probability 1 to the correct Q-values, for each task, under the assumption
that the value function is represented in tabular form, and each state-action pair is
experienced infinitely often in each task.
Proof: Under these assumptions, the convergence proof is an application of

Theorem 1 from Jaakola, Jordan & Singh (1994). The only interesting part of the
proof is showing that the update operator yields a contraction.

The main idea is that we are allowing the learning rate to vary with time,
according to the beliefs . The beliefs also account for the difference between
the sampling distribution for the next state and the distribution of in task .

For simplicity, we present here the case of primitive actions (the case of tem-
porally extended options is similar). Let us denote by the agent’s belief that
it is in task at time during the trajectory (i.e. before seeing the transition from
to under action . It is straightforward to show by induction that for any

trajectory experienced by the system, the current belief for that trajectory is:

where

We can re-write the update rule for as follows:

We have to show that the expected value of the update operator:

7

yields a contraction in the max norm. By subtracting the optimal value function
, we obtain:

Note first that if the belief of being in task is 0, then the agent will not update
the value function for task at all. If the agent has perfectly identified a task, then
the update becomes identical to a Q-learning update for that task. Therefore, we
are only concerned here with the case in which the coefficients of both terms are
between 0 and 1.

The first term does not contribute to the decrease in the error, it just maintains
the previous value function, to the extent that the agent does not believe that it
is in the given task. Therefore, is suffices to show that the second term yields a
contraction.

For the second term, we can re-write .
Therefore, the second term becomes:

When taking the expected value over all possible partial trajectories and over
all tasks , we obtain:

q.e.d
The SVF algorithm offers the strong guarantee of convergence to correct op-

tion values for individual tasks. In task distributions where a small number of

8

transitions quickly identifies which task the agent is solving, we can hope for per-
formance near the optimal POMDP behavior. However, SVF also makes strong
assumptions. The agent must know the transition probabilities for all of theMDPs,
as well as the task distribution . By contrast, AVF has very weak assumptions,
so it can potentially be useful in a broader range of applications.

4 Experiment Details
In order to study the empirical properties of the AVF and SVF algorithms, as well
as the merit of options for facilitating transfer, we performed several experiments
on different Friction Mountain-Car task distributions. Here we complete the de-
scription of the environments we use, and give details on the learning methodol-
ogy and performance metrics.

4.1 Friction Mountain Car Task Distributions
The shape of the valley the car is trying to escape from is given by where

is the position of the car. The car’s tangential velocity is limited
to the range . The primitive actions are three tangential accelera-
tions . In friction mountain car we also have an instantaneous
friction term drawn independently from the task’s friction distribution. The
dynamics of the system is given by:

If the deceleration due to friction exceeds the other terms, the velocity .
Both the position and the velocity are clipped to the ranges mentioned above.
Additionally, if the car “hits” the lower end of the position range, its tangential
velocity is set to zero.

In this paper we use clipped, discretized normal distributions for the friction
coefficients. The friction coefficient is allowed to take on values from 0.0 to 0.6 in
increments of 0.0005. For a given mean and standard deviation we evaluate
the corresponding Gaussian density function at each discretization point, and then
scale the probabilities to ensure they sum to one.

In our experiments, we consider two task distributions. Each contains 50 tasks,
with friction distributions having means running in equal intervals from

9

to . The task gets increasingly difficult as friction increases towards
0.4; in fact, if always, the task is not solvable from some states – the
car cannot even start moving. The task distributions differ only by the standard
deviation of their friction distributions. We call the task distributions T0.2 and
T0.02 indicating sets of friction distributions with standard deviations 0.2 and
0.02 respectively.

4.2 Options
Our experiments use three main sets of options, which we call 1-Step, 20-Step
and 100-Step. The 1-Step options are just the primitive actions of accelerating
forward or backward and coasting. The 20-Step set also contains three options,
one that accelerates forward for 20 time steps in a row before terminating, one
accelerating backwards for 20 time steps, and one coasting for 20 time steps. The
three options of the 100-Step set are defined similarly.

At one point we compare some of those options sets with a single option which
we call the Pumping option. The option, once started, does not stop until the car
reaches the goal. When the car is moving backwards, the option continues to
accelerate backwards until the velocity falls to zero or reverses to moving forward
– i.e. until the car hits the left wall or has reached the highest it can on the left hill.
Then the pumping option accelerates forward until the goal is reached or velocity
flips again. The option does the utmost to keep pumping the car up higher on the
opposing hills. If a particular task can be solved at all, then the Pumping option
will find a solution, but not necessarily in the most efficient manner.

4.3 Learning Methodology
The previous section defined the algorithms used in this study. The learning al-
gorithms all used trial-based learning. In each trial, the car’s initial position and
velocity are chosen uniformly randomly from the state space. The agent chooses
its most preferred option 99% of the time and a random option 1% of the time.
The trial ends when the car reaches the goal, and is also stopped early if 3000 pass
without the car reaching the goal.

For the Friction Mountain Car, the laws of physics plus the instantaneous fric-
tion coefficient uniquely determine the next state. In many cases, an agent ob-
serving a transition could reason backwards, using the laws of physics, to deduce
the instantaneous friction that caused the transition. We make the simplification
that the agent observes the friction coefficient directly, allowing us to express the

10

belief update diretly in terms of the friction distributions. The rewards give no
information that helps identify the task.

Let task have friction distribution , and suppose the agent experiences
a sequence of state transitions as a result of instantaneous friction coefficients

. The belief update can be expressed as:

Since the state of the system is described by two continuous variables (position
and velocity), we have to use a function approximator to represent the option-
value function. We use a sparse coarse coding technique, CMAC(Albus, 1981),
which discretizes the state space, using several grids with random offsets. We
use ten tilings, each having ten position and ten velocity bins. Tilings have small
random offsets, and the approximator is initialized to return a value of -100 for
any input. This setting is considered standard for this task. Each option-value
function is represented by a separate CMAC. The SVF algorithm, which keeps a
separate value function for each task, simply uses an array of such CMACs; there
is no generalization across tasks due to the function approximator, but only as a
result of the learning rule and action selection rule.

4.4 Performance Measures
Both transient and asymptotic measures of performance are of interest. We report
on-line time per trial as learning progresses. Since trial times during learning
reflect the random starts and the 1% exploration rate, we also report two off-line
performance metrics.

In off-line performance, the action with the highest value according to the
value function is always selected and there is no learning. Off-line average time
per trial is taken over all tasks and random starting points within each task. Off-
line bottom time is the time per trial, averaged over the tasks, when the car starts
at rest at the bottom of the hill. This is the most difficult starting position, and
hence constitutes a worst-case performance measure for the task distribution.

In all the experiments, we optimized the learning rate constant parameter
for each set of options and each learning algorithm. The results reported below
are for the best parameter settings in each case.

11

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

Trials

Time
to goal
during
learning,
averaged
over 30
runs

1-step

100-step

20-step

Figure 2: Online time per trial for the AVF algorithm during the first 100 trials,
for different sets of options, with optimized learning rate for each set

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

Trials

100-step

1-step
20-step

Time
to goal
during
learning
averaged
over 30
runs

Figure 3: Online time per trial for the AVF algorithm, for different sets of options,
with optimized learning rate for each set

5 Experiments
In our first set of experiments we compare the option sets 1-Step, 20-Step and
100-Step under the Average Value Function algorithm on task distribution T0.02.

12

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

Trials

100-step

1-step20-step

Time
to goal
from
random
starts,
using
greedy
policy,
averaged
over 30
runs

Figure 4: Time per trial for the AVF algorithm computed offline every 50 trials,
for a random sample of tasks and starting states, for different sets of options

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

Trials

20-step

1-step

100-step

Time
to goal
from
bottom
of the hill,
using
greedy
policy,
averaged
over 30
runs

Figure 5: Time per trial for the AVF algorithm starting at the bottom of the hill at
rest, averaged over all the tasks, for different sets of options

Figure 2 shows the time for each learning trial averaged over 30 independent runs.
As expected, longer options provide better early performance. The 100-Step op-
tion set, though beginning quite well, unfortunately fails to improve very much

13

during learning. 1-Step and 20-Step quickly surpass 100-Step, and after only fifty
trials are performing almost as well as they do asymptotically. Note that this is
after an average of only one training trial per task in the T0.02 distribution. Figure
3 displays the on-line average reward over a longer period of time. Learning for
each of the option sets seems to have settled down to asymptotic behavior after
approximately 400 trials.

Figure 4 shows the off-line performance with the option sets over the same
time period, sampled every 50 trials. Because of increased sample sizes, the
curves are smoother than in the previous graph, but they track the means of the
on-line performance curves quite well. Off-line performance is a better measure
of what the car has learned to do to date. Since the off-line and on-line curves
match well, the agent is behaving close to its greedy performance during learn-
ing. This simplifies tracking the learning because it means we do not really need
to take time out for performance evaluation; rather, we can be satisfied simply to
record the on-line results.

The average time from the bottom of the valley measures the success of learn-
ing in the hardest area of the state space. Figure 5 shows this time, averaged over
runs and a sample of tasks in the distribution, as learning progresses. Under the
100-Step options, the car never reaches the goal from the bottom of the valley –
it always times out. 1-Step is solving some of the easy tasks, while 20-Step is
solving all but a few of the hardest tasks.

These results are also supported by the cumulative time to goal measured over
5000 trials for all sets of options, averaged over the 30 runs. 20-Step options aver-
age steps, compared to for 1-Step options and
for 100-Step options. the differences between these numbers are statistically sig-
nificant at the 0.05 level.

Over all these graphs, the 20-step options seem not only to help the speed of
learning, but also asymptote at a better performance and have lower variance in
performance during learning. Theoretical results show that the primitive actions
should always do at least as well on any single MDP when the value function
is represented by a lookup table(Precup, Sutton & Singh, 1998). In our case,
we are dealing with multiple MDPs as well as function approximation, so it is
not clear what to expect. One particular difficulty with the 1-Step options is that
differences in option values are small, making it hard to extract a good policy. 20-
Step options lead to larger differences in option values, making the value function
easier to learn. This aspect of temporally extended actions may be important for
practical purposes.

We have mentioned that as the mean of the friction distribution approaches

14

0 5 10 15 20 25 30 35 40 45 50
60

70

80

90

100

110

120

130

140

Task Number

20-step options

Pumping option

Time
to goal
from
random
starts
using
greedy
policy

Figure 6: Comparison of the time to goal from random starts for the Pumping
option and the 20-step options, for every task

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

20-step options

Pumping option

Task Number

Time
to goal
from
rest at
bottom
of the
hill

Figure 7: Time to goal from bottom

0.4, the task gets increasingly difficult. For any value less than 0.4, however, the
Pumping option can reach the goal, even from the bottom of the hill. In figure 6
we plot the expected times to goal for the best AVF configuration (20-Step, 5000
trials of learning) and for the Pumping option, for each of the 50 tasks. The hori-
zontal axis shows tasks with friction distribution of increasing mean and standard

15

deviation 0.02. AVF is more efficient on most of the tasks and of equivalent value
on the harder tasks. In starting from the bottom of the hill (Figure 7), though, AVF
fails completely on the hardest tasks. The Pumping option, as mentioned before,
solves any task that is solvable in principle. This shows that one option set can
win on one of the metrics but lose on another, or may be good on a particular
subset of the task distribution, but not as good overall.

0 5 10 15 20 25 30 35 40 45
0

100

200

300

400

500

600

700

800

900

1000

Task number

20-step AVF

1-step trained
on task 49

1-step AVF
20-step trained
on task 49

Time
to goal
using
greedy
policy
from
random
starts

Figure 8: Comparison of AVF and learning on the hardest task only, for different
sets of options

Figure 8 analyses transfer in a somewhat different way. Having noted that
learning is very difficult on the high mean tasks, we compared AVF solutions
learned across a whole task distributionwith an SMDPQ-Learning solution trained
only on the hardest task for an equal number of trials. The figure compares the
off-line performance from random starts of these two algorithms with 1-Step and
20-Step options.

The winner by far on solving the hard tasks is AVF with 20-Step options.
The experience in solving easier tasks in the set allowed it to perform better on
the hardest task than direct Q-Learning with 20-Step options on that task. The
training procedure in this case is akin to shaping, in which a learning agent is
presented with a sequence of increasingly difficult tasks, with the aim of getting it
to perform well on a hard task.

Surprisingly, the Q-Learning 20-step line is quite close to AVF 20 for the
first three-fifths of the tasks, indicating considerable transfer from the hardest task

16

back to the easier tasks. Also important is the relationships of the AVF 1-step and
AVF 20-step lines. The AVF 1-step performs not too much worse than AVF 20-
step on the easy tasks, but almost three times as badly on the hardest tasks. One
interpretation is that the 20-Step set of options transfers knowledge between the
tasks better than 1-Step options. Finally, although the 1-step options do transfer
knowledge from the hard task to the easiest tasks as well, their performance is
much worse than the other cases.

Figures 9 and 10 study the transfer of knowledge from a single task to the
whole set in greater detail. In each case, a value function was learned by SMDP
Q-learning on a single task, and then the performance of the greedy policy with
respect to that value function was tested from random starts on the whole set of
tasks. In each case there were 5000 training trials.

In figure 9, we observe that 1-Step and 20-Step options allow an equally good
solution to the task trained on. However, the 1-Step policy’s performance degrades
for the more difficult tasks, whereas the 20-Step policy is more robust. This may
be because 20-Step options changes the visitation distribution over the state space,
and encourages learning in areas that 1-Step options on the easiest task ignore. It
may also be that the optimal 20-Step policies are more similar across tasks than
the optimal 1-Step policies. Training on a middling difficult task shows a similar
result 10. Performance on task 29, the target of learning, was somewhat worse for
1-Step than 20-Step and the performance across tasks of the former notably worse
than under 20-Step.

Finally, we turn our attention to the SVF algorithm. Figure 11 shows the per-
formance of SVF with different sets of options. Performance shows the same gen-
eral relationship and trends as in the case of the AVF algorithm, with the 20-step
options being the best in terms of both learning speed and asymptotic behavior.
The 20-Step options remain significantly faster that 1-Step options according to
the cumulative time to goal metric.

Of interest is how the performance of SVF changes on task distributions with
low or high variance in the friction distribution. Low variance means tasks can be
identified quickly, and hence a value function specific for that task guides behav-
ior. However, during the learning process, rapid identifiability means that many
tasks will receive very little updating and learning is expected to be slower.

Figures 12 and 13 show the performance of AVF and SVF with 20-Step on task
distributions T0.02 and T0.2 respectively. In the lower identifiability case, T0.2,
SVF’s learning is more rapid because many different value functions are updated
as a result of a single experience. Note also, however, that SVF’s performance
is never faster than AVF, in any of these cases. This result is also supported by

17

0 5 10 15 20 25 30 35 40 45
0

100

200

300

400

500

600

700

800

900

1000

Tasks

Average
Time to
Goal from
Random
Starts

1-step

20-step

Figure 9: Performance from random starts across tasks of SMDP Q-Learned pol-
icy for task 0.

0 5 10 15 20 25 30 35 40 45
0

100

200

300

400

500

600

700

800

900

1000

Tasks

1-step

20-step

Average
Time to
Goal from
Random
Starts

Figure 10: Performance from random starts across tasks of SMDP Q-learned pol-
icy for task 29.

the cumulative time to goal for SVF and AVF. For 20-Step options, in the T0.02
task distribution, SVF’s cumulative time to goal is steps, compared

18

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

3000

Trials

100-step

1-step

20-step

Time
to goal
during
learning
averaged
over 30
runs

Figure 11: Online time per trial for the SVF algorithm, for different sets of op-
tions, with optimized learning rate for each set

to for AVF with the same set of options. In the T0.2 distribution,
the results are steps, vs. steps. These learning speed
relationships are similar for the other sets of options.

In terms of asymptotic behavior, the specificity of SVF is of little help with
the 20-Step option set. With the 1-Step option set, we did observe SVF eventually
overtaking AVF, particularly on the time-to-goal from the bottom of the valley
metric. Thus, especially in the hard cases, being able to identify the task and use
a specific value function does improve behavior.

6 Conclusion
We have introduced a framework for studying knowledge transfer in reinforce-
ment learning in which the learning agent has to solve different tasks drawn from a
given distribution. This model allows us to compare transfer properties for differ-
ent options and learning algorithms. We believe that our task-distribution model
of an agent’s environment is realistic. Rarely is one asked to resolve the exact
same problem one has solved before, but repeatedly having to solve very simi-
lar tasks is commonplace. Further, the tasks we need to solve as people usually
have a limited time span, so considering only episodic tasks does not seem overly
restrictive.

19

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

3000

Trials

SVF, 20-step

AVF, 20-step

Time
to goal
during
learning,
averaged
over 30
runs

Figure 12: Comparison of the AVF and SVF algorithms with 20-step options on
the T0.02 task distribution (tasks are easy to identify)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

3000

Trials

SVF, 20-step

AVF, 20-step

Time
to goal
during
learning,
averaged
over 30
runs

Figure 13: Comparison of the AVF and SVF algorithms with 20-step options on
the T0.2 task distribution (tasks are hard to identify)

We introduced two learning algorithms, AVF and SVF, which are very differ-
ent in their assumptions and properties. AVF assumes no prior knowledge and
learns a single value function for all the tasks. SVF has very strong prior knowl-
edge assumptions, but is guaranteed to converge to correct value functions for

20

each task. In our experiments we found AVF to be more effective on most of
the performance measures. However, more experimentation in different domains
would be needed to ascertain its practical value.

Our experiments illustrated knowledge transfer between tasks under a variety
of circumstances. In particular, training on a distribution of hard and easy tasks
yielded better performance than training specifically to solve hard tasks.

Finally, we compared different sets of options in terms of their ability to trans-
fer knowledge. We found that temporally extended options can help in this respect
(which is an expected result). Also, different sets of options exhibit different trade-
offs in terms of computation speed vs. the quality of their asymptotic behavior.

We are currently working on algorithms that require less prior knowledge,
while still providing theoretical guarantees. More restrictive definitions of the
task distributions could also allow the development of specific algorithms with
little or no prior knowledge.

Another future direction for this work is in the automated discovery of op-
tions. Although options allow us, as the agent’s designer, to incorporate prior
knowledge, we may also want the agent to discover options for itself. Measures
of transfer are important criteria for agents trying to develop their own set of
options. Although we did not study algorithms for option acquisition here, our
experiments compare different sets of options with regard to their transferability.
Such comparisons may be an important part of option discovery algorithms.

References
Albus, J. S. (1981). Brain, behaviour and robotics, chapter 6. Byte Books.

Bernstein, D. S. (1999). Reusing old policies to accelerate learning on new mdps.
Technical Report TR 99-26, University of Massachusetts, Amherst, MA.

Bradtke, S. J. & Duff, M. O. (1995). Reinforcement learning methods for
continuous-time Markov decision problems. In Advances in Neural Infor-
mation Processing Systems 7 (pp. 393–400). MIT Press.

Dayan, P. & Hinton, G. E. (1993). Feudal reinforcement learning. In Advances in
Neural Information Processing Systems 5 (pp. 271–278). Morgan Kaufmann.

Dietterich, T. G. (1998). The MAXQmethod for hierarchical reinforcement learn-
ing. In Proceedings of the Fifteenth International Conference on Machine
Learning. Morgan Kaufmann.

21

Drummond, C. (1998). Composing functions to speed up reinforcement learning
in a changing world. In Machine Learning: ECML98. 10th European Con-
ference on Machine Learning, Chemnitz, Germany, April 1998. Proceedings
(pp. 370–381). Springer.

Hauskrecht, M., Meuleau, N., Boutilier, C., Kaelbling, L. P. & Dean, T. (1998).
Hierarchical solution fo markov decision processes using macro-actions. In
Proceedings of the Fourteenth International Conference on Uncertainty In
Artificial Intelligence.

Jaakkola, T., Jordan, M. & Singh, S. (1994). On the convergence of stochas-
tic iterative dynamic programming algorithms. Neural Computation, 6(6),
1185–1201.

Kaelbling, L. P. (1993a). Hierarchical learning in stochastic domains: Preliminary
results. In Proceedings of the Tenth International Conference on Machine
Learning (pp. 167–173). Morgan Kaufmann.

Kaelbling, L. P. (1993b). Learning to achieve goals. In Proceedings of the Thid-
teenth International Joint Conference on Artificial Intelligence (pp. 1094–
1098). Morgan Kaufmann.

Kalmar, Z. & Szepeszvari, C. (1999). An evaluation criterion for macro learning
and some results. Technical Report TR 99-01, Mindmaker Ltd., Budapest,
Hungary.

Lin, L.-J. (1993). Reinforcement Learning for Robots Using Neural Networks.
PhD thesis, Carnegie Mellon University.

Mahadevan, S., Marchallek, N., Das, T. K. & Gosavi, A. (1997). Self-
improving factory simulation using continuous-time average-reward rein-
forcement learning. In Proceedings of the Fourteenth International Con-
ference on Machine Learning (pp. 202–210). Morgan Kaufmann.

McGovern, A., Sutton, R. S. & Fagg, A. H. (1997). Roles of macro-actions in
accelerating reinforcement learning. InGrace Hopper Celebration of Women
in Computing (pp. 13–17).

Moore, A. W., Baird, L. & Kaelbling, L. (1998). Multi-value functions: Efficient
automatic hierarchies for multiple-goals mdps. In NIPS’98 Workshop on
Abstraction and Hierarchy in Reinforcement Learning.

22

Parr, R. (1998). Hierarchical Control and learning for Markov decision processes.
PhD thesis, University of California at Berkeley.

Parr, R. & Russell, S. (1998). Reinforcement learning with hierarchies of ma-
chines. In Advances in Neural Information Processing Systems 10. MIT
Press.

Precup, D. & Sutton, R. S. (1998). Multi-time models for temporally abstract
planning. In Advances in Neural Information Processing Systems 10. MIT
Press.

Precup, D., Sutton, R. S. & Singh, S. (1998). Theoretical results on reinforcement
learning with temporally abstract options. In Nedellec, C. & Rouveirol, C.
(Eds.),Machine Learning: ECML98. 10th European Conference on Machine
Learning, Chemnitz, Germany, April 1998. Proceedings, Volume 1398 of
Lecture Notes in Artificial Intelligence (pp. 382–393). Springer.

Singh, S. P. (1992a). Reinforcement learning with a hierarchy of abstract models.
In Proceedings of the Tenth National Conference on Artificial Intelligence
(pp. 202–207). MIT/AAAI Press.

Singh, S. P. (1992b). Scaling reinforcement learning by learning variable temporal
resolution models. In Proceedings of the Ninth International Conference on
Machine Learning (pp. 406–415). Morgan Kaufmann.

Sutton, R. S. (1995). TD models: Modeling the world as a mixture of time scales.
In Proceedings of the Twelfth International Conference on Machine Learning
(pp. 531–539). Morgan Kaufmann.

Sutton, R. S., Precup, D. & Singh, S. (1998). Between MDPs and Semi-MDPs:
learning, planning, and representing knowledge at multiple temporal scales.
Technical Report 98-74, University of Massachusetts, Amherst, MA 01003.

Thrun, S. & Schwartz, A. (1995). Finding structure in reinforcement learning. In
Advances in Neural Information Processing Systems 7 (pp. 385–392). MIT
Press.

23

