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Abstract

Children learn natural languages by hearing utterances
while interacting with their physical environment. We
investigate one aspect of language acquisition by sim-
ilarly situated, embodied artificial agents - using in-
formation about syntax to learn linguistically relevant
semantic features. The agent is assumed to have no
innate knowledge of syntax, and instead leverages the
weak information about syntax available in word co-
occurrences. Similarity of context (i.e. the surround-
ing words) is used to hierarchically cluster words, with
clusters corresponding to sets of words that are similar
syntactically and, often, semantically. The goal is to
identify semantic features captured by the clusters. The
leaves of the hierarchy are individual words, which are
semantically very specific, and movement up the hier-
archy leads to less specificity. The results of an experi-
ment are discussed in which human subjects generated
unrestricted natural language utterances to describe the
activities of a Pioneerl mobile robot. The combination
of word clustering on this corpus and a common sub-
sequence algorithm applied to the time series of sensor
values recorded by the robot made it possible for the
Pioneerl to learn a variety of semantic features.

Introduction

Children learn a staggering number of semantic features
that are relevant to their native language. For example,
consider differences in the meanings of individual words,
which can hinge on semantic features at various levels of
detail. The meanings of push and shove are similar in
that both involve contact between two entities and the
application of force by one entity to the other. However,
the meanings of these words differ in the magnitude and
duration of the force that is applied. Depending on the
level of detail considered, these two words have either the
same semantic features or similar, but different, features.

This paper investigates how situated, embodied arti-
ficial agents can use the same inputs available to chil-
dren, i.e. utterances and the physical context in which
they occur, to learn the same kinds of linguistically rel-
evant semantic features that children learn. We assume
that the meanings of words are learned in an associa-
tionist manner as proposed by John Locke (Locke 1975),
through repeated exposure to utterances of a word in
the presence of its referent. Later sections describe such
a learning mechanism that has been implemented and
tested on a Pioneerl mobile robot. This form of learning,
driven by occurrences of individual words, yields highly
specific semantic features, such as the precise magnitude
and duration of the force that needs to be applied to
shove something.

In contrast to semantic features specific to individual
words, we are particularly interested in the acquisition of
more abstract semantic features, such as the presence or
absence of contact between two objects. Features of this
kind are typically shared by many different words. The
importance of this type of feature can be seen in the
work of Talmy, who investigated the semantic content
of verbs describing the motion and location of objects
across a large number of languages (Talmy 1985). He
found that each language selected a small set of seman-
tic elements to express in the meanings of such verbs.
For example, English encodes the fact that motion oc-
curs and the manner or cause of motion (e.g. roll, bounce
and run), while Spanish encodes the fact that motion oc-
curs and the path that motion follows (e.g. entrd, which
means to move in, and salid, which means to move out).
If the learner can determine which of these semantic fea-
tures are expressed by verbs in the target language, the
meanings of new verbs can be learned more quickly by
focusing on only those aspects of the physical context
that are relevant for associationist learning.

In addition to the role that semantic features play in
providing the meaning of words, they play a role in syn-
tax as well. Verbs with similar meanings appear in sim-
ilar syntactic constructions (Zwicky 1971). Pinker goes
so far as to suggest that a very small number of abstract
semantic features, such as motion and contact, can be
used to formulate rules for determining verbs’ argument
structures (Pinker 1989).

The question that remains to be answered is how a
situated, embodied language learner can identify linguis-
tically relevant semantic features. As noted previously,
associationist learning driven by the occurrence of in-
dividual words yields highly specific semantic features.
To identify more abstract semantic features we take ad-
vantage of the relationship between meaning and syn-
tax mentioned earlier. The learner is assumed to have
no innate knowledge of syntax, and instead leverages
the weak information about syntax available in word co-
occurrences. Given a corpus of sentences in a language,
similarity of context (i.e. the surrounding words) can be
used to hierarchically cluster words. Clusters correspond
to sets of words that are similar both syntactically and
semantically by virtue of the relationship between syntax
and semantics. The leaves of the hierarchy are individ-
ual words, and movement up the hierarchy leads to clus-
ters containing increasingly many words whose shared



semantic features are necessarily more abstract. Locke
essentially proposed using associationist mechanisms to
learn semantic features at the leaves of this hierarchy,
but they can also be used to learn the features shared
by words further up as well. Later sections describe how
we operationalize this idea to identify abstract seman-
tic features that Talmy and Pinker argue are so vitally
important in language acquisition.

The remainder of the paper is organized as follows.
The next section describes two learning mechanisms,
one for identifying clusters of semantically related words
given a set of utterances and one for learning the se-
mantic features shared by words in clusters in an asso-
ciationist manner. The latter mechanism assumes that
the language learner’s knowledge of the context in which
utterances occur is provided by a set of sensors that pro-
duce values over time. We then describe the results of
an experiment in which human subjects generated unre-
stricted natural language utterances to describe the ac-
tivities of a Pioneerl mobile robot. The combination of
word clustering on this corpus and associationist learn-
ing applied to the time series of sensor values recorded
by the robot made it possible for the Pioneerl to learn a
variety of semantic features. The final section concludes
and points to future work.

Learning Mechanisms

As described in the previous section, learning linguis-
tically relevant semantic features at different levels of
abstraction is a two stage process. First, the learner
constructs a cluster hierarchy of semantically related
words by grouping words that occur in similar syntactic
contexts. Second, an associationist learning mechanism
is used to identify the semantic features shared by the
words in a cluster based on the current physical context
when members of the cluster are uttered. The level of
abstraction inherent in the semantic features identified in
this manner depends on the size of the cluster, with small
clusters containing few words leading to highly specific
features, and large clusters containing many words lead-
ing to highly abstract features. This section describes
solutions to both of these learning problems.

Word Clustering

Many different methods for clustering words based on
similarity of syntactic context exist (Brown et al. 1992;
Hindle 1990; Pereira, Tishby, & Lee 1993; Redington,
Chater, & Finch 1993). Consider an example of the
kind of output they produce based on a simple gram-
mar that generates syntactically and semantically well-
formed sentences using the nouns, verbs and adjectives
shown below:

e nouns (people and things) — boy, girl, cat, dog, dish,
chair, block, shoe
e nouns (places) — hallway, kitchen, doorway

e verbs — turn, start, stop, avoid, follow, bump, hit,
push, move
e adjectives — small, large, red, blue

Sentences produced by the grammar include “The boy
avoided the large dog” and “The girl turned”, but do not
include semantically ill-formed sentences such as “The
chair hit the cat.”

Figure 1 shows one part of the cluster hierarchy pro-
duced by the method described in (Brown et al. 1992)
on a corpus containing 500 sentences from the grammar.
All of the words at the leafs of this part of the hierar-
chy are verbs. The set of all verbs is divided into two
subsets, those that take a direct object and those that
do not. The verbs that take a direct object are further
divided into those that involve contact and those that
do not. Finally, the former set is divided into punctual
and non-punctual verbs. Remarkably, all of this struc-
ture was identified given only a corpus of sentences in the
language and no a priori knowledge of syntax. Although
it is a trivial matter for an English speaker to label the
interior nodes in Figure 1 as punctual or contact or direct
object, out goal is to allow a situated, embodied agent
to, in effect, learn these labels for itself given exposure
to sentences and the context in which they are uttered.

Verb

Direct Object
Contact

No Direct
Object

Not
Punctual

No Contact Punctual

Figure 1: Part of a cluster hierarchy based on a simple
grammar.

The clustering method used in this paper is based on
(Brown et al. 1992). The algorithm begins by creating
one cluster for each unique word in the corpus. The
mutual information between each pair of clusters, C; and
Cj, is then computed as follows:

N v p(ClC])
q(i,7) = p(CiC;) log PP

p(C;) is the probability of a word in cluster ¢ occurring
in the corpus and p(C;C;) is the probability of a word
in cluster ¢ preceding a word in cluster j in the corpus.
The total mutual information between pairs of clusters

is then:
I=> q(i,j)
ij

Merging two clusters reduces I, and the pair of clusters
that results in the smallest loss of mutual information
is merged. This merging process repeats until a single
cluster containing all unique words in the corpus is cre-
ated. For example, at some point during the clustering



process on the sample corpus mentioned earlier, the clus-
ters {bump} and {hit} were merged to create the cluster
{bump, hit}, as were the clusters {push} and {move} to
create {push, move}. These larger clusters were later
merged to create a single cluster containing all verbs in-
volving contact — {bump, hit, push, move}.

From Sensors to Semantics

Given a word cluster, C, how might a situated, embod-
ied artificial agent learn the semantic features associated
with that cluster? For the sake of concreteness, assume
the learner is a mobile robot and that its knowledge of
the physical environment is provided by a set of sensors.
We assume that the presence of a word’s referent in the
physical environment induces a pattern, P, in the time
series produced by the robot’s sensors. Let p(P|C) be the
probability of the pattern occurring in the sensor data
gathered when a member of C is uttered, and let p(P|C)
be the probability of the pattern when a member of C
is not uttered. Under the reasonable assumption that
words are uttered more frequently when their referent is
present than when it is absent, it will be the case that
p(P|C) is significantly different from p(P|C).

Each time a word w € C is uttered, the robot can
record the values of its sensors over a window of time
centered on the occurrence of the word. The result is a
set of sensor time series that co-occurred with utterances
of words in C. The referent of w, and thus P, may ap-
pear before, after or at the same time that w is uttered,
and the relative timing of the two may change from one
utterance to another. There is initially a total lack of
knowledge concerning the location and the nature of P
in the individual time series. The task facing the learner
is to identify P given a set of time series gathered in this
manner, and thereby to identify the semantic features as-
sociated with C. We call this process finding distinctive
subsequences because patterns identified in this manner
serve to distinguish time series gathered in the presence
of words in C from those gathered in their absence.!

The first step toward the discovery of variable-length
distinctive subsequences is the identification of a set of
fixed-length subsequences that capture patterns occur-
ring in the robot’s sensors. Let S denote the robot’s
sensor array. Fixed length patterns are identified by
randomly sampling sequences of length L, called L-
sequences, from S. Given n L-sequences and a mea-
sure of similarity between multivariate, real-valued time
series, we construct an n-by-n similarity matrix. The
matrix is used to cluster the L-sequences and to select a
prototype from each cluster by finding the sequence that
minimizes the average distance to all other sequences
in the cluster. The measure of similarity that we use
is Dynamic Time Warping (DTW) (Sankoff & Kruskall

!For more information on the algorithm for finding dis-
tinctive subsequences see (Oates 1999).

1983). DTW is a generalization of classical algorithms
for comparing discrete sequences (e.g. minimum string
edit distance (Cormen, Leiserson, & Rivest 1990)) to se-
quences of continuous values. It was used extensively in
speech recognition, a domain in which the time series are
notoriously complex and noisy, until the advent of Hid-
den Markov Models, which offered a unified probabilis-
tic framework for the entire recognition process (Jelinek
1997).

Prototypical L-sequences are obtained in this manner
by sampling from S without regard to whether words
in C occur. Because distinctive patterns, by definition,
occur more or less frequently in the presence of words in
C than in their absence, sampling in this manner ensures
that clustering has access to the full range of patterns
that can occur within a window of width L. Given k
prototypical L-sequences, P; through Pj, we now want
to determine which of them are distinctive. That is, we
want to identify those prototypes for which p(P;|C) is
significantly different from p(P;|C).

Estimation of p(P;|C) and p(P;|C) requires a set of
sequences obtained from S. This set must contain some
sequences that co-occurred with C and some that did not.
A window of width L is passed over each sequence, and
DTW is used to determine which of the k prototypes is
most similar to each of the resulting L-sequences. The L-
sequences obtained in this manner are drawn from larger
sequences that either did or did not co-occur with C. If
an L-sequence is most similar to prototype ¢ and the
former case holds, the counter n;¢ is incremented. If
the latter case holds the counter n,zis incremented. It
is then a simple matter to estimate the probabilities of
interest:

, _ n, =
p(PiC) = ——  p(PI0) =
dj=1Mic >j=1 n;e

To determine whether these probabilities are signif-
icantly different we use a two-tailed ¢-test as follows.
Consider a random variable whose value is either 1 or
0 depending on whether an L-sequence matches or does
not match the i** prototype. Given two such random
variables, one associated with only those L-sequences
that co-occurred with C and one associated with the
L-sequences that did not, it is easy to compute their
means and variances. A standard ¢-test is then used to
determine the probability of making an error in reject-
ing the null hypothesis that the means are the same,
i.e. that prototype i is not a distinctive L-sequence. If
that probability is below a given significance level, then
the L-sequence is said to be distinctive.

Given fixed-length prototypical L-sequences, variable-
length distinctive subsequences that span more than L
time steps are identified as follows. Note that proto-
type ¢ can be distinctive for one of two reasons. Either
p(P;|C) > p(P;|C) or p(P;|C) < p(P;|C). If the former



condition holds we say that all L-sequences that are more
similar to P; than any other prototype are frequent L-
sequences. Such L-sequences occur more frequently in
the presence of C than in its absence. If the latter con-
dition holds we say that all of the L-sequences that are
more similar to P; than any other prototype are infre-
quent L-sequences. Finally, L-sequences matching pro-
totypes that are not distinctive are said to be neutral.
A subsequence of length greater than L is frequent if all
of the L-sequences that it contains are either frequent
or neutral. The subsequence is infrequent if those L-
sequences are either infrequent or neutral. In both cases,
the subsequence is distinctive. It is possible to locate
all of the frequent and infrequent variable-length subse-
quences in a larger time series in time that is linear in
the length of the time series.

Experiments

An experiment was designed and executed to gather data
for the clustering algorithms in which a Pioneerl mobile
robot was filmed completing a series of simple actions.
Several volunteers watched the film and wrote sentences
describing the robot’s behavior. The goal of this exper-
iment was to evaluate the utility of the algorithms pre-
sented in the previous section given inputs very similar
to those available to human language learners.

The Pioneerl is a small, wheeled robot, filling a space
approximately two feet long, one-and-a-half feet wide,
and one foot tall. It has two independently driven wheels
near its front and a swivelling castor in the rear. It is able
to act on objects in its environment through a single,
two-fingered parallel gripper in its front. This gripper
can open approximately eight inches, and is able to lift
objects several inches off the floor. As set up for this
project, the robot was not able to independently open
or close and raise or lower its gripper; rather, when the
gripper opened it was simultaneously lowered to its low
position, and when it closed it was raised to its high
position.

The robot is also fitted with a variety of sensors for
observing its environment. The most prominent are an
array of seven Polaroid-type sonar distance sensors, five
pointed in a shallow arc approximately ten degrees on
either side of straight ahead, and one each pointing di-
rectly towards the right and left. A video camera on
the top front of the robot faces forwards. It provides a
wide-angled view and can be aimed either straight ahead
or at an angle down towards its gripper. For the pur-
poses of this experiment, a “blob-vision” system was in
place which picks out the nearest object colored either
red or blue, and excludes everything else. The final set
of sensors on the robot are at its grippers. There are
two bump switches at the ends of the fingers, activated
whenever they are driven against a suitably immobile
object. Lastly, there is a light beam switch between the

two gripper fingers, which is registers whenever an object
enters the gripper.

Before the robot could be filmed engaging in various
behaviors, it was necessary to develop a list of the ac-
tions it is able to make in a simple environment with
a small number of props. Having done this a number
of short sentence-scripts was drafted, spanning a range
of complexities. This was pared down after taking into
consideration the fact that the robot must have enough
sensory information to observe the salient features of the
actions. Among other things, this led to an exclusion of
scripts with objects other than the robot as actor. An-
other aim of the script generation process was to include
the complements of as many actions as possible, which
it was thought might lead to richer word clusters later.
By complementary we mean all the possible actions of a
particular category or on a particular object; for exam-
ple, the robot went into, around, through, and came out
of the box. Below are a few of the final scripts:

e The robot spun.

The robot went into the box.

The robot touched the blue cup.

The robot gave the red ball to the car.

The robot moved the red cup from the red mat
to the blue mat.

Ultimately, 41 scenes were filmed, with the order of
the scripts randomized beforehand. Each scene involved
the robot acting out one sentence-script, and was framed
by several seconds of empty screen to delineate scene
changes. Due to a certain degree of imprecision in the
manual control of the robot, it was not always possible
to exactly perform the actions scripted— a touch might
become a nudge, for example.

The next phase was to collect some volunteers to view
the video and write sentences describing the robot’s be-
havior. The volunteers were instructed to begin all sen-
tences with “The robot ...” and to keep the sentences
as simple as reasonably possible, perhaps as though
they were speaking to a young child or playing a text-
adventure. Otherwise the sentences they produced were
unrestricted. Eight volunteers produced 328 sentences
describing the 41 scenes. Below are some of the sen-
tences produced by different subjects after viewing one
of the scenes scripted above:

e The robot picked the red ball up and put it down
in front of the red car.

e The robot put the ball next to the car.

e The robot lifted the red ball and placed it next
to the car.

e The robot carried the ball to the car.

Before building a cluster hierarchy from the collection
of sentences, a few minor transformations were made on
them. Particularly, “negative” phrases were removed.



For example, “The robot went around the box without
touching the red mat” became “The robot went around
the box.” Object names were also standardized, though
all other terms were left untouched. Thus, “bin,” “trash
bin,” “wastebasket” and “trash can” all became “trash-
can.”

Below is a fragment of the final hierarchy showing the

order in which clusters are merged: Note that the root

three }

repeatedly
twice

two

backwards ——

several

of this fragment is a single cluster containing words that
indicate repetition. Several clusters drawn from other
interior nodes of the hierarchy are shown below:

{middle, center, top, left}

{dropped, gave, carried, touched, set, placed, put}
{into, toward, through, over, by, inbetween, between,
under, near, against}

These clusters all consist of words that are not syn-
onyms but have more abstract semantic relationships,
such as position, verbs about moving objects, and prepo-
sitions. In the first cluster there is also an erroneous clus-
tering of “backwards” with the words specifying repeti-
tion. Both the nature of good clusters and the appear-
ance of bad clusters can be understood in terms of the
clustering method. Because it relies on extremely lo-
cal information, i.e. bigrams, it tends to pick out fairly
superficial syntactic features. It is fortunate that seman-
tically similar words tend to be used in similar syntactic
contexts; nevertheless, some otherwise entirely dissimi-
lar words can be found in identical contexts. Both these
cases will lead to the clustering of terms, correctly or
incorrectly, as above. Unfavorable clusterings are more
likely to be produced from smaller input sets, such as
that available here. Given larger corpora in which terms
appear in more varied contexts, as is the case with hu-
man language learners, this problem will be minimized.

Given the cluster hierarchy constructed from the eight
human subjects’ natural language sentences, the next
task was to identify the semantic features of word clus-
ters. Because words are typically uttered more fre-
quently in the presence of their referent than in its ab-
sence, patterns in the robot’s sensors that occur signif-
icantly more frequently in the presence of words in a
cluster than in their absence are deemed to be semantic
features of the cluster. That is, the problem of iden-
tifying linguistically relevant semantic features is cast
in terms of identifying distinctive subsequences in the
robot’s sensor data.

During the filming of each scene the values produced
by the robot’s sensors were recorded at a rate of 10Hz,
and these time series were used to identify prototypical
patterns in the sensor data. Given a word cluster, the
time series were separated into two sets based on whether
any of the human subjects used a member of the cluster
when describing the associated scenes. These two sets
of time series were used to determine which of the pro-
totypes were distinctive for that cluster, and to identity
variable length frequent subsequences in the time series
that co-occurred with members of the word cluster.

This procedure was applied at every node in the frag-
ment of the cluster hierarchy shown in Figure 2. Rather
than using the values of all of the robot’s sensors, many
of which are irrelevant to the words in question, we used
the time series produced by a single sensor that encodes
the state of the robot’s gripper.? As noted previously,
the gripper can be up and closed (gripper state = 0.2),
down and open (gripper state = 1.0), or moving between
these two positions (gripper state = 0.4).

opened }

lowered

raised }

closed

Figure 2: A fragment of the cluster hierarchy formed
from the 328 natural language sentences produced by
the human subjects. This part of the hierarchy contains
words describing changes in the state of the robot’s grip-
per.

The frequent sequences found in the gripper state sen-
sor are shown in Figure 3. The leftmost plot in that
figure shows the frequent subsequences associated with
the clusters {closed}, {raised} and {closed, raised}. In
all three cases, a single frequent subsequence was found
that involved the gripper state transitioning from a value
of 1.0 to a value of 0.2. This subsequence occurs exactly
when the robot closes and raises its gripper. Because of
the way the Pioneer’s gripper operates, saying the the
robot “closed” its gripper and that it “raised” its grip-
per denote the same transition, a fact that was identi-
fied by the distinctive subsequence algorithm. Likewise,
the clusters {opened}, {lowered} and {opened, lowered}
all yielded the same frequent subsequence, one in which
the gripper state transitions from 0.2 (up and closed) to
1.0 (down and open). Finally, the only frequent subse-
quence identified for the cluster {closed, raised, opened,
lowered} is a gripper state of 0.4, which occurs only when
the gripper is in motion between one of its two resting
states. That is, the semantic feature shared by all of

*Developing automated methods that will allow the robot
to determine which sensors are relevant for a given word
cluster is a non-trivial problem, and is the focus of ongoing
research.
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Figure 3: Distinctive time series identified for the clusters {closed, raised} (leftmost plot), {opened, lowered} (middle

plot), and {closed, raised, opened, lowered} (rightmost plot).

the words in this cluster is that the gripper is moving
between resting states.

Finally, the semantics of the word pushed were iden-
tified by looking for frequent subsequences in a subset
of the robot’s sensors containing the gripper state, the
status of the break beam between the gripper paddles,
and the status of the bump sensors on the tips of the
gripper paddles. Three different frequent subsequences
were identified in this case:

e gripper down, break beam on, bump switch off
e gripper down, break beam off, bump switch on
e gripper up, break beam off, bump switch on

These three configurations of the robot’s sensors corre-
spond to the following situations:

e pushing a small object between the robot’s grippers
on the floor

e pushing a large object that will not fit between the
gripper paddles with the gripper down

e pushing an object with the gripper up and closed

There are three distinct ways that the robot can push ob-
jects, each of which was described with the word pushed
by at least one subject, and the sensor time series that
result from these situations were all identified as frequent
subsequences.

Discussion

This paper presented a method that allows situated, em-
bodied artificial agents to learn linguistically relevant
semantic distinctions given the same input available to
children, utterances and the physical context in which
they occur. The utility of the method was evaluated in
an experiment in which human subjects produced natu-
ral language utterances to describe the activities of a Pio-
neerl mobile robot. Future work will involve attempting
to scale the experiment reported herein to include vastly
richer physical and linguistic interactions with the robot.
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