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Abstract

Many artificial intelligence techniques rely on the no-
tion of a “state” as an abstraction of the actual state of
the world, and an “operator” as an abstraction of the
actions that take you from one state to the next. Much
of the art of problem solving depends on choosing the
appropriate set of states and operators. However, in
realistic, and therefore dynamic and continuous search
spaces, finding the right level of abstraction can be dif-
ficult. If too many states are chosen, the search space
becomes intractable; if too few are chosen, important
interactions between operators might be missed. If the
state boundaries are not at the right place, the results
of the search will not be meaningful in the real world.
We present the idea of critical points as way of dynam-
ically defining state boundaries; new states are gener-
ated as part of the process of applying operators. In ad-
dition to allowing the use of standard search and plan-
ning techniques in continuous domains, critical points
enable the incorporation of multiple agents, dynamic
environments, and non-atomic variable length actions
into the search algorithm. We conclude with examples
of implemented systems that show how critical points
are used in practice.

The Problem: Defining States in
Continuous Domains

Many conventional artificial intelligence techniques rely
on clearly defined state spaces and operators to tran-
sition from one state to the next. Classical search
and problem solving algorithms (see (Korf 1988) for
a survey), theorem provers, and STRIPS-based plan-
ners (Fikes & Nilsson 1971; 1993) share the assumption
that the world can naturally be divided into states, and
that what happens as we move from one state to the
next is something that can safely be abstracted away.

For simple and discrete problems, defining the state
space is indeed often quite straightforward. However,
realistic continuous spaces pose a much more difficult
problem. In a continuous search space, for example the
domain of robot path planning, there is in principle an
infinite number of ways to partition the search space
into states. The choice of states is intimately linked
to the choice of operators, since the operators affect
changes in state. When choosing an operator set, one
is also implicitly stating that these are the actions that
should be considered atomic.

The formulation of the problem space gives rise to an
interesting trade-off. If the operators are too primitive,

and correspondingly the state space large, the solution
to a given problem will involve a deeper search through
the space than if the state space were smaller. If the
operators become too abstract, however, they start to
gloss over all the interactions between operators and
the world that made the problem worth solving in the
first place.

Consider path planning as an example: Assume a
robot on a 2D plane has a MOVE operator that will
allow it to move a certain distance d. If d is chosen too
small, the problem quickly becomes intractable because
there are too many possible paths to be considered. If
d is too large—larger than some of the obstacles on the
map—the robot might jump over an obstacle during
the search process, something that it cannot do in the
real world. There are better solutions to this particular
problem, but that is not the point. The point is that by
defining the state space and operator set a priori, one
can make the problem unnecessarily hard or too easy.

In this paper we will discuss an approach that avoids
this dilemma. The state space is not specified a priori,
instead it is generated dynamically as operators are ex-
ecuted. The operators themselves define state bound-
aries. Operators are no longer atomic in terms of the
state space: there can be state boundaries between the
beginning and ending of an operator. Whether an op-
erator takes a long time or a short time to complete or
whether it influences a large or small spatial area need
not be a concern in choosing the operator set.

The Solution: Critical Points

Our premise is that the actions an agent can take should
define state boundaries. In order to be able to do this,
knowing when and how an action will complete is key.
It must be possible to simulate the most likely outcome
of any action. For an action of any complexity, this
requirement can be very difficult to satisfy. The clas-
sical formulation of search problems does not concern
itself with the duration of an operator, only that the
operator might cause the state to change. In our ap-
proach, states are not pre-defined, and will depend on
what happens in the world while the operator executes.
So while classical search can safely ignore the internal
structure of an operator, we cannot.

Simple actions, such as moving from point A to point
B over unobstructed terrain, have completion times
that are easily estimated given the terrain type and
the agent’s typical movement speed. The type of com-
pletion is also easy to predict: without any obstacles,



a MOVE will always complete successfully. More com-
plex actions make internal decisions that influence the
action’s completion time and type. In the general case,
these decisions are conditional on the state of the world
at the time the decision is made. So we are faced with
a problem: to simulate an action we need to know what
the state of the world every time the action has to make
decision.

In order to tackle this problem, we introduce the con-
cept of a critical point:

Definition:

A critical point is a time during the execution of an
action where a decision might be made, or the time
at which it might change its behavior. If this deci-
sion can be made at any time during an interval,
it is the latest such time.

For actions without internal decisions, such as the afore-
mentioned MOVE or instantaneous actions such as push-
ing a button, the only critical point is the completion
time. More complicated actions have larger critical
point sets.
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Figure 1: An example for a critical point while execut-
ing an attack action. The critical point is reached in
step 2, where the attacking force must decide whether
to continue or abandon the attack.

The attack action depicted in Figure 1 makes a de-
cision during its execution: it will abandon the attack
if the target is protected by an agent stronger than the
attacker. In this example, a white force is attacking a
black flag and there is a large black force nearby. The
critical point is the time at which the white force is
closer to the flag than the black force is now. This is
the latest point in time at which Black could interfere
with the attack action. If Black has started moving to
the flag by this time, White will abandon the attack.
If Black has remained stationary or gone somewhere
else, the attack will be successful and the flag will be
destroyed.

Note that critical points are only bounds, they are not
the exact times at which a decision will be made. In the
above example, the black force might move to protect
its flag right away, in which case White will abandon

1. Loop until all actions have completed:
1.1 Compute the minimum critical time ¢ of all ac-
tions being simulated.
1.2 Advance all actions by ¢ time units; update world
state.

Figure 2: The basic action simulation algorithm using
critical points.

the attack sooner than the critical time. This is not
a large qualitative difference to the scenario that was
simulated. If we had simulated without critical points,
and simply completed White’s action, there would have
been a large qualitative error: The flag would have ei-
ther marked as destroyed (which wouldn’t have hap-
pened if Black moved in), or White would have been
destroyed by the protecting black force (which would
never have happened since White would have fled be-
fore it came to that).

In order to use critical times to simulate an action, ev-
ery action and plan must have two functions associated
with it. The first computes the next critical time for this
action. The second, (advance world-state t), takes
as an argument a time parameter ¢ and will change the
world state to reflect the execution of this action ¢ time
units into the future. Currently, we have no automated
way of generating these functions, so they are written
by the designer of the action. In the case of the attack
action shown in Figure 1, the decision about whether
or not to abort depends on whether the white force can
get closer to the black flag than any black force. A
simple approximation of the critical point would be the
time it will most likely take, given the terrain, to get
as close to the black flag as the closest black force is
now. A more accurate approximation would take the
current velocities of all black forces into account, since
some might be moving towards the flag.

Figure 2 shows the basic algorithm for simulating a
group of actions. Simulation time has to be advanced to
the minimum of all critical points. To understand why
this is necessary, let us consider action T, the action
with the minimum critical time ¢. The decision that T
must make at time ¢ depends on the state of the world
at that time. The state of the world is affected by all
the other actions that are executing. If the world had
not been advanced by the minimum of all critical times,
T might not make the same decision in simulation as it
would have if it had actually executed. The downside of
having to take the minimum is that forward simulation
will take shorter and shorter jumps as the number of
simulated actions increases. This makes sense, though,
since the more actions you have, the more possible in-
teractions there might be. (One way to alleviate this
problem is to prune the number of actions by elimi-
nating those that will most likely have no effect on the
action being evaluated.) The upside is that no action
has to concern itself with the critical point computation
of any other action.
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Figure 3: The initial configuration of the critical point
search scenario.

Another upside is that if a critical time is very hard
to compute, it is acceptable for it to be underestimated.
This will cause the simulated world state to advance to
a time sooner than the actual critical time, at which
point the action will have another chance to estimate
it correctly. In the extreme case, an action can report
the smallest time increment possible. The evaluation
process for this action will degenerate into tick-based
simulation.

Using Critical Points for State-Based
Search

Critical points were motivated by the need to estimate
how and when an action completes, but in effect they
are defining a set of interesting states that will occur
during the execution of this action. In this capacity
they can be exploited by traditional AI search tech-
niques.

We have been developing a continuous, dynamic, and
adversarial domain in which test our ideas on critical
points. This domain is based on the game of “Capture
the Flag” (CTF). In CTF there are two teams; each has
a number of movable units and flags to protect. Their
number and starting locations are randomized. They
operate on a map which has different types of terrain.
Terrain influences movement speed and forms barriers.
A team wins when it captures all its opponent’s flags.
A team can also go after its opponent’s units to reduce
their strength and effectiveness. This game is decep-
tively simple. The player must allocate forces for attack
and defense, and decide which of the opponent’s units
or flags he should go after. The player must react to
plans not unfolding as expected, and possibly retreat or
regroup. There are many tactics, from attacking all-out
to trying to sneak by the opponent’s line of defense. In
our current implementation, both players have a global

Define function cp-search(world state, schedule):

1. Let A be the set of all possible action combinations
that can be executed in this world state. Loop over
all a € A:

1.1. In simulation, loop until game end conditions are
met or some agent’s action has completed:
1.1.1 Compute the minimum critical time ¢ of all
actions being simulated.
1.1.2 Advance all actions by ¢ time units; generate
a new-world-state.
1.2. If game is over, evaluate new-world-state; return
this value as the score for a.
1.3. If an action has completed, recursively call cp-
search(new-world-state, schedule); return the
score of the returned schedule as the score for a.

2. Add the action combination with highest score to
the schedule.

3. Return the schedule.

Main Body:
1. Call cp-search(initial-world-state, nil)

2. Execute the actions in the returned schedule sequen-
tially for every agent.

Figure 4: The critical point search algorithm.

view of the game; when we add limited visibility many
more strategies, such as ambushes or traps, will emerge.

In order to demonstrate how critical points might be
used in conjunction with search, we created a reduced
CTF scenario depicted in Figure 3. There are two units
on either team. Black’s goal is to defend its three flags,
White’s is to destroy them. In order to keep things sim-
ple, Black behaves reactively in this scenario, meaning
that White need not consider alternative actions for
Black. The purpose of the search algorithm is to gen-
erate a schedule of actions for White that will destroy
the flags in the shortest possible time.

White’s operator set is basic: It can only attack en-
emy flags. Since there are three possible targets for
White and two White blobs, this results in 32 possible
action combinations for White—a branching factor of
9. The attack action has two critical points: The first is
its estimated completion time, and second one the time
at which it will be closer to the target than any enemy
unit is now. The attack action aborts if its target is
being protected by an enemy that it cannot defeat.

Figure 4 outlines the basic algorithm used. For sake
of simplicity, we use depth-first search, but in prin-
ciple any state-based search algorithm could be used.
The function cp-search has two arguments: the first
is world-state, the state of the world at the time the
cp-search is called; the second is schedule, which con-
tains the best sequence of actions for every agent in the
world-state starting at the current time until the game
ends. The function cp-search() evaluates all combina-
tions of actions that are applicable in the current world
state and adds the best one to action schedule. At the
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Figure 5: An illustration of how search integrates with
action simulation. At time 0, two actions al and a2 are
being simulated. They have the corresponding comple-
tion times ¢l and ¢2 (when may themselves be the result
of several critical point jumps in the inner-most simula-
tion loop). When al completes, two actions, a3 and a4
are considered to replace it. Action a2 is still present in
both search paths, and when it completes, it too is re-
placed by one of two possible alternative actions. Since
both branches of the initial tree are now simulating dis-
tinct sets of actions, their completion times no longer
line up.

very heart of cp-search() is the familiar loop which ad-
vances the world ahead to the next critical time. The
world state is advanced until an action completes (or
the game ends), at which point cp-search() is recur-
sively called on the updated world state.

In effect, the world state is split every time an agent
completes (or aborts) its action. State boundaries are
being created dynamically depending on the execution
of the actions being simulated. When an agent goes
idle, every new possible action is considered for it. Fig-
ure 5 illustrates this process for a hypothetical tree with
branching factor 2.

search method S-CPS | R-CPS
nodes expanded 63 36
critical points considered 111 88
est. completion time 110 104
actual completion time 120 -

Table 1: s-cPS vs. R-CPS in the CTF scenario.

Comparison Between Classical and
Critical Point Searches

It is instructive to investigate how a classical depth-
first search compares to the critical point search in the
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Figure 6: The best schedule found in s-cps, using the
additional critical point for aborting the attack action.

CTF scenario. In practice, this is not easy to do, since
a standard state-based search has trouble dealing with
concurrent actions of varying lengths. The next best
thing, however, is to compare a standard critical point
search with a search involving only the minimal num-
ber of critical points. For ease of reference, call the
standard search S-CPs and the reduced version R-CPS.
R-CPS uses only the critical points that estimate an ac-
tion’s completion time, S-CPS uses all critical points.
In our simple scenario, this means that in addition to
the completion critical points, the critical point that
predicts aborting the attack action is used.

Figures 7 and 6 show the best schedule found by the
two versions of the algorithm, respectively. Since Black-
Flag-1is being defended by a unit with greater strength
(indicated by the larger size) than White-1, White-1
cannot successfully take this flag. R-CPS does not take
this into account during the search process and conse-
quently generates a schedule which is not executable.
s-CPS on the other hand, generates a schedule which
takes slightly longer, but ensures that White can win
the engagements it gets involved in.

Table 1 summarizes how each algorithm performed
on this trial run. “Nodes expanded” refers to the to-
tal number of actions that were considered during the
search process; “critical points considered” is the total
number of jumps that occurred within the inner-most
simulation loop (bullet 1.2 in Figure 4). Understand-
ably, s-CPs considers a larger number. Note however
that the number of nodes and thus the number of states
visited does not increase much in s-cps. The explana-
tion for this is that the number of states that has to
be looked at depends primarily on the number of ac-
tions that have to be executed before a final state is
reached, and not on the number of critical points. The
number of critical points influences the efficiency of the
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Figure 7: The best schedule found in R-CPS, using only
critical points for completion. This schedule does solve
the problem because during actual execution, White-1
is defeated and Black-Flag-1 is not destroyed.

simulation loop.

Overall, the results are not surprising, since R-CPS
is not really suited to solving this problem; the search
process is not taking an important piece of informa-
tion into account, namely that the attack action may
abort. However, the only way to address this problem in
traditional search is to redefine the operator set, effec-
tively splitting ATTACK into two operators MOVE-PAST-
DEFENSE-LINE and ATTACK-WITH-GREATER-NUMBERS.
Increasing the operator set will greatly increase the
number of nodes that have to be searched, something
that does not happen when a critical point is added to
an action.

Using Critical Points for Plan
Evaluation

Critical points have a wider applicability than just
search. The full version of CTF has many agents and
flags on each side; any generative planning solution
would have to face an enormous branching factor since
many possible action combinations can be executed at
any given time. To cope with this problem, we rely on a
partial hierarchical planner (Georgeff & Lansky 1986),
which retrieves plans from a set of pre-compiled skele-
tal solutions, and uses heuristics to allocate resources
in a reasonable way (for example, an ATTACK plan will
never attack a target with a smaller force than the force
defending it).

When several plans apply, partial hierarchical plan-
ners typically select one according to heuristic crite-
ria. Military planners will actually play out a plan
and determine how the opponent might react to it. A
wargame is a qualitative simulation. The CTF plan-
ner does the same: it simulates potential plans at some

1. Add the plan P to be evaluated to all the actions
currently ongoing in the simulator.

2. In simulation, loop either until a fixed time in the
future or until too many errors have accumulated in
the simulation:

2.1 Compute the minimum critical time ¢ of all ac-
tions being simulated.

2.2 Advance all actions by t time units; update world
state.

3. Evaluate the resulting world state; return this value
as the score for the plan P.

Figure 8: The plan evaluation algorithm.

abstract level, then applies a static evaluation function
to select the best plan. The static evaluation function
incorporates such factors as relative strength and num-
ber of captured and threatened flags of both teams, to
describe how desirable this future world state is.

Simulation is a costly operation, and in order to do
it efficiently, CTF must be able to jump ahead to times
when interesting events take place in the world. Again
we face the problem of having to impose “states” on
a continuous domain. Critical points are essential for
plan evaluation in the CTF planner, since they are used
to guide forward simulation. The basic idea behind for-
ward simulation is that instead of advancing the world
tick by tick, which is time-consuming, we jump right to
the next critical point. Forward simulation proceeds as
outlined in Figure 8.

This application of critical points is different from the
one in the previous sections in that no search need be
conducted. One plan is given, and the goal is to deter-
mine what the world state would look like if this plan
were to execute. What makes this interesting is that
CTF is an adversarial domain. In lieu of a detailed op-
ponent model, we simply assume the opponent would
do what we would do in his situation. During forward
simulation, the action list also contains opponent ac-
tions. When CTF starts plan evaluation, it simply puts
the top-level goal win-the-game for the opponent into
the action list. The opponent action’s critical times are
computed just like ours, and they are advanced in the
same way. Whereas our side evaluates all plans and
chooses the best one, the opponent chooses the worst
one (for us). This is a form a minimax search, with the
two sides executing their plans in parallel.

This brings up another point: in our previous exam-
ple we only had to simulate fairly simple actions like
MOVE and ATTACK, but now we have to generate crit-
ical points for complex plans such as WIN-THE-GAME.
As actions get more complex, their critical point com-
putations become more complex as well. This prob-
lem is mitigated, however, by the fact that actions and
plans are organized hierarchically in CTF. Just as ac-
tions lower in hierarchy can be used as building blocks
to achieve some goal of a higher level action, so can



critical points of more complex actions base their com-
putations on simpler ones. Consider as an example the
action FOLLOW, which repeatedly schedules MOVE to
chase a moving target. Let us assume FOLLOW periodi-
cally checks the position of the target and redirects the
currently executing MOVE if need be. FOLLOW will also
schedule a new MOVE if the the current one aborts for
some reason. FOLLOW'’s critical points are simply the
union of MOVE’s critical points and the target check
period. These are the times at which FOLLOW has to
make a decision about changing course.

Discussion and Related Work

To the best of our knowledge, the idea of using critical
points to make any continuous search space suitable
for classical AI methods has not been put forth in this
general form before. That is not to say that intellectual
precedents don’t exist, however. Critical points are well
known in Qualitative Physics (Weld & deKleer 1989;
Forbus 1984). Roboticists, in particular those deal-
ing with motion planning (Canny 1988; Latombe 1991),
have long had to face the problem of continuous search
spaces. Many approaches for quantizing these search
spaces exist, here we will only touch on the most com-
mon: Cell decomposition methods overlay the continu-
ous space with a finite number of often regularly shaped
cells. Conventional search algorithms are used to plan a
path from a cell to any other. Skeletonization methods,
for example those used to generate Voronoi diagrams,
collapse the infinite number of possible points in the
traversible space to a roadmap that defines safe paths
between obstacles. The roadmap is a graph, and graph
search methods can be used for path planning. Note
that while all these approaches are general, they impose
an a priori state decomposition on the search space,
unlike critical points, which generate state boundaries
based on the action set. If one were to do path plan-
ning with critical points, the MOVE action would report,
given the size of the agent and the direction it was go-
ing, where the next decision point would have to be.

One of the biggest open issues is how, given an ac-
tion, one should go about defining its critical points.
We have stated that this process involves estimating,
through experience or insight, at which times a deci-
sion has to be made within the action. Critical points
are the times at which an action might take a different
course depending on the state of the environment. We
do want to emphasize that this problem is indeed easier
than partitioning the complete search space into states.
When estimating critical points, one can look at one
action in isolation, to partition the state space one has
to decide for all possible actions what characteristics of
the space are relevant.

Finding critical points can be compared to the prob-
lem of learning planning operators. They are one more
thing that has to be specified in addition to pre- and
postconditions when designing operators. It might even
be feasible to learn critical points. Recent work in non-
linear dynamics (Rosenstein & Cohen 1998) has shown

how it is possible to cluster conceptually related actions
based time series of associated sensor readings. We have
the hypothesis that in such clusters, critical points are
the points at which groups of time series diverge.

Whiile critical points can be used to generate dynamic
state boundaries, they do not by themselves reduce the
potentially high branching factor of searches in continu-
ous domains. The reason we used a partial hierarchical
planner in the Capture the Flag domain, and not a
search algorithm, is precisely due to the high branching
factor.

For many domains, using critical points to generate
states is probably overkill. Every action must have a
way to estimate the next critical time as well as a model
of how it effects the world. However, critical points
are ideally suited for domains that have a high level of
interaction between operators, where multiple agents
running actions of varying length must be considered,
or where the world itself changes dynamically. It is our
view that it precisely the interesting domains that have
these characteristics.
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