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Abstract

Traditional discrete-event packet-level approaches to simulating computer networks be-
come computationally infeasible as the number of network nodes or their complexity in-
creases. An alternative approach, in which packet-level traffic sources are replaced by fluid
sources, has been proposed to address this challenge. In this paper we compare the amount
of computational effort needed to simulate a network using a packet-level approach versus
a fluid-based approach. We quantitatively characterize the amount of computational effort
needed by each approach using the notion of a simulation’s event rate, and derive expres-
sions for the event rate of a packet and fluid flow at both the input and output sides of
a queue. We show that fluid simulation can require less computational effort for simple
networks. However, as the network size and complexity grow, the so-called "ripple effect”
can result in fluid simulations becoming more expensive than their packet-level counterparts.
This suggests that time-driven (approximate) fluid simulation techniques may be needed to
efficiently simulate large scale networks.
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1 Introduction

Data communication networks have been experiencing tremendous growth over the last
decade, in terms of both size and complexity. Consequently, evaluating the performance of such
networks is becoming an increasing difficult problem. The traditional packet-level approach
to simulating a network is to simulate the arrival, queueing, processing and departure of each
individual packet at the various queues along a packet’s path through the network. However, as
the number of network nodes becomes large, this approach begins to become computationally
infeasible. Thus, while packet-level simulation may be easy to implement and can yield accurate
results for small networks, more scalable simulation methodologies and techniques are needed
to simulate truly large scale networks.

Several efforts have been undertaken to address this important challenge. Scalable simu-
lation frameworks[2] and parallel simulation techniques[3, 6] have been developed to speed up
a simulation by taking advantage of the computing power of multiprocessors and distributed
computer networks.

An alternative to devoting more computing resources to a traditional packet-by-packet sim-
ulation is to change the underlying simulation paradigm itself. One can approximately model a
packet source in the hope of speeding up a simulation without sacrificing significant accuracy.
In the packet-train method[1], speedup is achieved by coarsening the representation of network
traffic from a packet-level granularity to a “train”-level granularity in which a cluster of closely-
spaced packets is replaced by a single “packet train”. Rather than having to simulate the arrival
and departures of the many individual packets in the train at the various network queues, the
simulation treats the packet train as a monolithic entity and only simulates the arrivals and
departures of the train - a potential savings in computational effort.

Fluid simulation[4, 5] takes this approach one step further, using a fluid flow rather than a
packet-by-packet flow to represent a traffic source. In a fluid simulation, a source’s fluid flow
rate may change as the packet generation rate in the system being modeled changes. Small time-
scale variations in the packet arrival stream are abstracted out of the source model by having
the fluid’s rate remain constant between these changes in the fluid rate. As the fluid flows
through the network, a fluid simulator need only keep track of the rate changes that occur as a
result of queueing, multiplexing, and service of the fluids at the various queues; an equivalent
packet-level simulation would need to keep track of a potentially enormous number of packets in

the network. When a packet-level source is modeled as a fluid source, and the fluid’s rate (and
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Figure 1: The Markov Modulated Packet and Fluid Sources

rate changes) is simulated and tracked exactly at each point in the network, we will refer to
such a simulation as an exact fluid simulation (EFS). There are also variations and extensions
to EFS that make additional approximations in the fluid simulation model, such as time-driven
fluid simulation|[7, 8] and time-stepped hybrid simulation, where networks can be evaluated at
multiple time scales. We will discuss these techniques in our concluding remarks.

In this paper we compare the amount of computational effort needed to simulate a network
using a packet-level approach versus an exact fluid approach. We note that our goal here is
not to compare the relative accuracy of packet-level versus fluid simulation of networks (see
[7, 8]) but rather to compare the amount of computational effort needed by these two different
approaches. We quantitatively characterize the amount of computational effort needed by each
approach using the notion of a simulation’s event rate, and derive expressions for the event
rate of a packet and fluid flow at both the input and output sides of a queue. We show that
fluid simulation can require less computational effort for simple networks, due to the high level
of abstraction of the traffic source and the possibility of merging of chunks of fluid at network
queues. However, as the network size and complexity grow, the so-called “ripple effect” can result
in fluid simulation becoming more expensive. This suggests that time-driven (approximate) fluid
simulation techniques may be needed to efficiently simulate large scale networks.

The remainder of the paper is structured as follows. Section 2 describes the packet and fluid
source models and the fluid simulation of simple FIFO multiplexing. Section 3 first derives the
simulation event rate of a single node under packet-level simulation and EFS. We then extend
the event rate analysis to a feed-forward network and then quantitatively compare the simulation
event rates for a tandem queueing system under packet-level simulation and EFS. Concluding

remarks and directions for future research are presented in Section 4.



2 Source Models and FIFO Multiplexing

We consider a simple network model containing traffic sources and interconnected work-conserving

FIFO queues. The dynamics of these components are described below.
2.1 Markov-Modulated Fluid Source and Packet Source

We use a stationary, continuous-time Markov chain with two states, on and off, to modulate
a source’s generation of packets or fluid. The transition rates from the on state to the off state,
and from the off state to the on state are A\ and p, respectively, with the holding time in each
state assumed to be exponentially distributed.

For a packet source, when the source is in the on state, packets are emitted according to a
Poisson process with rate . Packet sizes form an iid sequence of random variables {z;}, where
E[z;] = Z. No packets are emitted when the source is in the off state.

For a fluid source, when the source is in the on state, fluid is emitted at a constant rate, and
when the source is in the off state no fluid is emitted. Since the fluid source approximates a
packet source, we require that the fluid rates be vz in on state and 0 in the off state, in order
for the packet and fluid sources to have the same average data rate.

The packet and fluid sources are illustrated in Figure 1, and will be referred to as Markov

Modulated Packet Source (MMPS) and Markov Modulated Fluid Source (MMFS), respectively.
2.2 Dynamics of work-conserving FIFO queue

A FIFO queue serves queued traffic on a First In First Out manner. This is straightforward
for packet simulation, since incoming packets are queued according to their arrival times, receive
service, and leave in that order.

For fluid simulation, fluid that arrived earlier in time will be served earlier. However, with
fluids (unlike packets), fluid from different sources can arrive simultaneously at the queue. Let
us examine this issue in more detail. Assume there are N fluid sources connected to a FIFO
queue, with a service rate of c. Let ay(t) and di(¢) be the fluid arrival rate (amount of fluid
arriving per unit time) and fluid departure rate of the k& — th flow at time ¢. The overall arrival
rate to the queue is a(t) = Y2 _; ax(t). Suppose the aggregate flow’s input rate changes at times
T < Te < --- < 7n. Let U(t) denote the backlog in the queue at time ¢, for 7; < t < 7;41; this



can be computed using the following recursive formula:
U(t) = maz(0,U(r) + (a(t) — c)(t — 7)) (1)

For each rate change, there are two possible scenarios:

e U(7;) = 0. In this case, a rate change in the input at 7; will result in an immediate change
in the output rate, since no fluid is backlogged. If a(7;) < ¢, the output rate of each source
is just its arrival rate, di(7;) = ag(7;). If the aggregate arrival rate is larger than the FIFO’s
bandwidth, each source receives a service rate proportional to its arrival rate, di(7;) = %c

e U(r;) > 0. In this case, the backlogged fluid present at time 7; must first be consumed
before the input rate change at 7; is reflected in the output rate. If the new aggregate arrival
rate is greater than the FIFO’s bandwidth, once the backlog U(7;) is consumed, the departure
rate will be d(7; + @) = %c

If a(7;) < ¢, during the time when the FIFO serves the backlogged fluid U(7;), fluids which

arrive after would be accumulated in the queue. So the corresponding departure rate of source
k would be, di(m; + @) = %c Note that dg(7; + @

rate of the fluid that arrived at 7; is actually greater than the arrival rate at 7;. Note also that if

) > ag(m;), i.e., that the departure

the rates haven’t changed when the FIFO queue consumes all the newly backlogged fluids, i.e.,

U(r;) a(r;) 2 . ..
e el Ay the departure rate for each source will drop to its instantaneous

Titl > T; +

arrival rate at that moment.

3 Analysis of Fluid Simulation vs. Packet Simulation

Having described the on-off packet and fluid sources, as well as the functionality of the FIFO
queue, we are now in the position to study the simulation event rates associated with a variety

of fluid and packet queues.

3.1 Single node case

Let us first consider a system consisting of a single source and a single FIFO queue. Packets
(in the case of a packet simulation) or fluid chunks (in the case of a fluid simulation) - a
continuous flow with a constant rate - are fed into the FIFO server, receive service and then
leave the system. The server is assumed to have an infinite size buffer; no packet or fluid loss
will be considered. We also assume that the packet or fluid arrival rate (when the source is on)

is greater than the FIFO’s service rate, as otherwise there will be no queueing.
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Figure 2: The aggregation of the fluid chunks

The simulation of the on-off source produces two types of events, source on and source off,
corresponding to transitions from off to on and off to on. We define an on-off cycle to be the
time between two successive source on events. It has an average length of (A + u)/Au. Each
cycle consists of exactly two events, source on and source off, and thus the event rate associated
with the on-off source transitions is 2Au/(\ + ) events per unit time.

The above analysis applies to both packet and fluid simulations. For packet simulation, we
identify two additional events, packet arrivals and packet departures at a queue, that must be
handled by the simulation. Recall that when the source is in the on state, the packet arrival rate
is 7. For each packet, the simulation must process an associated arrival and eventual departure
event at the FIFO queue. Therefore, the corresponding event rate is 2P(on)y = 2uy/(A + u),
where P(on) is the probability that the source is in on state. We use eP to denote the total
event rate of the packet-level simulation. Given the above discussion, we have

o 2 2py (2)
Adp A+p

In fluid simulation, the source on event of the information source indicates an arrival of a
fluid chunk and the corresponding source off event marks the end of the fluid chunk. We observe
that a fluid arrival always coincides with a source on event. Thus, in this case, we only need
one additional event - a fluid chunk departure event. When we process the source off event, we
schedule the next source on event, and we compute whether the departure event of the current
fluid chunk will happen before the arrival of the next fluid chunk. If at the arrival of the next
fluid chunk, the current fluid chunk has left the server, then the departure event of the fluid
chunk is scheduled and inserted in the event list. Otherwise, the two adjacent fluid chunks are
aggregated into one fluid chunk, and we wait until the source off event of the next chunk to
determine whether we need to schedule a departure event for this merged chunk.

Figure 2 illustrates this chunk aggregation process. Fluid chunk 2 arrives before fluid chunk
1 leaves the server, and hence no departure event is scheduled for chunk 1. Instead fluid chunk

2 joins chunk 1 to form a merged chunk and the departure event is delayed. When fluid chunk 2



turns off, the computation shows that the service of the merged chunk will be completed before
the arrival of fluid chunk 3. A departure event is thus scheduled.

We have observed that not every fluid chunk will have a corresponding departure event.
Thus, the event rate associated with the departure of the fluid chunks has an upper bound of
A/ (A+p). The total event rate from this simple single-source single-queue fluid model, denoted
by e, is the sum of the event rate for the on-off source and the event rate for the departure of
the fluid chunks,

f 2\ AL

= + 3
A+ a)\+u ®)

where a € [0,1] , represents the probability that a fluid chunk departs without being merged
with the next fluid chunk, i.e., it completes service before the arrival of the next fluid chunk.

Comparing equations 2 and 3, we see that the first term in the packet and fluid event rates
(respectively) are identical, as they come from the simulation of the two-state Markov chain.
In the worst case (i.e., the case that maximizes work needed under EFS), the coefficient « in
equation 3 can reach 1, in which case there is no aggregation of the fluid chunks and each
chunk has its own departure event. In this worst case, if v > %, the event rate of the fluid
simulation is smaller; otherwise, packet-level simulation has fewer events. Note that as the
arrival rate approaches the queue’s capacity, more and more fluid chunks will be merged, and
the computational advantages of fluid simulation over packet simulation will increase.

We observe that two factors reduce the event rate of fluid simulation over that of a corre-
sponding packet-level simulation. First, a single fluid chunk represents all the packets emitted
in the on state, which can save a large number of events when the packet emission rate is high.
Secondly, the number of events in fluid simulation may be further reduced by the merging of

adjacent fluid chunks.
3.2 Network case

In this section we extend our analysis of the event rate of fluid and packet simulation to
more complicated networks. We will observe that the performance (measured in terms of the
event rate) of fluid simulation begins to suffer from the so called ripple effect (first observed in
[4]) when we introduce multiple sources into system.

Figure 3 illustrates the ripple effect in a single queue with three sources. As noted in the

previous section, for a work-conserving FIFO queue, a rate change of one source may cause the
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Figure 3: An example of ripple effect

output rate of the other sources feeding the same queue to change. In Figure 3, for example,
the arrival of fluid chunk 1 at time T'1 causes fluid chunks 1 and 2 to share the server capacity
during the interval [T'1',T2']. Similarly, the arrival of a single fluid chunk 3 at time T2 causes
a change in the output rate for all three chunks at time 7'2'. Thus, as a flow progresses into the
network, it can be characterized by a event rate that is much larger than that of the original
source.

In the following we first analyze a single queue with multiple arrival processes. We then
consider a tandem queue example to illustrate how the ripple effect can dramatically increase
the event rate of EFS. Let us begin with some terminology and notation.

e event: a rate change;
e E;(t): # events occurring in [0, ¢] for arrival process i;
e;: the event rate of arrival process i. e; = limy oo (E;(t)/t);
e 5;: the number of distinct rates for arrival process i;
the event rate of the departure process 7;

the number of distinct rates for departure process ¢;

Figure 4 depicts a snapshot of a FIFO queue with two arrival processes. We define an
aggregate chunk of fluid to contain chunks of fluid from sources 1 and 2, with a rate vector
[r1,r2] that does not change over the length of the aggregate fluid chunk. We assume that
processes 1 and 2 never simultaneously change their rates. Thus, every event in process 1 and
process 2 leads to a new chunk. In Figure 4, different shading represents queued aggregate
chunks of fluid with different rate vectors. We number the aggregate chunks in the order of their
creation. Note aggregate chunks 0, 4, and 8 contain no fluid and are called “empty chunks”.
We denote other aggregate chunks as “non-empty chunks”.

Using the analysis presented in Section 2, we know a “non-empty chunk” will lead to at
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Figure 4: A Two Arrival Process FIFO Queue

least one event (rate change) in the departure process in the future. Under certain conditions
an aggregate chunk can actually lead to two events in the departure process. We denote such
a aggregate “chunk” as a “special aggregate chunk”. The conditions that produce a “special
aggregate chunk” are as follows: 1) the aggregate arrival rate must be less than the service
rate; 2) the queue must not be empty when a “special aggregate chunk” is formed at the queue’s
input; 3) there are no rate changes until the server completely empties the queue (at which point
the fluid departure rates equal the fluid arrival rates). More precisely, during the time when the
server serves the backlog found by an arriving special aggregate chunk, the fluid of the special
chunk accumulates in the queue. The server will then eventually serve the accumulated fluid
from the special chunk at full capacity (even though the aggregate arrival rate of the special
chunk was less than the service rate.) When the server completely empties the queue, the fluid
departure rate then changes from the full rate of the server to the aggregate arrival rate of
the input. In such cases, there are thus two rate changes in the departure process of a special
aggregate chunk - one occurs when the special chunk begins service; the other occurs when the
server empties the queue and aggregate departure rate equals the aggregate arrival rate.
For the “empty chunk”, there are the following two scenarios:

e Upon the arrival of non-empty chunk following the empty chunk, the queue is empty. In this
case, “empty chunk” will lead to one event in the departure process.

e When the non-empty chunk following the empty chunk arrives, there is backlogged traffic in
the queue. In this case the empty chunk “disappears” in the queue (since the newly arriving
chunk will be queued directly behind the last backlogged aggregate chunk) and will not cause an

event in the departure process. Moreover, if the rate vector of the arriving chunk is the same as



that of the chunk at the end of queue, these chunks will merge and the arrival will not produce
an event in the departure process.

To simplify the analysis, we assume that every empty chunk will introduce a single event
and do not consider the merging of chunks.

Consider the system with two arrival processes as shown in Figure 4. Every arrival event
of process 1 creates a new aggregate chunk and, thus, a future rate change in its departure
process. A rate change in process 2 has no impact on process 1 when process 1 is in the off
state. However, when process 1 is on, an event of process 2 changes the state vector of the newly
generated aggregate chunk and thus will affect the state of process 1’s departure process in the
future. Moreover, if the newly generated chunk is a special chunk, it will introduce yet a second
event in the departure process, as discussed above.

We can reduce a system with N incoming flows to a system with 2 flow problem by aggregat-
ing flows. We assume that the incoming flow’s event rate, number of states, and «; are known,
where «; is the probability that process ¢ is not off, observed at moments of rate changes for
all aggregated flows except flow ¢. We summarize the above discussion and have the following

Proposition:

Proposition 1 Consider N flows feeding o fluid queue. Then:

egl = ei+a,~-Zej+¢,~, (4)
J#i
s < 1+(5i_1)'H5j‘ (5)
J#t

foralli e {1,2,--- ,N}.

where 1; is the extra event rate caused by special chunks.

Note that we have made the assumptions that 1) an empty chunk always leads to a event; and
2) no chunks are merged. These assumptions result in an overcount of the number of simulation
events and our computed event rates are consequently an upper bound. Assumption (1) is
violated only when an event results in all flows having a zero flow arrival rate, and the following
non-empty aggregate chunk finding a non-empty queue. The probability of this happening may
be non-negligible when the the number of flows is small, but will be negligible when the number
of incoming flows is large.

Our assumptions also ignore the merging of chunks. We argue that the opportunity to merge

two chunks occurs infrequently. Two successive aggregate chunks can be merged only when they
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Figure 5: A Tandem Queue

having the same state vector. This scenario can only occur when an event generates a chunk,
the next event results in all flows having a zero flow arrival rate, and a third event generates a
new aggregate chunk that has the same rate vector as the previous one. As discussed above, the
probability of this happening is likely to be small.

For EFS from Proposition 1 we observe that the number of states increases exponentially as
the number of sources increases, and the event rate for each session will increase in proportion
to the event rate of aggregated traffic other than itself. As the scale of the network grows, such
an effect could be overwhelming. The event rate for fluid simulation can easily exceed that of

packet level simulation. To illustrate this, we present the following tandem queue example.
Tandem queue example:

Consider a tandem network as showed in Figure 5. For each node in the network there are
N input processes. Process 0, a MMFS at node 0, traverses through all the nodes. The other
(N —1) processes, which are all MMF'S sources, leave the system after passing through one node.
We assume that all of the sources have the same transition rates A and p. We use an
additional subscript ¢ to represent the node id. For example, we use ag; to denote the not-off
probability at node i for process 0. Thus:
Qoo = m
The output process of queue 0 is likely to be quite complicated, making the calculation of oy
difficult. Thus we use the value of agg to approximate oy, for 7 > 0.

Proposition 1 yields the following for the event rate of departure process 0 at node 0:

2A
ego = ﬁ + (N — 1)0100

2 p
A4 p

+ 9oo-

For departure process 0 at node ¢ > 1, we have the following recursive equation by applying

11



Proposition 1:

N-1
ef; = e‘é(i,l) + ag; - Z eji + Yoi
j=1
= 2M L (N~ 1)a (i+1))+§ij¢~ (6)
“3tg 00 0 -

j=0

Let Rf(K) and RP(K) denote the simulation event rates for a K node tandem system using
fluid simulation method and packet level simulation method, respectively. We exclude the event
rate simulating the source since the cost for both methods is the same. Let /(i) denote the

event rate to simulate ith node in the fluid simulation. Then:

2
rf (0) = Nﬁ (7)
and for all 7 > 1:
@) = ey + (N = D32 Q
Thus the event rate for fluid simulation is:
K-1

RI(K) =) (i) (9)

1=
Recall that v denotes the packet emission rate in the source on period. Since the packet
simulator schedules two events for each packet (a packet arrival and a packet departure), the
event rate for simulating one node in a packet level simulation is IV - 207 Thus the event rate

M u
to simulate the K node tandem queue is:

2y
RP(K)=NK - 1. 10
(K) Nt (10)

Figure 6 depicts RP(K) and R/(K) with v equal to 10, A = g = 1, and N = 10. So:

K—-1i—1
RY(K)=2.25K2 + T.T5K + Y > ;. (11)
i=0 j=0

and

RP(K) = 10K~. (12)

We ignore the effects of special aggregate chunks, i.e., ¥o; = 0 for all 7. RP(K) is thus a linear
function with slope of 10y. Rf(K) is a parabola. When K is small, fluid simulation has a smaller

12
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Figure 6: Event Rate For K-Node Tandem Queue Simulation

event rate than packet-level simulation, due to the fact that one fluid chunk represents multiple
packets. However as K increases, the ripple effect eventually (at around 41 nodes) causes the
fluid simulation to have more events that its packet-level counterpart. The intersection point can
serve as a guideline to select the proper simulation methodology for the simulation of different
sized systems.

The multi-queue system we have studied is a simple tandem queueing system. We conjecture
that the ripple effect will be even more pronounced in a network with downstream branching
and multiple input nodes. In such networks, a change in the output event rate at one queue will
be propagated to all downstream nodes, generating changes in the fluid service rates of flows at
those nodes. These rate changes in these flows, in turn, will effect all downstream flows with

which they interact.

4 Conclusion and future work

In this paper, we have seen that the high degree of abstraction of fluid model over packet
model and the possible aggregation of adjacent fluid chunks can greatly speedup a fluid simu-
lation over its packet-level counterpart. However, we have also seen that the ripple effect can
also play a significant negative role in fluid simulations, particularly in more complex models.

These two competing factors will thus determine the relative event rates of fluid and packet-

13



level simulation. For simple networks and high source output rates, fluid simulation is likely to
outperform packet-level simulation in terms of event rate. For large scale networks, the number
of rate changes caused by the ripple effect may become so large that the packet-level simulation
has fewer simulation events.

One possible direction for future research is to compare fluid and packet-level simulation
under scheduling disciplines other than FIFO. We believe that weighted fair queueing may be
particularly well-suited for fluid simulation, since the isolation among traffic flows provided by
WFQ will avoid introducing ripple effects.

A second direction for future research is to explore approximate fluid simulation methods.
The idea of fluid simulation is to model the network traffic at a coarser resolution than packet-
level simulation. In this sense, the Markov on-off fluid source is a coarse grain model of the
discrete packet arrival process. When modeling a source as on-off fluid, we have already com-
mitted to a certain degree of approximation. The fluid simulation approach discussed in this
paper, which we referred to as the ezact fluid simulation, exactly simulates the event interactions
among the on-off fluid processes at the queues in the network. Indeed, this was precisely the
cause of the difficulties created by the ripple effect. One promising solution, then, is a time-
driven fluid simulation scheme, in which the continuous flow is discretized into fixed length of
fluid chunks, with each chunk having a constant rate and representing many packets. This is
done not only at the source, but at all queues in the network. This helps reduce the number
of rate changes resulting from the ripple effect. Also, since the discretization interval (the time-
step) for all the nodes is the same, the simulation is time-driven and parallelism is much easier.
The time-steps can be adjusted to accommodate different resolution requirements in modeling.

This scheme is undergoing both theoretical and experimental investigation.
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