
Submitted to ACM Conference on Electronic Commerce (EC-99), November 1999, Denver,
Colorado.

Formally Defining Coordination Processes to Support

Contract Negotiation

Aaron G. Cass Hyungwon Lee Barbara Staudt Lerner Leon J. Osterweil

Laboratory for Advanced Software Engineering Research

Department of Computer Science
University of Massachusetts

Lederle Graduate Research Center
Amherst, MA 01003

{acass, hlee, blerner, ljo}@cs.umass.edu

Abstract

The literature and practice of negotiation and auctions, especially in the burgeoning area of
electronic commerce, demonstrate that there is a wide and rapidly growing variety of
negotiation and auction processes both in use and proposed. We believe that in the future
automated online auctions will become a fundamental building block for contract negotiation
carried out electronically. To avoid loss of money or bad decision making, it is important for
organizations to have high confidence in the software involved in these activities.

We are writing a range of negotiation processes in Little-JIL, an agent coordination language
that addresses goals of expressiveness, analyzability, and executability. With Little-JIL, we can
express processes involving the coordination of the multiple participants involved in contract
negotiation and do so in a syntax that allows an intuitive understanding to non-programmers.
Furthermore, the language has a formal semantics that allows us to prove certain properties of
the negotiation processes. Finally, the language also has executable semantics allowing us to
directly execute the validated processes. We believe that this combination of capabilities makes
Little-JIL a valuable language for the definition of distributed, multi-agent processes for which
we want high assurance.

1. Introduction

The literature and practice of negotiation and auctions, especially in the burgeoning area of
electronic commerce, demonstrate that there is a wide and rapidly growing variety of
negotiation and auction processes both in use and proposed. Currently, most online auctions,
such as eBay, are used primarily by hobbyists. We believe that in the future online auctions will
not simply be tools for bargain hunters and collectors, but they will become a fundamental
building block for contract negotiation carried out electronically. Furthermore, we expect many
buying and selling decisions to be based on automated negotiation and auctions where all
parties involved, buyers, sellers, and auctioneers, will be automated. To avoid loss of money or
bad decision making, it is important that we have high confidence in the software involved in
these activities. Contract negotiation will always remain a highly decentralized activity as the
participants will always be separate processes communicating to achieve a goal. To gain high
confidence about these requires us to understand the distributed nature of the domain and to
define the acceptable boundaries within which each operates. An important aspect to
understand, then, is the coordination of these distributed activities.

We believe that if automated contract negotiation is to take on a large role in the economy,
contracting processes must have the following properties: 1) they must be correct, not
containing errors such as deadlocks, or improper handling of exceptional conditions, 2) they
must be reasonable, allowing agents adequate time to bid for tasks, and awarding work based
upon consideration of all bids received, for example, 3) they must be robust, being resistant to
the negative impacts of agents who do not meet their commitments, either inadvertently or
maliciously, 4) they must be fast, executing quickly in both absolute time, and relative to the
time it takes to execute the task that has been negotiated for. These desiderata seem fairly and
profitably viewed as requirements to be met by actual contract negotiation processes.

Existing negotiation processes found in the literature are generally described informally, using
natural language. Their semantics are precisely defined through their implementations, but the
implementations typically undergo minimal analysis and testing to ascertain their correctness
and performance characteristics. Although the negotiation processes could be captured in
many notations, a high level notation that provides abstractions to define the coordination of
multiple agents is required to express the processes of interest. A notation with well-defined,
well-formed semantics can facilitate verification of desirable properties using software analysis
techniques. In addition, if the notation is executable, we can be assured that the properties
understood informally and proven through analysis are not lost as the process is translated to
an executable language.

For developers to reuse negotiation processes effectively, it is necessary that the reusable
structure of negotiation be cleanly separated from domain-specific behavior. Domain-specific
behavior should be captured in the domain-specific agents while reusable negotiation behavior
should be captured in reusable processes. Once such reusable processes are defined, it is
necessary for them to be collected and organized in a manner that facilitates identification of
suitable processes and comparison of similar processes. Again, we believe that efforts to
develop a library of negotiation processes will be more fruitful if the informal descriptions of
the processes are supplemented with a definition written in a language that facilitates
communication of the processes in a more precise manner than natural language allows, is
simple enough to understand to allow informal reasoning, yet is executable and based upon a
well-defined semantics that enables automated analysis tools to prove certain properties.

We are writing a range of negotiation processes in Little-JIL, an agent coordination language
that addresses all these goals of expressiveness, analyzability, and executability. This
experience has demonstrated that it is relatively straightforward to reuse common parts of
negotiation processes and to discern various key distinguishing features of different negotiation
processes informally by simple inspection. Moreover, there are numerous properties that are
not as easy to extract, but are key distinguishing features that should and could be proven using
formal analysis.

2. Related Work

In the area of multi-agent systems, there is much work that builds on Smith’s Contract Net [1].
Contract Net is a protocol used to decentralize task allocation in a distributed, multi-agent
system. Instead of requiring a centralized controller that allocates tasks to subordinates,
Contract Net allows each agent to contract out tasks via a negotiation mechanism. Smith
defines a set of message types that use the following fixed negotiation process: a manager
announces a task to be performed, agents decide whether to bid to perform the task, then the
manager chooses the best agent (using its own ranking criteria). Because the process is fixed in
the implementation, there is no formal description (aside from the code) from which to perform

any formal analysis about the suitability of this process for a particular application. The fixed
process also limits the ability to change or reconfigure the process quickly and reliably.

Sandholm [2] extends Contract Net by developing an economic model based on marginal cost.
This economic model is the basis for all task allocation decisions, allowing cooperative and
competitive agents to work together. This work formally defines the allocation policy but does
not formally define the allowable sequences of events — thus while it is possible to reason
about allocation decisions, it is still not possible to reason about the negotiation process.

Sandholm and Lesser [3] later describe a Contract Net-derived process using a state-transition
diagram approach. States in the diagram are not labeled, but represent the overall states of the
process, while the transitions represent the agent actions (for example, “contractee proposes”).
Their intent is to classify negotiations, so the descriptive nature of the state transition diagram
approach is appropriate. The approach describes how the state of the process progresses in
response to actions, but does not prescribe the order of those actions. Their notation allows
reasoning over sequences of actions, but it is purely a modeling notation and is not directly
executable.

Wurman, Wellman, and Walsh’s [4] AuctionBot work introduces a parameterized taxonomy of
auctions. By specifying the values (from a pre-defined allowable set) for different auction
parameters (such as Bid Rules and Clearing Schedule), a user of the AuctionBot system can
describe an auction that can be executed in the system. In a similar spirit, Kumar and Feldman
[5, 6] describe the design of a class hierarchy that supports the construction of a variety of
auctions operating with different rules. Both AuctionBot and the work by Kumar and Feldman
support some classical auction models, such as sealed bid, English, and Dutch auctions, but also
support the creation of new auction types by providing highly composable and customizable
components. This offers a great deal of flexibility in the creation of auctions, but may leave the
creator uncertain as to whether the combination of components and customizations used result
in an auction with the desired properties.

We build upon definitions of negotiation and auctions described in the earlier work, but we
focus our attention on describing the processes with a notation that facilitates both informal and
formal analysis to validate that the described processes have the desired properties. Rather
than focus on the functionality and variety of the processes, we are interested in studying their
implementations from a software engineering perspective to assure their quality before trusting
them with carrying out contract negotiation.

3. Overview

We are developing a library of contracting processes written in Little-JIL[7][8], an agent
coordination language that supports specification, execution, and analysis of processes
involving multiple agents. Little-JIL is a graphical language in which processes are
decomposed hierarchically into steps. The steps are connected to each other with control flow
and data flow edges. Each step is assigned to an agent to perform. In the context of contract
negotiation, an agent might be an entity selling goods or services or buying goods or services,
while the process itself defines the coordination of the agents involved in the negotiation. The
collection of steps assigned to an agent defines the interface that the agent must satisfy to
participate in the negotiation. Properties can be proven about the behavior of a negotiation
process by reasoning about the data flow and control flow connections among the steps and
analyzing the ordering and concurrency of their execution.

or parallel step requires all of its substeps to be performed. A choice step allows the agent
performing the step to choose which single substep to execute. A try step identifies alternative
ways of performing the step but hardwires the order in which the alternatives should be tried
from left to right. A choice or try step requires exactly one of its substeps to be performed
successfully. A step with no control flow badge is a leaf step and is directly executed by an
agent. A step whose name is in italics is a reference step and is defined elsewhere in the
process.

The lightning bolt in the middle is the reaction badge to which reaction steps are attached. A
reaction identifies a broadcast message that it responds to.

The X is the exception handler badge to which
exception handlers are attached. An exception
handler identifies the exception that it is handling,
optionally a step to perform to handle the
exception, and a continuation badge to indicate
what to do after completion of the handler step.
There are four continuation badges as shown in
Figure 3. The continue badge indicates that the
execution of the step should continue. For
sequential and parallel steps, this is as if the
substep that threw the exception completed
successfully. For choice and try steps, this allows

an agent to perform a different alternative. The restart badge indicates that the entire step
should be restarted from the beginning. The complete badge indicates that the entire step
should be considered successful. The rethrow badge indicates that the entire step should be
considered unsuccessful and the exception should be thrown again to the step’s parent.

The control flow, reaction, and exception badges are hidden if there are no child steps,
reactions, or handlers, respectively.

It is possible to attach timeouts to steps. Timeouts come in two varieties. A deadline timeout,
represented with a clock icon, denotes an absolute time by which a step must be complete, such
as June 1, 1999, midnight. An interval timeout, represented with an hourglass, denotes a
duration of time that is measured from one event to another. Typically, an interval timer begins
counting down when the associated step is started. For instance, an agent may be given one
hour to complete an activity.

Each step in a Little-JIL process has an execution agent. Either one is declared locally as its
agent or one is inherited from the parent. When a Little-JIL process is executed, the step is
assigned to the agent to perform. The agents carry out the activities associated with the leaves
of the process and report back to the Little-JIL interpreter upon completion of a step. The
process thus controls the interleaving of agent activities by assigning different activities to
different agents, using control flow edges to synchronize the agents and data flow edges and
shared memory to communicate information among the agents. The synchronization
primitives and communication primitives required to carry out the high-level synchronization
and communication specified in the process are provided by the interpreter, relieving the
process programmer from providing this error-prone code.

3.2. Benefits of Using Little-JIL

We hypothesize that with negotiation processes appropriately described in Little-JIL, we will be
able to:

Figure 3: Exception Continuation
Badges

Intuitively understand processes — because Little-JIL is a concise visual language that makes
communication among distributed processes straightforward, people will be able to get an
intuitive grasp of the negotiations described using Little-JIL. In particular, non-programmers
will be able to understand the processes, at least at this intuitive level.

Compare negotiation processes — by formally describing several negotiation processes in the
same formalism, we will be able to compare the processes more easily.

Analyze negotiation processes — with a formal foundation, we can pose questions about the
negotiation processes to be validated. We can formally prove that certain processes avoid
deadlocks or race conditions, for example.

Separate higher level concerns from domain-specific concerns — by formally describing a set of
negotiation processes separate from domains of applicability, we will provide the foundation
on which domain-specific negotiations can be described. The aspects of the processes that are
domain-independent will be captured in Little-JIL, while the domain-specific aspects can be
captured separately, either in separate processes or encapsulated within agent behavior.

Reuse portions of negotiation processes — because we separate the agents doing the work from
the work to be done, we will be able to reuse the descriptions of the work to be done in
situations where different agents are doing the work. The steps and their organization into a
process can be reused while changing the agents that are performing those steps.

Execute negotiation processes — because Little-JIL has an interpreter, negotiations described in
Little-JIL can be directly executed. Furthermore, this ensures that any properties proven using
formal analysis are guaranteed to hold during process execution.

4. Sample Auction and Negotiation Processes

In order for a buyer and seller to reach an agreement, they must first explore whether they wish
to work together, announce their intent to work together, and then negotiate the exact terms
with which they will work together. We are thus exploring a variety of contracting processes
that contain within them auctioning or bidding subprocesses and negotiation subprocesses. These
subprocesses can be defined and composed in a variety of ways resulting in different
contracting situations. For example, we can model sealed bid contracts such as the government
typically uses, as well as open-cry auctions more typical of short duration, face-to-face auctions.
In both cases, incorporating a time limit on the bidding or auctioning activities is critical and
Little-JIL allows us to do so. Furthermore, formalizing behavior when negotiations fail is also
important to represent. For example, what should we do if nobody bids? What should we do if
the winning bidder fails to deliver the service negotiated for? Handling of these exceptional
conditions can also be formalized and reasoned about in Little-JIL.

Negotiation naturally involves multiple parties: the agents who are requesting services as well
as the agents who can perform those services. Agents are autonomous and execute in a loosely-
coupled distributed environment. Each agent performs decision-making activities: deciding
which tasks to request of others, deciding whether or not they are capable of performing a task,
considering how winning a bid impacts their ability to perform other current and future tasks.
The agents have limited knowledge of each other and how others make decisions. The role of a
negotiation process and modeling of agents is to provide coordination and communication
among the agents during negotiation, not micromanaging the decision-making activities.

4.2. Sealed Bid Auction

The process in Figure 4 selected a vendor using a method that was not specified in the process.
Instead it was represented by the leaf step Choose Vendor. One potential mechanism by
which a vendor can be chosen is through a bidding process such as the mechanism used by the
government in selecting a contractor. We can create a more elaborate contract negotiation
process by substituting a bidding process for the Choose Vendor step, leaving the remainder
of the process untouched. Figure 5 shows a sealed bid auction process as a bidding process.
This process starts with obtaining some information characterizing a particular sealed bid
auction, such as reserve price, minimum starting price, and deadline for closing the auction,
from the offerer who desires a task to be performed. The Do Auction step consists of
sequential agent activity in which the bidders place bids and then the winner is chosen after the
deadline arrives.

The All Bid step assigns the bidding activity to each bidder in parallel by assigning the One
Bid step to an agent and then recursively invoking itself. When there are no more bidders
available, that is, when the the One Bid step fails to acquire a resource which is to be used as
the execution agent for the step, the NoMoreBidder exception is thrown and the last recursive
step aborts, limiting the parallelism to the number of available bidders. This mechanism is
called resource-bounded parallelism and is one of the Little-JIL programming idioms. The One
Bid step decomposes into a bid submission performed by the bidder followed by a sending of a
bid to the auctioneer. The communication occurs as a result of data flow out of the Submit
Bid step and then in to the Add Bid to List step, which is performed by the auctioneer.
The interpreter automatically provides the interprocess communication between the bidder and
auctioneer. The All Bid step is complete when all of its substeps complete. This occurs when
all of the potential bidding agents make a bid or the deadline by which bids are due passes,
whichever comes first. If a step with a deadline is still executing when the deadline arrives, the
step is terminated and the DeadlineExpired exception is thrown to the parent. In the Submit
Bid step, the expiration of the deadline timeout results in the termination of the One Bid
step as indicated by the completion badge on the DeadlineExpired handler.

After all bidding activity is complete, the Close Auction step starts. The Close Auction
step is responsible for determining who the winning bidder is. Upon the completion of the
Close Auction step, the postrequisite HighestAboveReserve is checked to determine if
the highest bid outbids the reserve price. If the postrequisite is true, the winning bidder and the
highest bid are passed to the outside of this process program via control flow edges to the
Sealed Bid Auction step. The winning bidder becomes the vendor in the remainder of the
negotiation process. Otherwise, the NoWinner exception is thrown, which is propagated to the
parent of the Sealed Bid Auction step. The parent in contract negotiation might decide to
modify the proposal to attract a different collection of bidders, for example.

The offerer, bidders, and auctioneer would almost certainly be separate (operating system)
processes running on separate computers. Most representations of a sealed bid auction would
represent these separate threads with separate syntactic entities. With such a representation, it
is necessary to examine multiple syntactic entities to see how they interact. Little-JIL allows the
interactions to be interleaved. For example, if we want to understand when the bids are
examined, it is simple for us to see that bids are examined during the Close Auction
subprocess, which does not begin until the All Bid subprocess is complete. Delaying the
examination of bids until all bids have been received is a key property of sealed bid auctions.
We can easily inspect the process to assure ourselves that this property exists. We could also
use formal flow-based analysis tools, such as Flavers [9], to verify the property formally.

We are also investigating the use of flow analysis tools to support formal analysis of Little-JIL
programs. Tools, such as Flavers[9], allow the specification of a property in terms of sequences
of events. The property is compared to a flow graph representation of the program to
determine if the sequence of events occurs on all, some, or no executions of the program.
Flavers has been used successfully in the analysis of concurrent Ada and Java programs[10].
Since control flow and data flow are explicitly represented in Little-JIL, many of these analyses
are straightforward and can be easily determined using informal analysis. The problem
becomes more complex when we consider how exceptions can change the flow of execution and
also in understanding the interleavings of children of parallel steps. For example, consider
validating the property of the sealed bid auction process that a bid cannot be submitted after the
interval timer has expired. This requires validating that no instance of Submit Bid completes
after the timer expires, including instances active when the timer expires as well as those that
are about to start due to recursive calls to One Bid, and also considering all parallel
instantiations made by different bidding agents. As the amount of parallelism and exception
handling increases, reasoning about properties will become increasingly difficult and the need
for analysis tools will become more urgent.

As with AuctionBot and Kumar and Feldman’s work, we have found it very useful to separate
higher level concerns from domain-specific concerns. In the Little-JIL processes we’ve shown
here, we have left undefined the domain specific concerns such as the criteria to be used to
choose a vendor to perform a task, the criteria to be used to make a bidding decision, and how
to decide when to accept or reject a proposal. From this higher level, we can compare the
processes based on the interactions between the agents and the allowable sequences of events.
From this starting point, we can continue this work to define some of these domain specifics
either in Little-JIL or in the agents that the Little-JIL programs use. We have also found that a
significant portion of the negotiation processes can be reused in multiple situations. We plan to
continue to create and use reusable pieces to make development of new negotiation processes
fast and easy.

6. Conclusions and Future Work

We are continuing to develop some aspects of Little-JIL. In particular, the timeout mechanism
is still being refined. In addition, we are investigating the addition of a data flow mechanism to
the language that would allow direct communication between concurrent steps. Currently such
communication takes place through the use of shared memory. Shared memory is essentially
an implicit communication mechanism which is more difficult to reason about than explicit
communication through data flow.

We are continuing to expand the collection of auction processes defined in Little-JIL. We are
interested in seeing how well the existing framework can be preserved across different auction
types. Thus far, we have been intrigued by how little process modification has been required to
represent quite different auction processes.

Ultimately our goal is to define and validate a collection of auction processes. Other researchers
are doing an excellent job at defining architectures that allow composition of auction
components. We are interested in building upon these ideas to construct auction processes that
support reuse and composition and to do so within a notation that facilitates informal and
formal reasoning about the correctness of the auction processes. As these processes become
more complex and customization is carried out by non-experts, the ability to automate the
reasoning with formal analysis tools will become essential. As the importance of auction
processes increases in society, high assurance will become more critical to the well-being of our
economy.

7. Acknowledgements

This research was partially supported by the Air Force Research Laboratory/IFTD and the
Defense Advanced Research Projects Agency under Contract F30602-97-2-0032. The views and
conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of the
Defense Advanced Research Projects Agency, the Air Force Research Laboratory/IFTD, or the
U.S. Government.

The definition of the Little-JIL language has been a team activity led by Sandy Wise and
including Eric McCall, Stan Sutton, and Rodion Podorozhny as major contributors. We also
thank Victor Lesser for his help in securing references to negotiation research in multi-agent
systems.

8. References

1. Smith, R.G., The Contract Net Protocol: High-Level Communication and Control in a
Distributed Problem Solver. IEEE Transactions on Computers, 1980. C-29(12): p. 1104-1113.

2. Sandholm, T. An Implementation of the Contract Net Protocol Based on Marginal Cost
Calculations. in Eleventh National Conference on Artificial Intelligence. 1993. Washington,
DC.

3. Sandholm, T. and V. Lesser. Issues in Automated Negotiation and Electronic Commerce:
Extending the Contract Net Framework. in First International Conference on Multi-Agent
Systems (ICMAS-95). 1995. San Francisco.

4. Wurman, P.R., M.P. Wellman, and W.E. Walsh. The Michigan Internet AuctionBot: A
Configurable Auction Server for Human and Software Agents. in Second International
Conference of Autonomous Agents. 1998. Minneapolis, MN.

5. Kumar, M. and S.I. Feldman, Business negotiations on the Internet, . 1998, IBM Institute for
Advanced Commerce.

6. Kumar, M. and S.I. Feldman, Internet Auctions, . 1998, IBM Institute for Advanced
Commerce.

7. Wise, A., Little-JIL 1.0 Language Report, . 1998, Department of Computer Science,
University of Massachusetts at Amherst,
ftp://ftp.cs.umass.edu/pub/techrept/techreport/1998/UM-CS-1998-024.ps.

8. Jensen, D., et al. Coordinating Agent Activities in Knowledge Discovery Processes. in
International Joint Conference on Work Activities Coordination and Collaboration (WACC'99).
1999. San Francisco, CA.

9. Dwyer, M.B. and L.A. Clarke. A Flexible Architecture for Building Data Flow Analyzers. in
18th International Conference on Software Engineering. 1996.

10. Naumovich, G., G.S. Avrunin, and L.A. Clarke. Data Flow Analysis for Checking Properties
of Concurrent Java Programs. in The 21st International Conference on Software Engineering.
1999. Los Angeles.

