Adaptive Leases: A Strong Consistency
Mechanism for the World Wide Web
V. Duvvuri, P. Shenoy, and R. Tewari

CMPSCI TR 99-41

June 1999

Adaptive Leases: A Strong Consistency Mechanism for the World Wide Web

Venkata Duvvuri, Prashant Shenoy and Renu Tewarit

Department of Computer Science,

University of Massachusetts,
Amberst, MA 01003

1IBM Research Division,
T J. Watson Research Center,
Hawthorne, NY 10532

{dvshekar,shenoy} @cs.umass.edu tewarir@watson.ibm.com

Abstract— In this paper, we argue that weak cache con-
sistency mechanisms supported by existing web proxy caches
must be augmented by strong consistency mechanisms to sup-
port the growing diversity in application requirements. Ex-
isting strong consistency mechanisms are not appealing for
web environments due to their large state space or control
message overhead. We focus on the lease approach that bal-
ances these tradeoffs and present analytical models and poli-
cies for determining the optimal lease duration. We present
extensions to the http protocol to incorporate leases and then
implement our techniques in the Squid proxy cache and the
Apache web server. Our experimental evaluation of the leases
approach shows that: (i) our techniques impose modest over-
heads even for long leases (a lease duration of 1 hour requires
state to be maintained for 1030 leases and imposes an per-
object overhead of a control message every 33 minutes); (ii)
leases yields a 138-425% improvement over existing strong
consistency mechanisms; and (iii) the implementation over-
head of leases is comparable to existing weak consistency
mechanisms.

I. INTRODUCTION
A. Motivation

The growth of the Internet and the World Wide Web
has enabled an increasing number of users to access vast
amounts of information stored at geographically distributed
sites. Due to the growing user population-and the non-
uniformity of information access, however, popular objects
create server and network overload, and thereby signifi-
cantly increase latency for information access [14]. Proxy
caching is one popular approach to alleviate these draw-
backs. In a proxy caching architecture, clients request ob-
jects from a proxy; the proxy services client requests using
locally cached data or by fetching the requested object from
the server. By caching frequently accessed objects, a proxy
can reduce the load on network links and servers as well
as client access latencies. A limitation, however, is that the
proxy cache may store stale data.

To prevent stale information from being transmitted to
clients, a proxy must ensure that locally cached data is con-
sistent with that stored on servers. The exact cache con-
sistency mechanism employed by a proxy depends on the
nature of the cached data; not all types of data need the
same level of consistency guarantees. Consider the follow-
ing example.

Example 1: Online auctions. Consider a web server that

offers online auctions over the Internet. For each item being
sold, the server maintains information such as its latest bid
price (which changes every few minutes) as well as other
information such as photographs and reviews for the item
(all of which change less frequently). Consider a proxy that
caches this information. Clearly, the bid price returned by
the proxy cache should always be consistent with that at
the server. In contrast, reviews of items need not always be
consistent, since a user may be willing to receive slightly
stale information. :

The above example shows that a proxy cache will need to
provide different consistency guarantees for different types
of data.

Most proxies deployed in the Internet today provide only
weak consistency guarantees [9], [13]. Until recently, most
objects stored on web servers were relatively static and
changed infrequently. Moreover, this data was accessed
primarily by humans using browsers. Since humans can
tolerate receiving stale data (and manually correct it us-
ing browser reloads), weak cache consistency mechanisms
were adequate for this purpose. In contrast, many objects
stored on web servers today change frequently and some
objects (such as newspapers and stock quotes) are updated
every few minutes [1]. Moreover, the web is rapidly evolv-
ing from a predominantly read-only information system to
a system where collaborative applications and program-
driven agents frequently read as well as write data. Such ap-
plications are less tolerant of stale data than humans access-
ing information using browsers. These trends argue for aug-
menting the weak consistency mechanisms employed by
today’s proxies with those that provide strong consistency
guarantees in order to make caching more effective.! In
the absence of such strong consistency guarantees, servers
resort to marking data as uncacheable, and thereby reduce
the effectiveness of proxy caching. The design of efficient
strong cache consistency mechanisms that can coexist with
existing weak consistency mechanisms is the subject matter
of this paper.

"Replacing existing weak consistency mechanisms altogether with
strong consistency ones may impose more overheads than are neces-
sary on applications that don’t need strong guarantees. An incremental
approach that augments existing mechanisms with those for strong con-
sistency seems more practical and efficient.

B. Existing Cache Consistency Mechanisms: Benefits and
Limitations

A cache consistency mechanism that always returns the
results of the latest write at the server is said to be strongly
consistent. Due to the unbounded message delays in the
Internet, no cache consistency mechanism can be strongly
consistent in this idealized sense. Hence, we relax our def-
inition to the following: a mechanism that returns data that
is never outdated by more than ¢ time units with the version
on the server is said to be strongly consistent, where ¢ is the
server to proxy delay at that instant and 0 < ¢ < co. Mech-
. anisms that do not satisfy this property (i.e., can return stale
data) are said to be weakly consistent.

Most existing proxies provide only weak consistency by
(i) employing a server specified lifetime of an object (re-
ferred to as the time-to-live (TTL) value), or (ii) periodically
polling the server to verify that the cached data is not stale
[4], [9], [13]. In either case, modifications to the object be-
fore its TTL expires or between two successive polls causes
the proxy to return stale data.

Strong consistency can be enforced either by server-
driven mechanisms or client-driven mechanisms [16}. The
former approach, referred to as server-based invalidation,
requires the server to notify proxies when the data changes.
This approach is optimal in the number of control messages
exchanged between the server and the proxy (since mes-
sages are sent only when an object is modified). However,
it requires the server to maintain per-object state consist-
ing of a list of all proxies that cache the object; the amount
of state maintained can be significant especially at popular
web servers. Moreover, when a proxy is unreachable due
to network failures, the server must either block on a write
request until a timeout occurs, or risk violating consistency
guarantees.

The client-driven approach, also referred to as client
polling, requires that proxies poll the server on every read
to determine if the data has changed [16]. Frequent polling
imposes a large message overhead and also increases the
response time (since the proxy must await the result of its
- poll before responding to a read request). The advantage,
though, is that it does not require any state to be maintained
at the server, nor does the server ever need to block on a
" write request (since the onus of maintaining consistency is
on the proxy).

Server-based invalidation and client polling form two
ends of a spectrum. Whereas the former is optimal in the
number of control messages exchanged but may require a
significant amount of state to be maintained, the latter is
stateless but can impose a large control message overhead.
Figure 1 quantitatively compare these two approaches with
respect to (i) the server overhead, (ii) the network overhead,
and (iii) the client response time. Due to their large over-
heads, neither approach is appealing for web environments.
A strong consistency mechanism suitable for the web must
not only reduce client response time, but also balance both
network and server overheads.

One approach that provides strong consistency, while
providing a smooth tradeoff between the state space over-
head and the number of control messages exchanged, is
leases [8). In this approach, the server grants a lease to
each request from a proxy. The lease duration denotes the
interval of time during which the server agrees to notify
the proxy if the object is modified. After the expiration
of the lease, the proxy must send a message requesting re-
newal of the lease. The duration of the lease determines the
server and network overhead. Smaller the lease duration,
smaller is the server state space overhead, but larger is the
number of control (lease renewal) messages exchanged and
vice versa. In fact, an infinite lease duration reduces the
approach to server-based invalidation, whereas a zero lease
duration reduces it to client-polling. Thus, the leases ap-
proach spans the entire spectrum between the two extremes
of server-based invalidation and client-polling.

The concept of a lease was first proposed in the context
of cache consistency in distributed file systems [8]. Re-
cently some research groups have begun investigating the
use of leases for maintaining consistency in web proxy
caches. The use of leases for web proxy caches was first
alluded to in [3] and was subsequently investigated in de-
tail in [16]. The latter effort has focused on the design of
volume leases—leases granted to a collection of objects—
so as to reduce (i) the lease renewal overhead and (ii) the
blocking overhead at the server due to unreachable proxies.
Other efforts have focused on extending leases to hierarchi-
cal proxy cache architectures [15], [17]. Thus, most of the
research on leases to date has focused on the mechanisms
for efficiently granting and renewing leases. The problem
of determining the optimal lease duration so as to balance
the tradeoff between the state space overhead and the con-
trol message overhead has not received much attention and
is the focus of this paper.

C. Research Contributions

In this paper, we argue that weak consistency mecha-
nisms supported by today’s proxies must be augmented by
strong consistency mechanisms to meet the growing diver-
sity in application and user requirements. Since existing
strong consistency mechanisms either impose a large state
space overhead or a large control message overhead, we fo-
cus on the leases approach that balances these tradeoffs. We
observe that the lease duration is the critical parameter that
determines the efficiency of the leases algorithm and pro-
pose a number of techniques for determining the lease dura-
tion. First, we present analytical models that use constraints
on the state space overhead and the control message over-
head to compute an appropriate lease duration. Since these
models are suitable only for scenarios where the load does
not fluctuate rapidly, we then present a number of policies
that enable a server to react to the fast time-scale variation
in load. These policies require the lease duration to be com-
puted afresh on each request, thereby enabling the server
to immediately react to load fluctuations. Both techniques
enable us to adapt the lease duration to the observed load,

KX

2500004 o

-

E 200000 %Jsm- .E.(,m_

2 1500004 s E

g < 1000000+ o 400

2100000 5 é

° o] -9

g St : 500000 g 20

n @ z

CP .| p o gl s i) 04 - i
Boston Univ, Berkeley DEC Boston Univ. Berkeley DEC Buoston Univ. Berkeley
Trace Trace Trace
(a) State Space overhead (b) Control Messages (c) Response time

Fig. 1. Efficacy of server-based invalidation and client polling for three different trace workloads (DEC, Berkeley, Boston University).
The figure shows that server-based invalidation has the largest state space overhead; client polling has the highest control message
overhead; server-based invalidation has the smallest response time.

albeit at different time scales; hence we collectively refer to
our techniques as adaptive leases.

We have implemented the leases algorithm in the Apache
web server and the Squid proxy cache. We present exten-
sions made to the http/1.1 protocol to incorporate leases and
then describe the details of our prototype implementation.
Our implementation allows the proxy and the server to con-
tinue using existing weak consistency mechanisms and use
the strong consistency provided by leases only when neces-
sary.

Finally, we experimentally demonstrate the efficacy of
the leases algorithm using trace-driven simulations and the
prototype implementation. Our results show that (i) the dy-
namic lease computation policies allow a server to optimize
either the state space overhead or the control message over-
head depending on which factor is the bottleneck, and (ii)
the state space and control message overhead imposed is
modest even for relatively long leases (e.g., a lease duration
of 1 hour imposes a state space overhead of 1030 leases and
a per-object control message overhead of 0.0005 msg/sec—
a 425% and 138% improvement over server-invalidation
and client polling, respectively). Results from our proto-
type implementation shows that the overhead of computing
and renewing leases is small (around 4ms, or 4.3% of the
client response time) and is comparable to existing cache
consistency mechanisms such as time-to-live values.

The rest of this paper is structured as follows. We present
analytical models and adaptive policies for computing the
lease duration in Sections III and IV, respectively. Section
V discusses the details of our prototype implementation.
Section VI presents our experimental results, and finally,
Section VII presents some concluding remarks.

II. ADAPTIVE LEASES

Consider a web proxy that services user requests from
its local cache, fetching requested objects from the server
if necessary. Assume that the server and the proxy employ
leases to provide strong consistency guarantees. Intuitively,
a lease is a contract that gives its holder specific rights over
property for a limited period of time [8]. In the context of
web objects, a lease grants to its holder a guarantee that so
long as the lease is valid the object will not be modified

without prior notification. More formally, a lease for an
object @ consists of a pair (s, d) where s and d denote the
start time and the duration of the lease, respectively, and the
server agrees to notify the holder of all updates to the object
within the interval s <t < s+ d.

In such an environment, a proxy must hold a valid lease
on a cached object before responding to a client read re-
quest.2 The leases algorithm involves the following mes-
sage exchange between the proxy and the server:

1. The first read for an object causes the proxy to send a
lease grant request along with a GET request to the server;
the server responds with the data along with a lease (or a
lease denial).

2. Subsequent reads are served by the proxy from its local
cache as long as the lease remains valid.

3. A read request after the expiration of a lease causes the
proxy to send a lease renewal request along with an if-
modified-since (IMS) request to the server; the server re-
sponds with a new lease (or a lease denial) along with either
a not-modified message or the updated object.

4. Modifications to the object during the validity of its lease
cause the server to send invalidation messages to all proxies
holding a lease on the object; the server defers the update
until it receives invalidate acknowledgements from all prox-
ies or the lease duration expires.

Observe that, in addition to notifying the proxy of an up-
date, the server can piggyback the update with the invalida-
tion request [6]. Such piggybacking of modifications (also
referred to as deltas [11]) can reduce the access latency for
a subsequent read request without any significant increase
in bandwidth requirements [10].

The crucial parameter that determines the efficiency of
the lease algorithm is the lease duration d. By appropri-
ately determining d, a server can balance the amount of
state it needs to maintain and the number of control mes-
sages (lease renewal) exchanged. In what follows, we de-
sign techniques for determining the lease duration. Observe
that, the leases algorithm does not impose any restriction

2The original leases algorithm [8] required that a valid lease be held
prior to both read and write requests. For web environments, we assume
that clients can only read but not write to an object. Writes to objects are
done in a controlled manner directly at the server; so proxies need not
implement the part of the leases algorithm that deals with client writes.

on how d is computed. In particular, it does not require the
lease duration to be fixed across objects or fixed for a partic-
ular object. We exploit this flexibility and propose a num-
ber of techniques and policies that balance various trade-
offs. We first present analytical models that use constraints
on the state space overhead and control message overhead
to compute an appropriate lease duration. A server can em-
ploy these models to compute a lease duration based on the
observed load; the lease duration can be recomputed if the
observed load changes. Since our models are suitable for
scenarios where the load does not fluctuate rapidly, we also
present policies that dynamically determine the lease dura-
tion based on the current load. By using the current load
conditions to compute the lease duration, these policies can
immediately react to load fluctuations. Both techniques en-
able us to adapt the lease duration to changing conditions,
albeit at different time scales. Hence, we collectively refer
to our techniques as adaptive leases.

III. ANALYTICAL MODELS FOR COMPUTING THE
LEASE DURATION

Consider a web server that stores n data objects and ser-
vices requests for these objects from proxies as well as end
users. Whereas some requests require strong consistency
guarantees from the server, weak consistency guarantees
suffice for other requests. Let us consider only those re-
quests that require strong consistency guarantees, and let R;
denote the read frequency for object ¢ at a particular proxy p
and let W; denote the its write frequency at the server.® Let
d; denote the lease duration, and s; denote the start time
of the lease for object <. Depending on whether the state
space at the server or the control messages overhead is the
constraining factor, the lease duration can be computed as
follows.

A. Lease Duration Based on the State Space Overhead

Let L denote the total state space (in terms of the number
of simultaneous leases granted) that the server can main-
tain. Let A? denote the frequency of lease grant and renewal
messages for object ¢ sent by proxy p. The proxy handles
" an average of [d; - R;] read requests for object ¢ over the
duration of its lease. Thus, the cost of a lease grant or re-
. newal request is amortized over [d; - R;] read requests at
the proxy. Hence, the frequency of lease grant and renewal
messages is R

P _
N TR ®
The frequency of lease grant/renewal requests for object 7
received by the server from all proxies is

Ai=> XN
p

3A sequence of consecutive writes with no intervening reads is
counted as a single write request. This is because, after an invalidating
the object from the cache due to the first write, the server need not send
additional invalidations for subsequent writes until the proxy fetches the
updated object due to a read.

2

The server grants a lease to each such request and maintains
state for the lease over its lifetime [s;, s; + d;). To maintain
this state, the server must allocate space by partitioning the
total available space L among individual objects. We con-
sider two different policies for doing so.

First, we consider a policy that partitions the state space
in proportion to the lease request/renewal frequency (pop-
ularity) of an object. Let l; denote the space (in terms of
number of leases) allocated to object <. Then,

Ai
h= (23‘)\3') L

Since the number of leases granted for object ¢ in the steady
state is d; - \;, we have -

®3)

di- M <U; C))

Substituting /; from Equation 3 and simplifying, we get,

L

di € ——
t= 2?:1)‘]'

©)

Thus, if the available state space is partitioned in propor-
tion to the popularity of an object, then the lease duration
for the object is independent of its lease request/renewal
(i.e.,access) frequency A; and depends only on the aggre-
gate request rate at the server. Moreover, the lease duration
is identical for all objects stored at the server. Observe that
such a policy is simple to implement, since the server needs
to determine only the aggregate request rate to compute the
lease duration and no per-object statistics need to be main-
tained. The lease duration can be recomputed periodically
in case of fluctuations in the aggregate request rate.

Our second policy partitions the available state space
equally among all objects. Thus,

-
n

(6)

Since the number of leases granted to object ¢ in the steady
state is d; - A;, we have

d;i- M <L=)]

Sty

or
L

A

d; <

®

In this case, the lease duration is inversely proportional to
the request/renewal frequency of the object at the server.
Thus, with an equal partitioning of state space across ob-
Jjects, more popular objects are granted shorter leases.

B. Lease Duration Based on Control Message Overhead

To compute the lease duration based on the control mes-
sage overhead, we must first quantify the number of mes-
saged exchanged due to read and write requests. Since the

proxy handles an average of [d; - R;] read requests for ob-
ject ¢ over the duration of its lease, each lease or renewal
request is amortized over [d; - R;] reads. Hence the num-
ber of control messages per unit time due to read requests
is R;/[d; - R;]. Each write request results in an invalida-
tion request from the server to the proxy and a subsequent
read at the proxy triggers a fetch of the updated object.*
Thus, each write results in two control messages; the num-
ber of control messages per unit time due to write requests
is 2W;. Observe that, we are only interested in control mes-
sages and the overhead of transferring data is not included
here. Let C; denote the bound on the frequency of control
messages exchanged for object ¢ between the server and a
proxy. Then we have

_R
[d; - Ri]

Substituting [d; - R;] < (1 + d; - R;) and simplifying, we
get

+2W; < C;)

1 1

Yoo
Thus, the lease duration is inversely proportional to the con-
trol message overhead and depends on the read frequency
R; at a proxy as well as the write frequency W; at the
server. Furthermore, for a fixed control message overhead,
the more popular an object at a proxy, the longer its lease.

(10)

IV. ADAPTIVE POLICIES FOR COMPUTING THE LEASE
DURATION

The analytical models presented in Section III enable a
server to periodically recompute the lease duration based
on the observed load. Such recomputations can be expected
to occur over a slow time scale of tens of minutes or hours
(since accurate estimates of the load require a large number
of samples measured over a long time interval). Conse-
quently, a server employing these models may not be able
to react to fast time scale variations in the load. In this sec-
tion, we present several policies that enable a server to com-
pute the lease duration on-the-fly. Since the lease duration
is computed afresh on each lease grant/renewal request, the
server can quickly adapt to changing load conditions. Each
policy that we present determines the lease duration based
on a certain characteristic of the workload and allows a dif-
ferent metric to be optimized.

A. Age-based Lease.s:

This policy is motivated by the bimodal nature of ob-
ject lifetimes (most objects are long lived, while a major-
ity of the updates go to young objects) [9]. Consequently,
a server can reduce the number of invalidate messages it
needs to send by granting short leases to frequently modi-
fied objects and long leases to long lived objects. Observe

“A sequence of consecutive writes without any intervening reads is
counted as a single write, since only a single invalidation message needs
to be sent. Also, the derivation assumes R; >> W;, which implies that
a valid lease is always held during writes.

that, the policy requires the server to know object lifetimes
in order to compute the lease duration. Since lifetimes may
not be known a priori, we choose the age of the object to
be a reasonable predictor of its lifetime. Hence, the lease
duration is computed as

d; =7 -age; (11)
where age; denotes the age of object ¢ and 7 is a constant.
Our policy assumes that, larger the age of the object, longer
is its expected lifetime, and hence, older objects are granted
longer leases. However, since the age of an object has no
correlation to its popularity [2], old objects that are popular
may impose a significant state space overhead on the server.
Observe that, this policy is similar to the Alex protocol for
computing TTL values [4], [9].

B. Renewal Frequency-based Leases

The policy is motivated by (i) the skewed popularity of
objects and (ii) the geographically skewed nature of ac-
cesses over the world wide web [9]. A server can exploit
these factors to reduce the overhead of lease renewal mes-
sages. To do so, the server can grant longer leases to proxies
that have a sustained interest in a object. Thus, not only do
more popular objects get longer leases, only those proxies
at which the object is popular get these long leases. More-
over, granting short leases to proxies that have only a lim-
ited interest in the object enables the server to reduce the
state space overhead. To achieve these objectives, the lease
duration is computed as

d; = 7 - renewal} (12)
where renewal? denotes the number of renewal messages
sent by proxy p for object ¢, and 7 is a constant. A lim-
itation of this policy is that requests for cold objects that
were popular in the past continue to be granted long leases.
This limitation can be overcome by incorporating another
term in Equation 12 that gradually decays the lease dura-
tion based on its popularity over a sliding window.

C. State Space Overhead-based Leases

In this policy, the lease duration is set to be inversely
proportional to the amount of state maintained at the server.
By granting shorter leases during periods of heavy load, the
server can adaptively control the amount of state it needs to
maintain. The lease duration for an object can be computed
either based on the number of valid leases granted for a
particular object or the aggregate number of leases granted
by the server. That is,

(13)

where [; and L denote the number of leases granted for ob-
ject 7 and for all objects at the server, respectively, and 7 is
a constant. ’

entity-header-extension = lease-control

lease-control = “Lease-Control” *:” lease-directive
lease-directive = lease-request-directive |
lease-response-directive | lease-invalidate-directive |
lease-invalidate-ack-directive

lease-request-directive = “Grant-Lease” | “Renew-Lease”
lease-response-directive = “Lease” “:” lease-period |
“Deny-Lease”

lease-invalidate-directive = “Invalidate-Lease”
lease-invalidate-ack-directive = “Invalidate-Ack™ ack
ack = OK | FAILED '

lease-period = lease-start “-” lease-expires

. lease-start = HTTP-date

lease-expires = HTTP-date

Fig. 2.

User-defined extensions to HTTP/1.1 to incorporate
leases

V. PROTOTYPE IMPLEMENTATION

We have implemented the leases algorithm in the Squid
proxy cache and the Apache web server.’ To do so, we first
extended the HTTP/1.1 protocol to enable clients (proxies)
to request and renew leases from a server. The HTTP/1.1
protocol allows user defined extensions as part of the re-
quest/response header; lease requests and responses use
this feature and are piggybacked onto normal http requests
and responses. Lease renewals are piggybacked onto if-
modified-since http requests. Invalidation requests are also
sent as request header extensions. The exact syntax for
lease requests, renewals and invalidations is described in
Figure 2.

We have incorporated these extensions into the Apache
web server (version 1.3.6). Note that, the http protocol
(and hence, the Apache web server) is inherently stateless,
whereas the leases algorithm requires state to be maintained
at the server. Our prototype preserves the stateless nature
of the Apache web server by implementing tasks such as
granting and renewing leases as well as invalidations in
a separate lease server (leased). Such an architecture
results in a clean separation of functionality between the
" Apache server, which handles normal http processing, and
the lease server which handles lease processing and main-
. tains all the state information (see Figure 3). Whenever the
Apache server receives a lease grant/renewal request pig-
gybacked on a http request, it forwards the former to the
lease server for further processing. The results of the http
request and the lease request are then combined and sent
back to the client (proxy). Our lease server implements a
number of policies for computing the lease duration; the ex-
act policy to be used can be specified at startup time though
a configuration file [7]. Invalidation requests are handled
similarly—the web server forwards the request to the lease
server, which then sends invalidations to all proxies caching
that object. Unreachable proxies are handled by blocking

$Source code for our prototype implementation is available from
http://www.cs.umass.edu/ lass/software/leases.

leased Invalidations
‘ ‘ Cllents
httpd htt hitp
p requests
enhanced with requests

lease directives

Fig. 3. Interactions between the lease server, the web server and
the Squid proxy cache.

until the lease expires. We have also modified the Squid
proxy cache (version 2.2) to support leases. When config-
ured to use leases, our modified Squid proxy sends a lease
request with every http request; expired leases are renewed
by sending an if-modified-since request to the server (caus-
ing the object to be fetched if it has been modified since the
lease expiration). Our implementation of leases can coex-
ist with other cache consistency mechanisms such as time-
to-live values. The proxy and server can continue to use
weak consistency mechanisms such as TTL using normal
http request and responses; requests that require strong con-
sistency use http requests/responses enhanced with lease di-
rectives.

VI. EXPERIMENTAL EVALUATION

In this section, we demonstrate the efficacy of leases
by (i) comparing leases to other cache consistency mech-
anisms, (ii) evaluating the analytical models presented in
Section III, and (iii) evaluating the adaptive lease policies
presented in Section IV using trace-driven simulations and
the prototype implementation. In what follows, we first
present our experimental methodology and then our exper-
imental results.

A. Experimental Methodology
A.1 Simulation Environment

We have designed an event based simulator to evaluate
the efficacy of various cache consistency mechanisms. The
simulator simulates a proxy cache that receives requests
from several clients. Cache hits are serviced using locally
cached data, whereas a cache miss is simulated by fetching
the object from the server. The proxy is assumed to em-
ploy a consistency mechanism to ensure the consistency of
cached data with that stored on servers. The simulator sup-
ports various cache consistency mechanisms such as leases,
server-invalidation, client-polling and time-to-live values.

For our experiments, we assume that the proxy employs
a disk-based cache to store objects. To determine an appro-
priate cache size for our experiments, we varied the cache
size from 256MB to infinity and found that, for workloads
under consideration, the improvements in hit ratios were
marginal beyond 1GB. Hence, we choose a disk cache size
of 1GB for our experiments so as to factor out the effect of
capacity misses. The cache is assumed to be managed us-
ing a LRU cache replacement policy. Data retrievals from
disk (i.e., cache hits) are modeled using an empirically de-

rived disk model [5] with a fixed OS overhead added to
each request. We choose the Seagate Barracuda 4LP disk
for parameterizing the disk model [12]. For cache misses,
data retrieval time over the network is modeled using the
round-trip latency, the network bandwidth, and the object
size. Since proxies are deployed close to clients but are
distant from most servers, we choose 20 ms and 100KB/s
for client-proxy latency and bandwidth, respectively; the
proxy-server latency and bandwidth is chosen to be 200ms
and 10KB/s (these parameters assume a LAN environment;
our results hold for modem environments as well). In re-
ality, network latencies and bandwidths vary depending on
network conditions and distance between the source and the
destination. Since we are interested in evaluating the effi-
cacy of cache consistency mechanisms, use of a 81mple net-
work model is adequate for our purpose.

A.2 Workload Characteristics

To generate the workload for our experiments, we use
traces from actual proxies, each servicing several thousand
clients over a period of several days. We employ three
different traces for our experiments; the characteristics of
these traces are shown in Table I. To understand the impact
of leases on the proxy as well as the server, we determined
the most popular server in each trace. We report experimen-
tal results for the entire trace (i.e., all servers in the trace) as
well as the most popular server.

Each request in the trace provides information such as the
time of the request, the requested URL, the size of the ob-
ject, the client making the request, etc. To determine when
objects are modified, we considered using the last modi-
fied time values as reported in the trace. However, the BU
trace did not include this information, and other traces in-
cluded these values only when available (e.g., the last mod-
ified time time value was unavailable in 37% of the requests
contained in the Berkeley trace). Since last modified time
values are crucial for evaluating cache consistency mecha-
nisms, we employed an empirically derived model to gener-
ate synthetic write requests (and hence, last modified times)
for our traces. Based on the observations in [9], we assume
that 90% of all web objects change very infrequently (i.e.,
have an average lifetime of 60 days). We assume that 7%
of all objects are mutable (i.e., have an average lifetime of
20 days) and the remaining 3% objects are very mutable
(i.e., have an average lifetime of 5 days). We partition all
objects in the trace into these three categories® and generate
write requests and last modified times assuming exponen-
tially distributed lifetimes. The number of synthetic writes
generated for each trace is shown in Table I.

B. Comparison with Other Cache Consistency Schemes

We first experimentally compare leases with server in-
validation and client polling. To do so, we varied the lease

SSince a recent study has shown that objects lifetimes and object pop-
ularity are uncorrelated [2], we ignored access frequency when partition-
ing objects into these three categories.

duration from O to 7 days (the lease duration was kept fixed
within each experiment, independent of the workload char-
acteristics) and measured its impact on the server and the
proxy. Note that, a lease duration of 0 reduces the scheme
to client polling, whereas a lease duration of 7 days (which
is larger than the duration of the trace) reduces it to server
invalidation. Figure 4 plots the state space overhead, the
response time and the control message overhead for all
servers in the DEC trace.” Figure 5 plots these values for
the most popular server in the trace. The figures show that
the state space overhead increases with increasing lease du-
ration (since a server must maintain state for each active
lease for a longer duration) whereas the control message
overhead decreases with increasing lease duration (since
the proxy need not poll the server so long as the lease is
active). The response time shows a corresponding decrease
since cache hits can be serviced without polling the server.
For a lease duration of 3600s (1 hour), our technique yields
a 425% and 138% improvement in state space and con-
trol message overhead, respectively, as compared to server
invalidation and client polling (see Figures 4(a) and (c)).
Moreover, the degradation in response time as compared to
server invalidation is modest at 7.1% (see Figure 4(b)). Fig-
ure 4(c) lists various components of the control messages
exchanged between the server and the proxy. The figure
shows that the number of if-modified-since (IMS) and not-
modified messages decreases, whereas the number of in-
validation messages increases as we proceed from client
polling to server invalidation. The number of GET mes-
sages (resulting mostly from compulsory misses) remains
relatively unchanged. Since the reduction in IMS and not-
modified messages is larger than the increase in invalida-
tion messages, the total control message overhead decreases
with increasing lease duration. Together, Figures 4 and 5
demonstrate that by carefully choosing the lease duration
a server can tradeoff state space overhead with the num-
ber of control messages exchanged, while providing strong
consistency guarantees. In the remainder of this section, we
study how various policies for computing the lease duration
enable a server to make such tradeoffs.

C. Efficacy of the model

To evaluate the effectiveness of the model presented in
Section III, we first plot the relationship between the state
space overhead (i.e., the number of active leases ;) and the
control message overhead C;. Recall from Eq. 4 and 10,
that

R;

Figure 6 depicts this relationship between /; and C; for the
most frequently accessed object in the DEC trace. The
figure shows that the state space overhead and the control
message overhead are inversely proportional to each other.
Thus depending on the constraints, a server can trade one

TResults from other traces are similar; we omit them due to space con-
straints.

TABLEI
CHARACTERISTICS OF PROXY WORKLOAD TRACES

Trace Requests | Duration Mean request rate (req/s) Unique Number of
(sec) Total | Most popular | Most popular | URLs | synthetic writes
server object
DEC 1228248 | 146956 | 8.358 0.2864 0.1565 467593 31267
Berkeley 1000000 | 154604 6.4 0.0457 0.0258 460292 40274
Boston Univ (BU) | 590956 | 8599470 | 0.0687 0.0233 0.0116 51136 33515
State Space overhead, DEC trace ' Response time, DEC trace
300000 ———— e 900 ———
250000 oa0 4\ 2000000
8 T 700 :
] 1
200000 £ s00 £ 1500000
% 1so000| £ so g
E § 400 E 1000000
£ 100000 | g 300 :
5 2 200 E
i 100 i ik
1 1 10 100 1000 1000010000010+06 %1 1 10 100 1000 10000100000 10406 o

Lease duration (sec)

(a) State Space overhead

Lease duration (sec)

(b) Response time

3600 604800

0 600
Lease duration (sec)

(c) Control message overhead

Fig. 4. The state space overhead, response times and control message overhead of various cache consistency mechanisms.

Mos! popular server, stale space overhead, DEC trace
900

©
o
=3

Most popular server, response time, DEC trace

Most popular server, control messages, DEC trace

60000

800
700
600
500
400
300
200
100 ¢

n
o
o

n
o
=1

Response time (msec)
3 o
o o

Number of active leases

[
o

50000 r

40000

30000 |

20000

Number of control messages

10000

0

o

1000 10000 100000 1e+06 10 100
Lease duration (sec)

(a) State Space overhead

10 100

1000
Lease duration (sac)

(b) Response time

0

10000 100000 1e+06 10 100 1000 10000 100000 1e+06

Lease duration (sec)

(c) Control message overhead

Fig. 5. Performance for the most popular server

. for the other by choosing a particular point on this curve,
which in turn yields a particular lease duration. Figures 7
and 8 further illustrate this tradeoff. Figure 7(a), obtained
" from Eq. 4, shows that, for a fixed state space overhead,
increasing the aggregate request rate at the server results in
a decrease in the lease duration (since the server must grant
shorter leases to keep the state space overhead fixed). Fig-
ure 7(b) shows that, for a fixed request rate, allocating a
larger state space overhead enables a server to proportion-
ately increase the lease duration. The figure also shows that,
even for relatively long leases (about 3600s or 1 hour), the
state space overhead is modest (1030 leases).

Figure 8(a) and (b), obtained using Eq 10, show the im-
pact of the request rate at a proxy and the control message
overhead on the lease duration. Figure 8(a) shows that,
for a given Cj, increasing the read request rate R; causes
the lease duration to increase (since the server must grant

R=0.1565 reads/sec, W= 0.2 writes/day

180 - .
DEC trace

160
140
120
100
80
60
40
20

Number of active leases (I_i)

L

0 n . .
0 002 004 006 008 0.1 012 0.14
Number of control messages (C_i) msg/s

Fig. 6. Relationship between the number of active leases and
number of control messages exchanged

Lease duration for different request rates

25000

L= 5000 leases ——
b =
pases -
20000 1
S 15000 i
] i
5 i
©
[H
2 10000
5
5000
o
0 20 40 60 80 100
Request rate at the server [lambda] (req/s)
(@)

Lease duration for different state space overheads
DEC trace (0.286 req/s)

80000
70000
60000 |-
50000 +
40000 |
30000 |
20000 |
10000

Lease duration (s)

10000 15000 20000 25000
Number of Leases (L)

(b

0 5000

Fig. 7. Effect of request rate and available state space on lease duration.

longer leases to keep the control message overhead fixed).
Increasing the control message overhead, on the other hand,
enables the server to grant shorter leases (see Figure 8(b)).
The figure also shows that for a lease duration of 3600s
(1 hour), the control message overhead is 0.0005/s (a mes-
sage every 33 minutes). Finally, Table II shows the lease
durations for various trace workloads obtained using our
analytical models. The values shown assume a state space
overhead of 1000 leases at the server and a control message
overhead of 0.001 msgs/s.

D. Efficacy of Adaptive Leases

To demonstrate the efficacy of the adaptive leases poli-
cies presented in Section IV, we varied the average lease
duration by varying the parameter 7. Figure 9 plots the
state space overhead, control message overhead and re-
sponse time yielded by each policy for different lease du-
rations. The figure illustrates the following salient features.
Renewal-based leases provide longer leases to more pop-
ular objects. By doing so, they incur a smaller control
message overhead at the expense of a larger state space
overhead. For a given 7, the state-space-based lease pol-
icy maintains a fixed state space overhead regardless of
the load, and hence, the policy incurs the smallest state
space overhead (at the expense of a higher control mes-
sage overhead). Age-based leases neither take the access
frequency of an object nor the state space overhead into
account. Hence, it incurs the largest control message over-
head and response times among the three policies. Together
these experiments show that renewal-based leases and state
space-based leases are appropriate when the control mes-
sage overhead and state space overhead, respectively, are
constraining factors. As shown in the next section, age-
based leases are suitable for optimizing the number of in-
validation messages resulting from frequently updated ob-
jects.

E. Impact of Object Lifetimes

Figure 10 depicts the impact of object lifetimes on the
performance of various adaptive leases policies. Figure

10(a) shows the effect of increasing the object lifetime on
the lease duration. Since only the age-based lease policy
uses object lifetimes to compute the lease duration, the fig-
ure shows that the lease duration increases linearly with in-
crease in object lifetime. The lease duration remains rela-
tively unchanged for the other two policies (since they are
independent of object lifetimes). Figure 10(b) shows, for
a particular lease duration, that the number of control mes-
sages exchanged decreases with increasing object lifetimes.
This is because increasing the object lifetime reduces the
write frequency for that object and the number of invalida-
tion messages a server must send after each write. Age-
based leases exploit this property by granting longer leases
to older objects, thereby reducing the number of invalida-
tion messages and state space overhead for frequently up-
dated (young) objects.

F. Results from the Prototype Implementation

In the preceding sections, we examined the efficacy of
various techniques to compute the lease duration. In this
section, we study the overhead of granting, renewing and
invalidating leases using our prototype implementations.
The testbed for our microbencmarks consisted of the aug-
mented web server (httpd and leased), the Squid proxy
cache and the client running on a cluster of PC-based work-
stations. Each PC used in our experiments is a 350MHz
Pentium II with 64MB RAM and runs RedHat Linux 5.1;
all machines were interconnected by a 10Mb/s ethernet.
Our experiment for measuring the overhead of granting a
lease consisted of a client that requested a 1KB file first
from an unmodified Apache/Squid combination and then
from our prototype implementation. The experiment was
repeated 2000 times and Table III lists the client response
time and the overhead of the leases algorithm at the server.
As shown, the overhead of granting a lease is only 3.77ms
in our untuned implementation, which is 4.3% of the total
response time. Next we compared the overhead of lease
renewals to an unmodified Squid that refreshes an expired
TTL value using an IMS request. As shown in Table III the
overhead of renewing a lease and refreshing an expired TTL

Number of aclive leases

TABLE I

LEASE DURATION COMPUTED USING THE MODEL (L = 1000, C = 10~3,n = 1000, W; = 0.2 WRITES/DAY)

— L — L — 1 1
Trace Request rate at Request rate.for d=% |d=3x |d=cwm— &%
Most Popular Server () | Most Popular Object ();)
DEC 0.2864 0.01565 58.2min | 53 sec 15.6 min
Berkeley 0.0457 0.02587 360 min | 5.47 sec 16.1 min
BU 0.02329 0.01166 715.6 min | 85.7 sec 15.31 min
Lease duratlon for different request rates (W=0.2 writes/day) Mutabla objects, W=0.2 writes/day
s G 0.1 megls —— j " R= 0.1 reads/min
35} C=0.05 msg/s —— | R=_ 1 read/min ——
= C=0.025 msg/s -~ 5000 R= 60 reads/min -
c 30 i
2 B
= 4 4
§ 25 < 000
3 20¢ g 3000}
B :
£ 15 -‘/ g 2000 |
£ 10
s ﬁ 1000 }]
5
0 , R . R 0
05 1 15 2 25 3 4 45 5 0 0002000400060008 0.01 0.0120.014 0.016
Proxy read request rate R (req/s) Control message overhead (massages/s)
(a) (b)
Fig. 8. Effect of request rate and control message overhead on lease duration.
State Space overhead, DEC trace Control message overhead, DEC trace Response time, DEC trace
300000 v v 1.80406 ~ 900
Age-based ——— Age-based —— Age-based ——
Renewal-based ---=--- 1.60408 | Renewal-based ---w-- 4 800 Renewal-based ——w-- J
250000 State space-based" e State space-based e gpace-based e
/ > 1.40+06 | T 700 1
200000 1.20406 | g 600
150000 g 1408 1 g 500
§ 800000 § 400
100000 S 00000 | § 300
€ 400000 | T 200}
50000 2
200000 | 100
° N R . 0 " . 0 .
10 100 1000 10000 100000 16+06 1e+07 10 100 1000 10000 100000 18406 18+07 10 100 1000 10000 100000 1e+068 10407
Lease duration (sec) Lease duration (sec) Lease duration (sec)
(a) State Space overhead (b) Control messages (c) Response time
Fig. 9. Performance of adaptive leases algorithm
DEC trace Control message overhead, DEC trace, 15 min leases
4000 r v 000 v v T
Renoratbased ——
_ enewal-based -—w-- | |
3500 State space-based s a 350000
g 00} Lo g 300000
0 b
= 2500 | € 250000 |
2 g
8 2000 | £ 200000 |
2 o
b~ [+]
@ 1500 | S 150000 |
g 5
= 1000 E 100000 | 1
2
500 | Z 50000 }
0 . N R 0 .
0 50000 100000 150000 200000 0 50000 150000 200000

Mean lifetime (sec)

(a) Duration

0000
Mean Ilfetime (sec)

(b) Control messages

Fig. 10. Impact of write frequency (object lifetimes)

10

TABLEIII
OVERHEAD OF GRANTING AND RENEWING LEASES

Client response | Server 1
time overhead
Unmodified 76.7ms -
Grant lease 86.6ms 3.77ms
Renew lease 112.3ms 4.31ms
Refresh TTL 112.0ms -
‘ Invalidation overhead
03
g ozt
g o2t
: /_/
g o015} ;
g oaf 4
g)
g 0.05
V]

2 3 4
Number of active leases

Fig. 11. Overhead of invalidations

value are comparable (the overall response time is larger
than the previous case due to the additional computations
that Squid performs on a lease/TTL expiration). Figure
11 shows the overhead of sending invalidation messages
to proxies. The figure plots the variation in invalidation
overhead with increasing number of leases held for an ob-
Jject. Since the lease server must send invalidation messages
to each proxy cache holding a valid lease, the invalidation
overhead increases slowly with increase in number of active
leases (the increase is not linear since the lease server par-
allelizes this task by forking additional processes). We also
measured these overheads by replaying the BU trace and
the results were very similar to the microbenchmark results
shown in Table III. We omit these results due to space con-
straints [7]. Thus, the above experiments demonstrate that
the leases algorithm can be efficiently implemented with
overheads comparable to existing techniques.

VII. CONCLUDING REMARKS

In this paper, we argued that weak cache consistency
mechanisms supported by existing web proxy caches must
be augmented by strong consistency mechanisms to support
the growing diversity in application requirements. Exist-
ing strong consistency mechanisms are not appealing for
web environments due to their large state space or con-
trol message overhead. We focused on the leases approach
that balances these tradeoffs and presented analytical mod-
els and policies for determining the optimal lease dura-
tion. We presented extensions to the http protocol to in-
corporate leases and then described our prototype imple-
mentation using the Squid proxy cache and the Apache web
server. Our experimental evaluation of the leases approach

11

showed that: (i) our techniques impose modest overheads
even for long leases (a lease duration of 1 hour requires
state to be maintained for 1030 leases and imposes an per-
object overhead of a control message every 33 minutes); (ii)
leases yields a 138-425% improvement over existing strong
consistency mechanisms; and (iii) the implementation over-
head of leases is comparable to existing weak consistency
mechanisms. ‘

REFERENCES

[1]1 P Barford, A. Bestavros, A. Bradley, and M. E. Crovella. Changes
in Web Client Access Patterns: Characteristics and Caching Impli-
cations. World Wide Web Journal (to appear), 1999,
L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
Caching and Zipf-like Distributions: Evidence and Implications.
In Proceedings of Infocom’99, New York, NY, March 1999.
P. Cao and C. Liu. Maintaining Strong Cache Consistency in the
World-Wide Web. In Proceedings of the Seventeenth International
Conference on Distributed Computing Systems, May 1997.
V. Cate. Alex: A Global File System. In Proceedings of the 1992
USENIX File System Workshop, pages 1-12, May 1992.
P. Chen and D. Patterson. Maximizing Performance in a Striped
Disk Array. In Proceedings of ACM SIGARCH Conference on
Computer Architecture, Seattle, WA, pages 322-331, May 1990.
E. Cohen, B. Krishnamurthy, and J. Rexford. Improving end-to-
end performance of the Web using server volumes and proxy filters.
In Proceedings ACM SIGCOMM'98, Vancouver, BC, September
1998.
V. Duvvuri. Adaptive Leases: A Strong Consistency Mechanism
for the World Wide Web. Master’s thesis, Univ. of Massachusetts,
June 1999.
C. Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant
Mechanism for Distributed File Cache Consistency. In Proceed-
ings of the Twelfth ACM Symposium on Operating Systems Princi-
ples, pages 202-210, 1989.
J. Gwertzman and M. Seltzer. World-Wide Web Cache Consis-
tency. In Proceedings of the 1996 USENIX Technical Conference,
January 1996.
B. Krishnamurthy and C. Wills. Proxy Cache Coherency and
Replacement—Towards a More Complete Picture. In Proceed-
ings of the 19th International Conference on Distributed Comput-
ing Systems (ICDCS), June 1999,
J C. Mogul, E Douglis, A. Feldmann, and B. Krishnamurthy.
Potential Benefits of Delta Encoding and Data Compression for
HTTP. In Proceedings of ACM SIGCOMM Conference, 1997.
[12] Seagate Technology, Inc. ST-11200N SCSI-2 Fast (Barracuda 4)
Specification, August 1994,
[13] Squid Internet Object Cache Users Guide. Available on-line at
http://squid.nlanr.net, 1997.
(14] R. Tewari, M. Dahlin, H M. Vin, and J. Kay. Beyond Hierarchies:
Design Considerations for Distributed Caching on the Internet. In
Proceedings of the 19th International Conference on Distributed
Computing Systems (ICDCS), June 1999,
J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Hierarchical Cache Con-
sistency in a WAN. In Proceedings of the Usenix Symposium on
Internet Technologies (USEITS’99), Boulder, CO (to appear), Oc-
tober 1999.
J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Volume Leases for Consis-
tency in Large-Scale Systems. IEEE Transactions on Knowledge
and Data Engineering, January 1999,
H. Yu, L. Breslau, and S. Shenker. A Scalable Web Cache Con-
sistency Architecture. In Proceedings of the ACM SIGCOMM'99,
Boston, MA (to appear), September 1999.

(2

B3]

[4]
{5

(6]

7

(8]

(9

(10]

(1]

(15]

(16]

[17]

