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Abstract

Many realistic visual recognition tasks are “open” in the
sense that the number and nature of the categories to be
learned are not initially known, and there is no closed set
of training images available to the system. One example
are autonomous robotic agents that rely on visual sensors
to guide their activity. We argue that open recognition tasks
require incremental learning methods, and feature sets that
are capable of expressing distinctions at any level of speci-
ficity or generality. We describe progress toward such a sys-
tem that is based on an infinite combinatorial feature space.
Feature primitives can be composed into increasingly com-
plex and specific compound features. Distinctive features
are learned incrementally, and are incorporated into a dy-
namically updated Bayesian network classifier. Experimen-
tal results illustrate the applicability and potential of our
approach.

1. Introduction

During the past decade, considerable progress has been
made in the area of machine recognition [10, 17, 9, 11].
Increasingly impressive recognition results are reported on
large databases of various objects. While this success is
truly remarkable, we observe that most work in this field
shares certain characteristics: First, there exists a set of
training images, which is complete at the outset and un-
changed during the learning phase. In fact, many current
recognition algorithms critically depend on the accessibility
of the training set in its entirety. Second, most algorithms
are based on descriptions of objects or classes in isolation,
without regard to objects belonging to other classes, as op-
posed to descriptions of distinctions between objects. Thus,
the properties of these descriptions largely predetermine the
capabilities of the algorithm to generalize and to recognize
minute distinctions. The assumption behind this design is
that in terms of the description employed by the algorithm,
all objects within a class are more similar to each other than
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to objects belonging to other classes.

Task domains that share these two characteristics we
call closed. Are practically occurring recognition problems
closed domains? We argue that many are not. For instance,
a visually navigating mobile robot should be able to learn by
itself what the distinctive landmarks are. If it is moved from
one environment to another, one does not want to redesign
the recognition algorithm — the same algorithm should be
applicable in and adaptive to a variety of environments. In
general, for robots that rely on visual and other sensory in-
put to obtain state information about their environment to
accomplish a task, the number and nature of distinct classes
is usually not known a priori. As McCallum convincingly
argued [8], it should be the utility or behavioral advantage
to the agent that determines a sensory category, not some
similarity metric in sensory space.

Thus, many realistic visual recognition problems consti-
tute open task domains: To the agent, the number and nature
of visual categories or object classes is not initially known.
A given class may contain dissimilar objects, some of which
may be very similar to — but distinguishable from — objects
belonging to other classes. There is no fixed set of training
images that perfectly describes the classes and is observable
in its entirety. On the other hand, the environment may be
cooperative in the sense that the learning agent has access
to additional training views of given classes, e.g. by manip-
ulating sample objects in front of the camera, turning the
camera toward a previously seen landmark, or by means of
an external teacher.

Most existing algorithms for visual recognition are not
well suited for open task domains. While we cannot claim
to have a full solution, this paper presents a framework for
visual learning that constitutes a significant step toward this
goal. It learns those features from an infinite feature space
that prove useful for the task as it evolves over time. The
feature space is introduced in the following section. Section
3 describes the proposed approach at a high level, and the
following two sections present details of the recognition and
feature discovery algorithms that are based on a Bayesian
network. Experimental results are discussed in Section 6.



2. Features

In order to learn distinctions at various levels of detail which
are initially unknown, a very large feature space is required,
along with a method of generating features from this space.
To make the problem of finding useful features in an enor-
mous feature space more tractable, we impose a partial or-
der on this space that categorizes the features into various
levels of structural complexity [1]. The underlying assump-
tion is that structurally simple features are easier to discover
and have less discriminative potential than complicated fea-
tures, but are still useful for some aspects of the learning
problem. Features are randomly sampled from the feature
space, beginning at the lowest level of complexity. More
sophisticated features are considered as required [1].

An obvious way to generate an infinite and partially or-
dered feature space is through combinatorics: Primitive fea-
tures can be composed in various ways to yield higher-order
features, which in turn can be composed. Any type of local
image property can potentially serve as a primitive feature.
In the context of an interactive vision system, this general
framework may encompass three-dimensional or temporal
cues in addition to conventional image properties.

Our system currently employs two types of primitive fea-
tures [14]: (1) An edgel is given by the orientation of a step
edge at a given point in the image. Edgels are extracted
by convolving the image with two orthogonal oriented first-
order Gaussian-derivative kernels. The orientation 6 in the
image is computed efficiently using the steerability prop-
erty of these filters [4]. Intuitively, geometric combinations
of edgels characterize aspects of shape. (2) A texel is a vec-
tor of responses of multiscale oriented Gaussian-derivative
filters of various orders. At each scale and for each deriva-
tive d, a steerable basis consisting of d + 1 filter responses
at specific orientations is computed [15]. Intuitively, a texel
expresses local texture characteristics. Notably, both prim-
itives can be steered to specific orientations. This property
is used to achieve invariance with respect to image-plane
rotation.

Two intuitively expressive types of feature compositions
have so far been implemented: (1) Geometric relations are
given by the relative angles and distances between the par-
ticipating lower-order features (Figure 1). As long as these
are rotation-invariant, so is their geometric composition. (2)
Co-presence asserts the presence of the participating lower-
order features without making any statement about their ge-
ometric or topological relationship.

Features of any type can be composed into a co-presence
feature, while only primitive and geometric features can
be composed into geometric features. Note that these two
types of composition constitute two extremes along a con-
tinuum. One could conceivably define a composition that
asserts relaxed geometric or topological relationships be-
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Figure 1. A geometric feature of order 3, composed
of three primitives. The feature is defined by the
angles ¢ and the distances d, and the orientation
of this specific instance is denoted by 6. Each
primitive is either an edgel or a texel.

tween its constituents.

Features are computed at various scales, generated by
successively subsampling images by factor two. This
achieves a certain degree of scale invariance. Moreover,
many compositions of edgels are inherently tolerant to
changes in scale. For example, the arrangement shown in
Figure 1 applies equally to triangles of any size. Another
desirable property of these features is that they do not rely
on explicit contour extraction or segmentation. This avoids
two difficult, open problems, and should provide robustness
to various kinds of image degradation.

Our features constitute an interesting bridge between
the two extremes of purely statistical, shape-less features
[17, 9] on the one hand, and accurate 2-D or 3-D geometric
models as used in the alignment methods [18] on the other
hand. Our primitive features have about the same expressive
power as Mel’s corners and Gabor patches [9] and are sim-
ilar to Cho and Dunn'’s “local properties” [2]. In contrast to
these, our features can be composed into increasingly com-
plex and specific descriptors of 2-D shape.

3. Paradigm

To avoid the practical difficulties involved in devising a
truly open task, we instead employ a modified version of
the conventional object recognition scenario. Note that we
are not attempting to improve on state-of-the-art recogni-
tion systems for closed tasks. Our point is to demonstrate
the feasibility and potential of an incremental learning sys-
tem that relies on minimal prior information about the task.

Initially, the learning system knows nothing about the
classes it will be required to learn. It has no features, but
knows how to search in images for discriminative features
from the feature space defined above. Its built-in classifier
can be trained in a supervised fashion.

Training images are presented to the system one by one.
If recognition fails, the system tries to discover distinctive
features that facilitate recognition. Candidate features are
evaluated on the basis of a temporary test set consisting



of a small number of evaluation images that are accessible
through interaction with the environment, as mentioned in
the introduction. For the purposes of this paper, these eval-
uation images are randomly chosen from the training set.

This procedure is motivated by the following intuition.
When humans learn to discriminate objects, they often eval-
uate feature hypotheses on the basis of a small number of
current example views. As a result, the distinctive power
of a hypothesized feature tends to be an optimistic estimate.
This estimate is adjusted as more views are seen, which may
even lead to the discovery that a feature is completely use-
less.

In order to make maximum use of the acquired informa-
tion, our system retains all cases it ever encounters in an
instance list. Each presentation of a training or evaluation
image generates a new instance. An instance description
contains the values of each feature that was observed, and
a class designation of the image. In this way, all informa-
tion obtained from an image is remembered for future use,
without the need to store the images themselves.

4. A Bayesian network for recognition

Bayesian networks constitute a powerful and general frame-
work for classification and inference. They possess a variety
of attractive properties that are desirable for open-domain
recognition problems. This section introduces a general
Bayes net classifier model and shows how it is applied in
our system.

In a Bayesian network, each node represents a ran-
dom variable. The network structure specifies a set of
conditional independence statements: The variable repre-
sented by a node is conditionally independent of its non-
descendants in the graph, given the values of the variables
represented by its parent nodes. In a typical classification
scenario, the true class of an object is modeled as a discrete
random variable, each state of which represents one possi-
ble class. The class of an object gives rise to observable
features, which are represented by random variables whose
distributions are conditioned on the class. Assuming that
the features are conditionally independent given the class,
the resulting Bayes net has the topology of a star, with arcs
connecting the class node to each of the feature nodes. This
is the well-known naive Bayes classifier. Given observed
feature values, the class priors and conditional feature prob-
abilities, the posterior class probabilities can be inferred by
simple application of Bayes’ Theorem.

If some features are not independent, corresponding arcs
must be inserted between the appropriate feature nodes. For
example, in Figure 2, Feature 3 may be a geometric compo-
sition with Feature 2, which is also in the feature set. Then,
the presence of Feature 3 in an image implies the presence
of Feature 2. Thus, in the Bayes net there is an arc from
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Figure 2. A Bayesian Network classifier with inter-
dependent features.

node 3 to node 2. An analogous argument holds for co-
presence features, such as Feature 5 in Figure 2, which com-
bines Features 3 and 4. To propagate evidence, more sophis-
ticated mechanisms are needed than in the naive Bayes case.
For the purposes of this paper, suffice it to say that after in-
stantiation of some of the variables (nodes) with actually
observed values, the net can be brought to equilibrium in
which the probabilities and observations in the net are con-
sistent. For more detail, the interested reader is referred to
the literature on Bayesian networks [12, 6].

Discretization of continuous variables Recall from
Section 2 that the feature variables are continuous. How-
ever, most theory on belief propagation in Bayesian net-
works applies to discrete random variables only. One no-
table exception is the theory on conditional Gaussian dis-
tributions [7]. Unfortunately, current methods place restric-
tions on the joint probability model that limits their gen-
eral applicability. Therefore, continuous distributions are
usually discretized or binned. It is not obvious how to de-
termine good cutpoints for binning. There are at least two
objectives: First, it is desirable for many reasons to keep
the number of bins small. Second, the bins should sep-
arate meaningful portions of the conditional distributions.
Intuitively, bins are meaningful if different configurations
of parent states give rise to different conditional probabili-
ties of the individual bins.

To split a given continuous variable into meaningful bins,
consider all pairs of conditions in turn, i.e. all pairs of parent
state configurations. For each pair, generate a cutpoint that
separates the two conditional distributions associated with
the two conditions as well as possible. The cutpoint is cho-
sen that maximizes the Kolmogorov-Smirnoff distance [19]
between the distributions, which is the difference between
the cumulative probabilities of this variable under the two
conditions. This precisely serves our purpose of separating
the instances of the two conditions as well as possible using
a single cutpoint. Here, the cumulative distributions are es-
timated by counting the applicable instances in the instance
list. To find candidate cutpoints, all instances are sorted by
the respective feature value. Each midpoint between two



adjacent values constitutes a candidate cutpoint.

For simplicity, the feature distributions were only con-
ditioned on the class, not on other (derived) features. Thus,
this procedure generated (g) cutpoints for each feature vari-
able, where n is the number of classes. To reduce the num-
ber of bins and increase robustness to small sample sizes,
any bin that contained less than a fraction p of all applicable
instances was removed by averaging the two enclosing split
values. The parameter p controls the flexibility of the clas-
sifier to learn fine-grained distinctions using few features.
If p is close to zero, the system quickly learns any training
set, but tends to over-fit, and generalization is poor. If p is
greater than 1/3, only even 2-bin splits are permitted, which
is very restrictive. Most feature nodes will degenerate to
single-bin nodes, which have no influence on the Bayes net.
In practice, p should be kept at a moderately high value to
discourage overfitting. Here, it was fixed at p = 0.2, which
resulted in two or three bins for most features.

Probabilities and information The conditional prob-
abilities in the Bayes net are easily estimated by counting
instances in the instance list. The instance list may contain
many unspecified values, since not every feature is evalu-
ated for every image (see below). Some features may not
have been evaluated at all for certain classes. In this case,
the conditional probabilities are initialized uniformly, re-
flecting ignorance about how these classes affect a feature.

In a typical classification scenario, all feature variables
are observed and their values entered into the correspond-
ing nodes. The net is then brought to equilibrium, after
which the posterior class distribution is available at the class
node. Alternatively, one may observe the features one by
one, compute the resulting class distribution, and stop the
classification process on a given criterion, e.g. if the maxi-
mum posterior class probability exceeds a threshold. This
can be desirable, for instance, if observing features is ex-
pensive, which is true for typical vision applications.

Clearly, the features should be observed in decreasing
order of utility U(f), conventionally defined as U(f) =
V(f)/S(f), where V is the value or merit of knowing the
value of a feature, and S is the cost of observing this feature.
For Bayes classifiers, a useful definition of the value V' of
a feature F' is given by Shannon’s mutual information (see
e.g. [3]) between the class and feature variables C' and F':
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The summations range over all possible (discrete) values of
the two random variables. Intuitively, I (C, F') expresses the
potential of an observation of F to reduce the uncertainty of
C. In a Bayes net, the probabilities P are replaced by beliefs
BEL, which are the corresponding (conditional) probabili-
ties given all evidence currently entered into the network.

1. Compute I(C, F) for all features F'.
If I(C,F) = 0 for all F, stop.

2. Observe the feature F' that maximizes I(C, F') and
enter the value into the corresponding node.

3. Propagate beliefs to establish equilibrium; go to step 1.

Table 1. The procedure for recognizing an image.

Note that BEL(c, f) = BEL(f|c)BEL(c). One can com-
pute BEL(f|c) by temporarily instantiating the class node
C to value ¢, propagating beliefs through the network to es-
tablish equilibrium, and taking the resulting posterior prob-
abilities at the feature nodes F' as the BEL( f|c) for each
feature [12, 16]. The complete procedure for recognizing
an image is summarized in Table 1.

S. Learning

During training, example images are presented to the sys-
tem one by one. As the system classifies an image as out-
lined in Table 1, it notes the features that are queried, and
stores their measured values along with the class designa-
tion in the instance list.

There are two reasons why recognition of an image can
fail: (1) The image belongs to a class the system has never
seen before, or (2) the posterior probability of the true class
was lower than that of some other class(es). In the first case,
a new state is added to the class node of the Bayes net. The
conditional probability tables of all features are augmented
accordingly, and are initialized to uniform probabilities for
all conditions involving the new class. In either of the two
cases, a sequence of steps is performed until correct recog-
nition is achieved. These steps are now described in order.

Probability table update Using the instance list, all
features are re-discretized, and the conditional probability
tables are updated. This brings the classifier up-to-date with
the current experience of the recognition system. As men-
tioned anecdotally in Section 3, this often results in a re-
duction of the conditional dependence of the distribution of
a given feature variable on the class variable. If the dis-
cretization step results in a single bin, the feature and the
associated node can be discarded.

Then, the updated classifier is run on the image again. If
the image is still recognized incorrectly, the system notes
the classes whose posterior probabilities exceed 1/|C]|,
where |C'| is the number of classes. These are the confused
classes, that are required for the next step.

Feature evaluation The system requests a fixed small
number of evaluation images from each of the confused
classes and measures the strength of each feature in each
evaluation image. These data are added to the instance list,



after which all features are re-discretized and the condi-
tional probability tables updated. This step serves to evalu-
ate existing features whose probabilities conditioned on the
confused classes are still uniform or unreliable due to small
sample sizes. Again, degenerate single-bin features can be
eliminated. If recognition fails again, the system continues
with the next and typically most expensive step.

Feature learning The system now attempts to find a
new feature that facilitates correct recognition. This is done
in the same way as in our earlier work [14] by sampling
features from the image to be recognized. This sampling
proceeds in stages: First, some number of new order-2 ge-
ometric edgel features and order-1 texels are generated by
randomly choosing points from among the salient pixels in
the image, and noting the two angles ¢; and the distance
d, if applicable. To keep the features local, the distance
between two sampled edgels is limited. Next, all existing
geometric features (i.e. those previously learned and those
just sampled) are augmented to higher-order geometric fea-
tures. This is done by sampling a new primitive — edgel or
texel — and noting the resulting ¢; and d with respect to the
reference point of the parent feature. At the third stage, ran-
domly chosen pairs of previously learned or newly sampled
candidate features are composed into co-presence features.
The latter two composition stages can be repeated several
times.

After sampling a new feature, a corresponding node is
added to the Bayes net. This involves adding an arc from
the class node to the new feature node, and also arcs from
the new node to any node representing an old feature of
which the new feature is directly composed (see Section 4).
Adding arcs involves updating the associated probability ta-
bles. This is done by measuring the strength of the new fea-
ture in each of the evaluation images, adding the results to
the instance list, and re-initializing the conditional probabil-
ity tables from this list.

Then, the recognition procedure is run on the image. If
it is successful, the new feature remains in the Bayes net,
and the feature learning procedure terminates successfully.
Otherwise, the new feature node and the associated arcs
are removed from the Bayes net, and a new feature is sam-
pled. This procedure iterates until a usable feature has been
found, or until a maximum number of new features has been
sampled.

6. Experiments

To illustrate the operation of our system, we trained it on
two simple supervised object recognition tasks, each con-
taining example views of simple geometric objects. In one
task, the database consisted of eight synthetic objects, each
of which was rendered in high quality at 15 different views,

con6 cube cucon cucy cycu cyl3 cyl6 tub6
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Figure 3. The synthetic-object task:
views and examples of features learned.

Example

sphere cone cube

Figure 4. The real-object task: Example views and
examples of features learned.

covering 40 horizontal and 20 vertical degrees of the view-
ing sphere (Figure 3). For the other task, low-quality im-
ages were taken of real geometric objects (Figure 4). There
were 18 views of a sphere, 19 views of a cone in various
positions, and 16 random views of a cube. The images of
the class “sphere” included spheres of two different sizes,
and the images of the class “cube” contained two cubes that
differed in size.

The learning system was trained on each task as de-
scribed above. The images of the training set were iter-
atively presented to the system in random order, until ei-
ther the system had learned the training set perfectly, or un-
til no feature was found during an entire cycle through the
training set even though there were some misclassifications.
New features were evaluated on the basis of 5 randomly
chosen evaluation images per class. To learn a new feature,
first up to 10 new features were sampled (texels and pairs
of edgels). Then, the set of all pre-existing and new candi-
date features was augmented by one edgel or texel. Finally,
up to the same number of co-presence features was gener-
ated. Tables 2 and 3 show the results obtained by 10-fold
stratified cross-validation. In all test cases, the recognition
procedure was allowed to use all available features.



classification results: sums:
con6 cube cucn cucy cycu cyl3 cyl6 tub6

con6 13 2 15
cube 12 1 2 15
cucon 15 15
cucy 2 11 1 1 15
cycu 13 2 15
cyl3 1 14 15
cyl6 13 2 15
tub6 1 14 15

sums: 14 14 16 13 14 17 16 16 120

Table 2. Confusion matrix summarizing the cross-
validated test-set performance on the synthetic-
object task. The overall proportion of correct
recognitions was 0.88.

classification results: sums:
sphere cube cone

sphere 17 1 18
cube 13 3 16
cone 19 19
sums: 17 13 23 53

Table 3. Confusion matrix summarizing the cross-
validated test-set performance on the real-object
task. The overall proportion of correct recogni-
tions was 0.93.

The synthetic objects were learned reasonably well (Ta-
ble 2). Most of the confusions arose between objects that
share most of their features (cube-cucy, cycu-cyl6, cyl6-
tub6). To recognize an image, between 3 and 20 features
were queried; typically around 8. Classification perfor-
mance on the real objects was somewhat better. It took be-
tween 1 and 10 features to classify an image, usually 4 or
fewer. On both data sets, the training set was always learned
perfectly.

Due to the randomness of the algorithm and differing
characteristics of the training images, the number of fea-
tures learned and the number of iterations through the train-
ing set varied considerably between the individual folds of
the cross-validation procedures, as detailed in Table 4.

It is interesting to follow the progression of the poste-
rior class probabilities as the features are observed in se-
quence. Even in those cases that end with a misclassifi-
cation, the correct class has the highest probability during
most of the recognition procedure. Sometimes, however,
the observation of a single additional feature — usually one
with a very low information content I(C, F') — changes the
distribution drastically, and causes a misclassification. This
was the case for most misclassifications. The reason is that
the offending feature returned a value that was extremely

Fold: 1 2 3 4 5 6 7 8 910
Synthetic Objects:

#iter.: 9 7 8 7 811 4 4 11 8
# feats.: 35 30 37 25 21 37 27 27 40 35
Accur.: .81 .94 94 .88 .88 .75 1.0 1.0 .63 .88

Real Objects:
# iter.: 4 5 2 6 3 4 4 5 3 9
#feats: 6 8 3 10 6 6 6 11 6 11

Accur.: 1.0 .83 1.0 .83 1.0 .83 .80 1.0 1.0 1.0

Table 4. Characteristics of the synthetic- and real-
object tasks, separated by folds of the cross-
validation procedure. Shown are the numbers
of iterations through the training set, the num-
ber of features learned, and the test-set accuracy
achieved.

unlikely in conjunction with the evidence already entered
in the net. This situation can be detected automatically in
Bayesian networks. Whether detection of conflicting evi-
dence can be exploited to increase classifier robustness is a
topic of further investigation.

All of the Bayesian networks created by the synthetic-
object task contained several dependencies between fea-
tures. Is it worth modeling these dependencies, compared to
the simplicity of a naive Bayes classifier? It is well known
that ignoring the lack of independence among random vari-
ables can have a dramatic influence on the performance of
Bayesian classifiers. We have conducted pilot experiments
[13] that confirm this for our application. These experi-
ments also indicate that simply discarding dependent fea-
tures also degrades performance.

Figures 3 and 4 include some examples of features found
during learning. The gray lines indicate the salient points
used for sampling new features. Texels are marked by
a small star, geometric relations by a solid line, and co-
presence connections by a broken line.

7. Conclusions and future work

Adaptive, interactive agents — whether biological or artifi-
cial — benefit from learning those visual distinctions that
turn out to be relevant for their tasks or behaviors. This
learning process is inherently sequential, never complete,
and unknown at the outset. We have presented a frame-
work for progressive learning of such open visual recogni-
tion tasks. It is based on a combinatorial feature space of
potentially infinite size. Our framework is general enough
to incorporate any type of localized image property as fea-
ture primitives, and a variety of means for composing them
into higher-order features. As long as the feature primitives
are invariant to in-plane rotation, so are the compound fea-
tures. Some degree of scale invariance is achieved by multi-



scale processing. Moreover, many geometric compositions
of edgels are by themselves scale invariant.

A structural simple-to-complex partial ordering of the
feature space facilitates relatively efficient feature search.
While simple-to-complex feature sampling is not gener-
ally optimal with respect to any meaningful objective, this
heuristic is intuitively pleasing in that it prefers simplicity
over complexity. Assuming that most distinctions between
object classes can be expressed in terms of low-order fea-
tures, simple-to-complex sampling expends most effort in
those areas of the feature space where success is most likely
to occur.

Nevertheless, our current generate-and-test method for
feature sampling is limited in that the search in feature space
is essentially blind. It is only guided by the requirement
that a new feature be present in the scene to be learned,
and by simple locality heuristics. The identification of more
focused search methods would lead to significant improve-
ments in performance. Ideally, a system would learn heuris-
tics or optimized systematic strategies for discovering use-
ful features. This is an area of future research.

This work contributes a framework for recognition of im-
ages that is based on a dynamically updated Bayesian net-
work. It replaces the simple classifier we adopted in our
earlier work [14], and has several attractive properties. The
network structure and the conditional probabilities that de-
fine the classifier are updated incrementally. We proposed
a principled method to discretize continuous feature vari-
ables, which provides a parameter for tuning the capabil-
ity of the classifier to fit highly variable data. Features can
be queried sequentially as determined by an information-
theoretic metric, while any hard decisions about classifica-
tion can be deferred until a confidence threshold is attained.

Despite these advantages, Bayesian networks are not
commonly used in computer vision applications (but see
[16, 5]). Commonly encountered difficulties include the
specification of the network structure and the conditional
probability tables. For our application, we gave principled
solutions to both problems based on known dependencies
and an instance list. This list facilitates maximum reuse of
acquired information. If the list is truncated by dropping the
oldest instances, the learning system will smoothly adapt to
a changing environment.
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