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Abstract

A key issue in the design of source-based multicast congestion control schemes
is how to aggregate loss indications from multiple receivers into a single rate con-
trol decision at the source. Such aggregation entails filtering out a portion of the
loss indications received by the source, and then using the remaining for rate ad-
justments. In this paper, we first propose a set of goals guiding the design of loss
indication filters. We then present a novel loss indication filtering approach, the
Linear Proportional Response (LPR) approach. Analysis and simulation is used to
compare LPR to two well-known approaches — the Random Listening Algorithm
(RLA) ([1]), and the Worst Estimate-Based Tracking (WET) [2] approach. Our
results indicate that LPR achieves a desirable tradeoff between stability and re-
sponse, thereby making it more suitable than WET and RLA for deployment in an
Internet-like environment.
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1 Introduction

Congestion control has emerged as one of the most important challenges in the widespread
deployment of multicasting technology in wide-area networks. Multicast traffic is ex-
pected to constitute a significant portion of wide-area network traffic in the near future;
hence it is important to control the transmission rate of multicast connections in order to
prevent congestion collapse and ensure “fair” bandwidth sharing among competing uni-
cast and multicast connections. However, current IP-based networks such as the Internet
offer extremely limited support at the network layer for congestion control. Research
in multicast congestion control has thus focussed primarily on transport layer solutions,
where a multicast source control its transmission rate based on end-to-end measure-
ments of network congestion. The transmission rate is decreased whenever a source
detects congestion (usually through packet loss or delay indications), and is increased
gradually in the absence of congestion.

A unique challenge in the design of loss indication-based multicast congestion con-
trol algorithms is the problem of combining loss indications from multiple receivers
into a single rate control decision at the source. Numerous proposals for source-based
multicast congestion control have appeared in recent years ([3, 4, 5, 6, 7, 8, 9, 1]) rep-
resenting a wide range of possibilities for how the combination or aggregation of loss
indications may be accomplished. However, a common underlying requirement of all
these approaches is that of a loss indication filter (LIF) that filters out a portion of the
loss indications received from various receivers. The remaining loss indications are then
supplied as input to a rate adjustment algorithm to adjust the transmission rate.

Loss indication filtering is needed for two reasons. First, if a multicast session re-
duces its rate in response to every loss indication that it receives, then its transmission
rate will be completely throttled [2]; hence it is necessary to filter out some of the loss
indications received. Secondly, allocation of bandwidth to a multicast session may need
to be done according to congestion conditions on only certain end-to-end paths in a mul-
ticast tree. In the context of a loss indication-based congestion control algorithm, this
implies that the transmission rate should be adjusted only when loss indications from
one of these paths are received; in such cases, loss indications from all the other paths
must be filtered out.

In this paper, we first propose a set of multicast bandwidth allocation goals that
should guide the design of loss indication filters. These goals are based on the notion
that the bandwidth allocated to a multicast session should be determined by the most
congested end-to-end network path in the multicast tree. ([2, 1]). Briefly, the desired
behavior is are as follows. When all paths in a multicast tree have comparable levels
of congestion, the throughput of a multicast session should be commensurate, on an
average, with the congestion level on any one of these paths. If however, one of the
paths is much more congested than any of the others, the multicast session’s throughput



should be determined solely according to this path.

We then present a novel approach towards LIF design - the Linear Proportional
Response (LPR) approach. In this approach, a multicast source, on receiving a loss
indication from any receiver, passes it through the filter with a probability that is pro-
portional to the loss probability at the receiver. We show that the LPR approach meets
all the goals that we specify for LIF design.

We present a comparative study of the LPR approach with two previously proposed
filtering approaches. The first of these is the LIF approach proposed as part of the Ran-
dom Listening Algorithm (henceforth referred to as RLA)([1]). The RLA approach also
filters out loss indications from a receiver probabilistically; however, the probability is
based solely on the number of receivers, not on loss probability measurements. The
second approach, motivated by our earlier work in [2], filters out loss indications from
every receiver except the most congested one in the multicast group. The most congest-
ed or “worst” receiver is identified as the one with the highest reported value of loss
probability. Loss indications from this receiver are then used for rate adjustments. we
refer to this approach as the Worst Estimate-based Tracking (WET) approach.

In this present work, we derive analytic expressions for the bandwidth allocated to
a multicast session under each of the three LIF approaches. We then derive expressions
for an upper bound on the excess bandwidth allocated to a multicast connection under
LPR and RLA. This upper bound represents the maximum extent to which each scheme
can deviate from our fairness goal; we find that the deviation under RLA is much greater
than LPR. We also find that WET is more somewhat fairer than LPR in the steady-state,
but LPR exhibits much better response to transient changes in network conditions. Thus
LPR achieves a better balance between stability and transient response than the other
two approaches, making it more suitable for an Internet-like environment.

The rest of the paper is organized as follows. In Section 2 provides an architectural
view of loss-indication based multicast congestion control algorithms, of which loss in-
dication filters is an essential component. It then presents a set of goals guiding the
design of Loss Indication filters. Section 3 describes a family of rate adjustment ad-
justment algorithms that are used in this paper to compare different LIF approaches. In
Section 4 we describe two well-known LIFS — WET and RLA , and then propose a novel
filtering approach, Linear Proportional Response LPR. Section 5 provides an analytical
comparison of LPR and RLA. Section 6 presents a simulation study of the steady-state
and transient performance of LPR, RLA and WET. Section 7 discusses the suitability of
LPR for multicast congestion control in the Internet. Section 8 concludes the paper with
discussions on some future research directions.
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Figure 1: High-level view of loss indication-based congestion control algorithms

2 LIF Design Objectives

Figure 1 is a high-level view of loss-indication based multicast congestion control algo-
rithms which shows two main components : a loss indication filter (LIF), and a rate ad-
justment algorithm. Loss indications received from multicast receivers are first filtered
by passing them through the LIF. Let us refer to a loss indication that passes through
the LIF as a congestion signal (CS). Congestion signals are provided as input to a rate
adjustment algorithm. Most rate adjustment algorithms reduce a source’s transmission
rate multiplicatively on receiving a CS, and increase the rate additively in the absence
of CSs. Such additive increase multiplicative decrease (AIMD) algorithms have been
shown to possess certain desirable fairness and convergence properties [10]. We ob-
serve that the high-level design in Figure 1 is equally applicable to loss-indication based
congestion control for unicast sources. Only, in that case, the LIF simply passes all the
loss indications that it receives from the unicast receiver.

The design of the LIF in the case of a multicast session is largely a policy issue.
For example, an LIF may filter out LIs from non-representatives, as in the case of a
representative-based scheme([6]) . It may also be timer-driven, letting through no more
than one LI within a certain time interval. Such a time-driven LIF corresponds closely
to the LTRC scheme in [5]. RLA ([1]) filters out LIs with the goal of responding, on an
average, to one out /V LIs from any of its /V receivers.

The primary consideration in this present work towards LIF design is how much
bandwidth a multicast connection is allocated vis-a-vis competing unicast sessions.
Though the issue of fairness is bandwidth sharing among multicast and unicast session
is still open ([11, 3, 12, 2, 4, 13]), the notion “worst path” fairness is gaining accep-
tance among the research community as a well-understood fairness goal for the near
future [2, 1, 4, 12, 3]. Under worst-path fairness, a multicast session is always allocat-
ed bandwidth based on the most congested source-to-destination path in its multicast
tree. On that path, the available bandwidth is divided equally among this session and
every unicast session that traverses this network path. The most congested path has to
be determine on a time-scale that is of the order of tens or (even hundreds) of seconds,



depending on network traffic characteristics. This is the time-scale on which conges-
tion control algorithms would enable a source to gradually adapt its transmission rate in
response to changing network congestion levels. This is also the time-scale on which
notions such as average transmission rate and fairness are meaningful [14].

An obvious way of realizing worst-path fairness is to have a multicast source adjust
its rate in response to to loss indications from only the “worst” receiver in a multicas-
t group and ignore all other loss indications. This corresponds to an LIF that filters
out loss indications from all but the worst receiver [2]. The worst receiver is deter-
mined as the one with the highest loss probability estimate (determined on an appropri-
ate timescale). We refer to this LIF approach as the Worst Estimate-based Tracking
(WET).

Although WET can ideally realize worst-path fairness, we shall show in later sec-
tions that it exhibits poor responsiveness to changes in network conditions. Hence, in
order to examine a desirable tradeoff between fairness and responsiveness, we have
adopted a more pragmatic goal for bandwidth sharing. We require an LIF to realize
worst-path fairness only under certain conditions, while limiting the extent of unfair-
ness under all other conditions. At the same time, an LIF should be able to react quickly
to changing conditions such as sudden onset of congestion, link failures and dynamically
changing multicast group membership.

We now present a set of bandwidth sharing goals guiding the design of the loss in-
dication filters. But first let us introduce some terminology that will be used throughout
this paper. Let us consider a multicast session M, with /V receivers numbered 1 through
N. Assuming that packet losses are temporally uncorrelated, let p; be the packet loss
probability on the end-to-end path from the source to receiver ;. Without loss of general-
ity, let us also assume that p; < py < --- < py. Assume that the same AIMD algorithm
is used by all unicast sessions to control their rates. It has been established that for such
AIMD algorithms, the average throughput of a session, defined as the average num-
ber of packets transmitted per unit time, is a decreasing function of the end-to-end loss
probability [15]. Let B(p;) be the average throughput of a unicast session that travers-
es the end-to-end path from the multicast source to receiver i. Let B); be the average
throughput of session M.

Then the design of LIF for M should satisfy the following conditions :

e Condition (1) : If N = 1, then By, = B(p1).
e Condition (2) : If p; =p, Vi =1,2,---, N, then By, = B(p).
e Condition (3) : If p;/py — 0, i =1,2,---, N — 1, then By;/B(py) — 1.

Condition (1) mandates that the average throughput of a multicast session with a
single receiver should be no different than that of a unicast session experiencing the



same end-to-end loss probability. Condition (2) states that, when all receivers in a mul-
ticast group experiences identical packet loss probabilities, the average throughput of a
multicast session should be the same as that of a unicast session traversing any of the
end-to-end paths in the multicast tree. Condition (3) states that if one receiver in a multi-
cast session is far more congested than every other receiver, then the average throughput
of a multicast session should be close to that of a unicast session that traverses the end-
to-end path leading to this heavily congested receiver.

It is clear from Figure 1 that the throughput of a source is determined by a combi-
nation of the LIF and the rate adjustment algorithm in use. Therefore, any comparison
of LIF performance with respect to bandwidth allocation must be done in the context of
the same rate adjustment algorithm. In the next section, we describe a family of rate ad-
Jjustment algorithms that we consider throughout this paper to provide a common basis
for the comparison of different LIFs.

3 A Family of Rate Adjustment Algorithms

The family of rate adjustment algorithms that we consider belongs to the class of AIMD
algorithms. For every algorithm in this family, the source maintains a variable r that
represents the current transmission rate of the source. The value of 7 is adjusted in
response to CSs in the following manner :

On receiving a CS, cr«r—r/C,
In the absence of any CS for time S'; r < r + 1.

where (' and S are adjustable parameters. Therefore the transmission rate is reduced by
1/C of its current value on receiving a congestion signal (multiplicative decrease). In
the absence of such signals, r is increased by 1 every S units of time (additive increase).
A particular algorithm in this class is completely defined by specifying the values of
C and S. We note here that these algorithms are not specific to multicast or unicast
connections, and can be used by both types of sessions. The only difference lies in the
LIF used; a unicast session would consider every LI received to be a CS, whereas a
multicast session would filter out some of LIs and use the LIs that pass through the filter
as CSs.

For a unicast session experiencing an end-to-end packet loss probability of p, the
average throughput of the algorithm is

B(p) = VC/\/pS (1

See the appendix for details.



Moreover, the “worst path fair” average throughput for multicast session M is given

by Bideal = B(py), i.e. |
Bt = \/C/\/pn S 2)

In the rest of this paper, we assume that every source (both unicast and multicast)
uses a rate adjustment algorithm from this family of algorithms. This allows to focus
solely on the design of loss indication filters.

4 Three Loss Indication Filters

In this section, we first describe two previously proposed approaches towards filter de-
sign, and then present a novel approach - Linear Proportional Response (LPR). For
each, we determine the the average throughput of a multicast session as a function of
the receiver loss probabilities.

4.1 Random Listening Algorithm (RLA) Filter

In the Random Listening Algorithm proposed in [1], a multicast source, on receiving a
loss indication from any one of its receivers, reduces its rate with probability 1 /N, where
N is the number of receivers in the multicast group. This corresponds to having an LIF
which allows a received loss indication to pass through with probability « = 1/N.
We refer to such a filter as the Random Listening Algorithm (RLA) filter. The RLA
algorithm proposes a window-based rate-adjustment algorithm for use in conjunction
with the RLA filter. However, our present interest is in LIF design, hence we focus on
the filter component of the algorithm only.

For a multicast source that uses an RLA filter in conjunction with one of the rate
adjustment algorithms described in Section 3, the average throughput is given by

N
BiFA = [CN/(S + Y pi)]H? (3)

=1

The derivation of this result is provided in the appendix.

From equation (3), it is straightforward to see that the RLA filter satisfies conditions
(1) and (2) for LIF design. However, a drawback is that RLA does not satisfy condition
(3). In fact, as p;/py — 0, i = 1,2,---, N — 1, BELA — [(CN)/(Spx)]*/?. Hence
BELABideal _y (/N This implies that when receiver is far more congested than the
others, the average throughput increases with increasing N, resulting in increasingly
“unfair” treatment of competing unicast sessions.

Strictly speaking, [1] does not consider all of the receivers in a multicast group
for the RLA algorithm. Instead it uses only “troubled” receivers, i.e. the ones that
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are experiencing a loss level higher than a predefined threshold. However, using such
a threshold can only alleviate the “unfairness” problem described above; it does not
fundamentally solve the problem. Moreover, the method for choosing this threshold in
[1] does not necessarily restrict the set of troubled receivers to a small size; hence the
problem of “unfair” treatment of unicast sessions for large values of [V still exists.

4.2 Worst-Estimate Based Tracking (WET) Filter

The WET filter allows only loss indications from the most congested receiver in a mul-
ticast group to pass through, and ignores all others. As described in Section 2, this
identification is made by a multicast source, based on loss probability reports received
from its receivers.

For a multicast session M with N receivers, let receiver i,, i € {1,2,---, N}, es-
timate its end-to-end loss probability by counting the number of losses, X;, over W
consecutive packets. Then the loss probability reported by receiver ¢ to the source is

X;/W. The WET filter then selects receiver w such that w = arg .{riagN{Xi}. There-

after, every loss indication from receiver w is allowed through, while a loss indication
from every other receiver is blocked. The worst receiver w is re-determined every time
a source receives the next set of loss probability updates from its receivers.

Let 7; be the probability that the highest number of losses was reported by receiver
1,1.e., w = 1. Therefore,

N
m= [[ ProbX;> Xj] 4)
i=Lj#i
The expected bandwidth allocation for a multicast session using a WET filter, By g, 1s
thus
N
Bwgr = Zm * B(pi) &)
i=1
where B(p;) is as defined earlier.

It can be easily shown that WET satisfies all three filter design requirements specified
in Section 2. Also, as mentioned earlier in Section 2, “worst path” fairness in bandwidth
sharing can be realized with the WET filter in an idealized setting. However, there are
practical difficulties with WET which we shall illustrate in a later section.



4.3 Linear Proportional Response (LPR) filter

When the Linear Proportional Response filter receives a loss indication from receiver ¢,
it allows the loss indication to pass through with probability «v;, where

N

J=1

Thus the response to loss indications from a specific receiver is proportional to the loss
probability estimate reported by that receiver. The rationale behind this approach is as
follows. The LPR filter pays attention to loss indications from many receivers instead
of one, and this makes it potentially more responsive to changes in network conditions,
than WET. At the same time, LPR pays more attention to receivers reporting a higher
level of congestion. We will see that makes it more responsive to the conditions on the
“worst” path in the multicast tree than WET.

Strictly speaking, the RLA algorithm proposed in [1] does require receivers to send
periodic loss probability reports to the source, based on which the source identifies
“troubled” receivers. Hence LPR does not introduce the need for any additional con-
gestion feedback. The difference between the two lies in that LPR makes better use of
the information that is already available at the source.

The average throughput of a source using an LPR filter and one of the rate adjustment
algorithms from Section (3) is :

N

Brrr = [(OZXZ-)/(Sijipi)P/Q (7)

=1 =1

The derivation of this result is provided in the appendix.
As W — oo, X;/W — p;, hence ( 7) reduces to

Buon = [(C S p) /(ST ) ®

From (8), it is fairly straightforward to show that all three design goals for LIF design
are fulfilled by LPR, when W' — oc.

S Analytic Comparison of LPR and RLA filters

Equations (7) and 3 show that under RLA and LPR, a multicast session may be usurp
more than its “fair” share of throughput. While it may be acceptable to allow multicast
sessions to be somewhat “unfair” to competing unicast traffic, it is important to ensure



that this unfairness does not increase to the point of completely starving the unicast
session. Hence a desirable goal is to bound the amount of throughput that a multicast
session may get in excess of its fair share [1]. In this section, we find analytic upper
bounds on the excess throughput under RLA and LPR, and show that in the case of LPR,
the bound grows grows much more gradually as the number of receivers increases, than
that in the case of RL. The expression for the upper bound for RLA has been derived
in [1], albeit for a different rate adjustment algorithm. We find that our result matches
exactly with the one in [1].

Let us define the throughput ratio 7, as the ratio of the average throughput of a
multicast session using the LIF f to the ideal average throughput given by equation (2).

We now consider each of the two approaches :

¢ Random Listening (RLA) : From equations (2) and (3), the throughput ratio for

RLA is obtained as
N-—1

rre = [N/(L+ > pi/pn))M? )

=1

This is maximized when p; /py = 0,7 = 1,2, --- N. This maximum value 7 gy, is
rmeT — /N (10)

e Linear Proportional Response (LPR) : Here we consider the case where X; /W —
p; as W — oo. From (2) and (8), we obtain

N—-1 N—-1
reer = [(L+ Y pi/pn)/(L+ D 0} /oa)]? (11)
=1 =1

Of course, the validity of the above expression for finite 1" depends on how fast
X;/W — p;. We will address this issue shortly. But let us first consider the upper
bound on the value of r;,pr from equation (11). Maximizing r;pg is equivalent
to solving the following constrained minimization problem

N-1 N-1
(C1)Minimize [1+ Y 27/ [1+ X x4
i=1 i=1

s.t. 0<az <1, ie{l,2,---,N—1}

The solution to this optimization problemis z; =z =--- =y 1 =1/ (\/N +1).
Details of this solution are provided in the appendix.
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Figure 2: Upper bound on throughput ratio (r) for LPR and RLA

Substituting these values of {z;} in (11) yields

Pt — (VN +1)/2 (12)

Figure 2 shows a plot of r}'3% and r/* for values of N ranging from N = 2 to
N = 500. We can clearly see that LPR yields a much tighter bound on the through-
put ratio than RLA, and that the bound for LPR scales much better with increasing
values of N. This implies that LPR is better at restricting the degree of “unfairness”
of a multicast session towards competing unicast sessions, and is, in that sense, more
“unicast-friendly”.

These results on upper bounds do not imply any ordering on the average throughput
under LPR and RLA for a given set of {p;}. However, it is straightforward to show that
as W — oo, the average throughputs under LPR is always less than that under RLA
for any given set of p;s, 7 = 1,2,---, N. This follows from equations (3) and (8) and
from the simple algebraic result that

2

N N
Ny pi> (Zm) (13)
=1 =1

5.1 Asymptotic behaviors of the RLA and LPR filters

Let us next consider the average throughputs under the RLA and LPR filtering approach-
es, when the number of receivers (V) is infinitely large. For this purpose, we assume
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that the loss probabilities, {p;}, are random variables drawn from a distribution with
mean p and standard deviation o.

N
e RLA Filter : From the Law of Large Numbers, it follows that ]\l,im (Z pi> /N =
—00 \ ;=1
1. Hence from equation (3), we have

NILI%OBRL(pl,pm'--,pN) = [C/(Su)]l/z (14)

e LPR Filter : We again consider the case where W — oc. Since E[p;] = p, and
Var(p;) = o2, it follows that F[p?] = u? + o*. Since {p;} are i.i.d. variables,
it follows that {p?}, ¢ = 1,2,---, N, are also i.i.d. random variables with mean

N
p?+0?. Then from the Law of Large Numbers it follows that ]%im < > P%) /N =
—oo \i=1
u? + o2. Hence it follows from equation (8) that

Nh_ﬁgo Brpr(pi,pa, -+ pn) = [(Cp) /(S (1 + o)]'? (15)
It follows from equations (14) and (15) that

. Brp
1 = /14 (02/ 2 16
A + (02/1?) (16)

Thus when N — oo, the average multicast throughput with an LPR filter is always less
than or equal to that with an RLA filter, the allocation being equal in the case that the
variance of the probability distribution of the {p;} is zero.

5.2 Case Studies for finite I/

Thus far, we have compared the performance of RLA and LPR for the case that W —
oo. However, when W is finite, the average throughput of LPR is determined by equa-
tion (7) rather than equation (8). This means that the throughput depends on the random
variables { X;}. On the other hand, the throughput for RLA is still determined by equa-
tion (3), and is independent of { X;}. We now present some case studies comparing the
average throughput under LPR and RLA when IV is finite.

The methodology for these case studies is as follows. For a given W and a given
set of {p;}s, i € 1,2,---, N. a set of values of X;s are generated, each X; being a
random variable following the Binomial distribution with parameters p; and W. The
average throughput under LPR for this set of X;s is then computed using equation (7)
with C' = 2.0 and S = 1.0. The same experiment is repeated ten thousand times for
each case study.

12
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Two distributions of the p;s were considered. For the first one, which we will refer
to as distribution A, py = 0.2andp; = py = - -+ = py_; = 1/(V/N + 1) (corresponds
to r7's% in equation (12)). For the second one, distribution B, py = 0.1 and p; =
0.75 % py + (i — 1) /N % 0.25 % py.

Figure (3) plots the throughput ratio against W for distribution A when N = 100.
In this case, the “fair” multicast throughput value (from equation (2)) is 10.0 pkts/sec.
The graphs show that under LPR, the median of the throughput ratio is much smaller
than RLA. Even the 95th percentile value is smaller in general, except when W is very
small.

Figure (4) plots the throughput ratio against W for distribution B when N = 100.
The “fair” multicast throughput value (from equation (2)) is 14.14 pkts/sec. We see here
that the 50the percentile value of the throughput ratio under LPR is marginally smaller
that RLA.The 95th percentile value for LPR is also quite close to RLA, for W > 50.

We have observed similar results for other values of N and other loss probability
distributions. We infer from these case studies, that the throughput ratio under LPR
is, on an average, much smaller than RL. The difference in the throughput ratio in the
two cases increases with an increase in the variance of the distribution of receiver loss
probabilities. This is in agreement with the result in (16). The case studies therefore
provide a strong case for choosing LPR over RLA for realistic values of W, typically a
a few hundred packets.

6 Simulations

Thus far, we have presented analytic results showing the advantages of LPR over RLA
in terms of steady state behavior. We have also conjectured that the response time of
WET to changes in network conditions is slower than LPR and RLA. In this section,
we present simulation results illustrating the differences in steady-state behavior and
transient response of the three filtering approaches. The simulations do not constitute
a comprehensive study; instead, instead they are meant to provide an understanding of
some of the tradeoffs of using the WET, LPR and RLA filters. We focus on a simple
star topology, since it is sufficient for gaining a number of useful insights.

We focus on a simple star topology (Figure 5), since it is sufficient for gaining a
number of useful insights. Every arm of the star corresponds to a single link with a
finite buffer, that queues packets according to the FIFO discipline. All sessions, unicast
and multicast, have their sources at the center of the star; every unicast session has its
receiver at the end of one of the arms of the star, while every multicast session spans all
the arms, with a receiver at the end of each arm. Every session (whether multicast or
unicast) has an infinite data source, and uses a FLICA rate adjustment algorithm with
C =2.0and S = 25 msecs. We assume that data packets are never reordered, although
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they may be lost due to buffer overflows at the links. A receiver sends per-packet loss
indications to the source, as well as periodic loss probability reports. Lost packets are
never retransmitted by the source, hence the loss indications are used solely for the
purpose of rate adjustments. The reverse paths traversed by the LlIs are different from
the forward data path, and LIs are never lost or reordered. Each receiver monitors the
conditions on its end-to-end path, and maintains a loss probability estimate p, that is
updated as follows :

(1 —g)p; + g, if packeti is detected lost,

(1 —g)pi if packet 7 is received. 7

Piy1 < {
where 0 < g < 1. Each receiver periodically reports its latest loss probability estimate
to the source. The frequency of these reports varies with the simulation setting.

6.1 Steady State Behavior

The first two simulations compare the fairness of steady-state multicast throughput
under LPR, RLA and WET. The performance metric used for this comparison is the
throughput ratio, defined as the ratio of the actual throughput of a session to the worst-
path fair throughput. The actual throughput, R, of a multicast session is calculated as
follows. If the source transmits b packets in the interval [¢1, t5], then R = b/(ty — ).

Simulation 1 examines the effect of the number of disjoint source-to-destination
paths in a multicast tree on the performance of the filters. For a star topology this
corresponds to studying the effect of varying the number of arms. Each arm of the star
is configured to have a bandwidth of 200 pkts/sec and a buffer capacity of 10 packets.
There are 5 unicast sessions on each arm of the star, and there are 5 multicast sessions
spanning all the arms. One of the arms has 20 additional unicast sessions. The value of
the g 17 is 0.005, and the loss probability reporting interval is 20 seconds. Since there
are 40 sessions on the most congested arm of the star, the “worst path fair” throughput
of each multicast session is 200/40, or 5 packets/sec. The actual throughput of each
multicast session is measured over 500 seconds, and then divided by 5 to obtain the
throughout ratio.

Figure 6 shows the average throughput ratio of the ten multicast sessions under WET,
LPR and RLA plotted against the number of number of arms of the star. We observe
that the throughput ratio for WET is closest to the ideal value of 1, followed by LPR,
whereas RLA is the furthest off. An intuitive understanding for the behavior RLA can be
obtained from equation (9). Let p; be the loss probability on arm ¢ of the star, where there
are N arms, and arm N is the one that is more congested than the others. Hence p; =
Py = +-+py—1 < py. By increasing the number of arms of the star, we are effectively
increasing the value of NV in the numerator on the right hand side of equation (9). This
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Figure 7: Simulation 2

causes a gradual increase in the value of r. However, every new arm adds a factor
pi/pn to the denominator; for our simulation the value of p; /py is sufficiently large to
counter the growth of the numerator, resulting in only a gradual increase in r in Figure 6.
However, if p;/py is very small, then the increase in the value of r from RLA will be
even sharper. A similar understanding of the behavior of LPR can be obtained from
equation (11).

Simulation 2 examines the effect of one source-to-destination path in a multicast
group being far more congested than any of the others. For this, the number of arms of
the star is fixed at 10; but now the additional load on arm 1 is gradually increased by
increasing the number of additional unicast sessions traversing it. We observe from Fig-
ure 7 that the throughput ratio under RLA grows rapidly as the load on arm 1 increases;
however the throughput ratios under WET and LPR exhibit much slower growth. These
findings agree with our earlier analytic results.

6.2 Transient Behavior

The next three simulations examine the responsiveness of the three LIFs to changes
in network conditions. The first of these (simulation 3) simulates the case where a
source suddenly stops receiving feedback from the receiver that is at the end of the most
congested path in the multicast tree. This may happen if the receiver dies or leaves the
multicast group, or if there is a breakdown on the network path leading to the receiver.
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A ten-arm star topology is considered, with each arm having a link bandwidth of
100 packets/sec and a link buffer of size 10 packets. Five unicast sessions traverse each
of the arms, and there are five multicast sessions spanning all the arms. One of the arms
has five additional unicast session, making it more congested than the rest. g (17) is set
to 0.005, and the loss estimate reporting interval is 10 seconds The simulation is run for
500 seconds; after 300 seconds, two of the multicast sessions stop receiving feedback
from their respective receivers at the end of the heavily loaded arm of the star. We
examine the effect of this sudden change on on the loss probability at the queue of one
of the less congested arms of the star. This loss probability is calculated as the ratio of
the number of packets losses to the number of packet arrivals at the link queue over five
second intervals.

Figure 8, shows a plot of the loss probability from ¢ = 250 seconds to ¢ = 350
seconds. We notice that in the case of WET, there is a sudden sharp increase in the loss
probability immediately after ¢ = 300 seconds, lasting for longer than ten seconds. The
intuitive explanation for this is as follows. Before the sudden change, every multicast
source was regulating its rate according to loss indications from its receiver at the end
of the congested arm of the star. When two of the sessions stop hearing from their
worst receivers, they start increasing their transmission rates, causing a sudden influx of
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traffic at the link queues of the other arms of the star. In our simulator, the situation is
rectified when each of these sources receive the next round of periodic feedbacks from
its receivers at ¢ = 310 seconds, realize that they have “lost” the worst receiver, and
pick one of its other receivers as the “worst”. After that, the transient change in the loss
probability gradually dies down.

There are several negative consequences of this sudden increase in loss probabili-
ty. For example, rate-controlled unicast sessions on the links experiencing this sudden
change will back off aggressively and it will take a while for them to be restored to
steady state. Moreover such bursts of losses are extremely harmful for short-lived ses-
sions, such as telnet. This phenomenon can potentially affect multiple links across wide
sections of a network, and can occur frequently if multicast group membership is dy-
namic; hence it is desirable to prevent it from occurring. WET is incapable of preventing
this sudden increase in loss probability, but LPR and RLA are able to, since both of them
respond to loss indications from a number of receivers at any given time.

Simulation 4 considers a case where congestion suddenly clears up on the most
congested path in a multicast tree. The simulation setting is a two-arm star, with with
ten unicast sessions on each arm, and ten multicast sessions spanning all of the arms.
There are 5 additional unicast sessions on one arm. Ten of the unicast sessions on the
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Table 1: Simulation 5

‘ H Packets lost/Packets sent ‘
| Filter Type | Multicast | Unicast |

LPR 2977690 | 231/482
WET 680 /1237 | 248 /459

heavily congested arm terminate after 300 seconds, suddenly clearing the congestion on
that arm. All the other parameters are the same as in simulation 3.

We observe from Figure 9 see that under WET there is again a sudden transient
increase in the link loss probability for the other arms of the start. This is because every
multicast session was adjusting its rate according to loss indications from the receiver
at the end of the heavily loaded arm before congestion on that arm cleared up. When
the ten unicast sessions terminate, the link utilization goes down suddenly. Very few
losses occur on that link while the multicast sessions continue to increase their rates to
probe the link for the bandwidth that has been freed up. Eventually they overshoot the
link capacity causing a sudden increase in loss probability; this in turn causes them to
slow down their transmission rates; eventually steady state is re-established. Once the
next round of periodic loss reports arrive at each source, the source discards its current
worst receiver, in favor of one of the others. After that steady-state is re-established. We
notice that LPR and RLA do not suffer from this transient fluctuation in loss probability
since they respond to loss indications from multiple receivers at any given time.

Simulation 5 considers a two-arm star with thirteen unicast sessions on arm 1, ten
unicast sessions on arm 2, and ten multicast sessions spanning both arms. Each arm of
the star has a bandwidth of 300 packets/sec and a buffer size of 40 packets/sec. Receivers
estimate their loss probability with ¢ = 0.0025 (17), and report to the source once every
twenty seconds. Between time ¢ = 201 seconds and ¢ = 210 seconds, there is a sudden
surge of traffic on arm 2, created by a constant-rate source transmitting at a rate of 290
packets/sec. Since the duration of this sudden surge is shorter than the reporting interval
for loss reports, it is futile for a source to react to this change via the periodic updates it
receives; a source needs to react during the period of congestion.

Ideally all sessions should reduce their rate quickly at the onset of the surge, since
they are likely to lose most of the packets that they transmit during this interval. This is
particularly important in the case of reliable data transfer, where all lost packets must be
retransmitted. Table 1 illustrates the effectiveness of WET and LPR in reacting to this
sudden change. In both cases, the unicast sessions on arm 2 back off quickly thereby
limiting the number of packets they send, and hence the number they lose. With LPR,
the multicast sessions were already paying attention to the conditions on arm 2 before
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the surge began. As a result, they are able to cut back their rates, and limit the total
number of transmissions to 690 packets, out of which 297 are lost. However, with WET,
multicast sessions remain completely unaware of the the surge and keep transmitting at
the rates that they were transmitting before the surge began. As a result they transmit
a much larger number of packets, 1237, but also lose a proportionately higher number,
680. The number of transmissions and losses for the multicast sessions in this case are
more than twice those for the unicast sessions on arm 2.

In summary, we reiterate that an appropriate choice of a loss indication filter re-
quires a consideration of both steady-state and transient behaviors. WET achieves the
best steady state behavior but has poor transient response. RLA shows good transient
response but poor steady state behavior. Only LPR is able to achieve a balance between
fairness and responsiveness.

7 Internet Deployment Considerations

In this section, we discuss the viability of combining LPR with an appropriate rate
adjustment algorithm to provide congestion control for single-source multicast sessions
in the Internet.

Given the current Internet architecture, there is an immediate need for an end-to-
end solution for multicast congestion control. LPR does not assume any support from
the network, hence it satisfies the end-to-end requirement. Moreover, it does not make
any assumption about the spatial loss correlation (or lack of it) among receivers in a
multicast group'. Fairness towards unicast sessions is another important requirement
for a multicast congestion control protocol. Worst-path fairness is one possible fairness
definition. A less stringent version of it — “essential” fairness — was proposed in [1] as
a motivation for RLA. Essential fairness allows multicast sessions to usurp somewhat
more bandwidth than their worst-path fair share. However, it imposes an upper bound on
the amount of additional bandwidth obtained by a multicast session over and above its
fair share. We have shown in Section 5 that LPR represents a significant improvement
over RLA in this regard (Figure 2). In particular, when unicast sessions use the TCP
protocol (as is expected in today’s Internet), LPR can be combined with a window-
based algorithm (such as the one in [1]) to effectively limit the “TCP-unfriendliness” of
multicast sessions.

Multicast trees in the Internet are expected to span multiple networks, with hundreds,
or even thousands, of receivers. Hence conditions are expected to be dynamic —receivers
may join and leave groups, links may fail and there may be sudden changes in congestion
levels in parts of a multicast tree. Although WET realizes worst-path fairness, it is

There is no spatial correlation among multicast receivers for the star topology that we simulate. But
the conclusions should hold for topologies where spatial loss correlation does exist.
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Figure 10: Hierarchical LPR example

incapable of responding to such changes in a timely manner. LPR, on the other hand, is
a more practical approach that trades off some degree of steady-state fairness for higher
responsiveness.

An important concern for any LIF approach is whether it requires a source to receive
loss indications from every receiver in a multicast group, since that may not be feasible
in practice. Though LPR assumes LIs from all receivers ideally, its performance will not
degrade significantly if there is no feedback from some of the receivers. In particular, if
there are a few very lossy receivers, then LPR can tolerate a lack of response from the
other receivers, since most of the LIs from these receivers would be filtered out anyway.

Finally, LPR has been designed in a way that allows the filtering functionality to be
distributed among multiple nodes in a multicast tree. We close this section with a brief
example of how this may be accomplished.

Consider a simple tree topology with a source S, receivers R, Ry, R3 and R,, and
two intermediate nodes N1 and N2 (Figure 10). Suppose that S, N1 and N2 are all
capable of filtering out loss indications probabilistically. Let p; be the loss probability
corresponding to I?; 7 = 1,---,4. R and R, report their loss estimates periodically to
N1, while R, and R, report theirs to N2. Each of R1 and R2 calculate the sum of the
loss estimates reported by its downstream receivers, and reports this value periodically
to the source. Thus N1 reports the value pyy = p; + po to S, while N2 reports the value
PN2 = P3 + Pa4.

Loss indication filtering is done in the following manner. When N1 receives a loss
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indication from receiver j (j = 1, 2), it filters out the LI with probability [1 —p,/(pn1)]-
Similarly, when N1 receives a loss indication from receiver j (j = 3, 4), it filters out the
LI with probability [1 — p,/(pn2)]. S filters out a loss indication from N1 (that was not
filtered out by N1) with probability ([1 - px1/(pn1 + Pn2)], and a loss indication from
N1 (that was not filtered out by N'1) with probability [1 — (pn2/(pn1 + Pn2)]. Note that
the source now maintains aggregated loss estimates p ;1 and py9, instead of per-receiver
estimates. A careful inspection reveals that the aggregate effect of this hierarchical
filtering is identical to having an LPR filter only at the source, with all four receivers
reporting their loss estimates directly to the source. The two-level filtering approach
described in this example can be generalized to a multi-level hierarchy of filters.

The above filtering approach, which we refer to as Hierarchical LPR (or HLPR)
reduces the processing load at the source. It also reduces signalling overhead, since a
large portion of loss indications can be filtered out long before they reach the source.
Thus HLPR has the potential to scale well to large multicast groups that are likely to
proliferate in the Internet.

8 Conclusions and Future Work

In this paper, we have focussed on the design of loss indication filters for source-based
multicast congestion control. Our approach towards filter design is guided by a set
of goals that specify the bandwidth allocation to a multicast session under different
conditions, and are based on the notion of worst path multicast fairness [2]. We have
presented a novel approach towards filter design - Linear Proportional Response - and
have compared it with two previously proposed approaches, RLA and WET. Analysis
and simulation reveal that among the three approaches, LPR achieves the best balance
between steady-state behavior and responsiveness.

A number of research directions remain unexplored. Foremost, experimentation in a
real network is needed to validate our findings, and to uncover implementation-specific
issues. We need to compare LPR and WET in the context of a window-based rate
control algorithm. The effect of heterogeneous round-trip times has to be investigated,
as well as the effect of lost or irregular loss estimate reports. We also intend to pursue
the design of hierarchical LPR, where LPR functionality is distributed among multiple
nodes organized hierarchically in a multicast tree rooted at the source.

The LPR approach is one of many possible ways of filtering loss indications from
multiple receivers. Several enhancements and modifications to this approach are pos-
sible. The primary advantage of LPR over WET is its faster response to changes in
network conditions. However, we found that the multicast bandwidth allocation un-
der WET is somewhat closer to our fairness goal than LPR. One way of improving the
fairness of steady-state bandwidth allocation under LPR is to adjust the parameters of
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the multicast rate adjustment algorithm as follows. The fair throughput of a multicast
session with rate control parameters C' and S is given by

By =v/C/\[px S (18)

whereas the throughput under LPR, for an infinitely large loss estimation window, is
given by
N N
Brer = [(C 3 pi)/(S )] (19)
i=1 i=1

We may replace the parameter C' in equation (19) with C ", such that By pg in (19) equals
Bideal in equation (18). This leads to

N
C/(pnS) = (C’ sz (S p) (20)
=1
which on simplification, yields
C'=C.A 1)
where
N-1 N—
=[1+ > (0i/p¥))/ Z (pi/pw))] (22)
i=1 =

This implies that if every multicast session uses an LPR filter with a rate adjustment
parameter C', and if each unicast session uses the rate adjustment parameter C, we
can expect the bandwidth allocations to be very close to our fairness goal. Of course,
in practice, the loss probability values may not be available for computing A, but loss
probability estimates can be used to obtain an approximate value. This remains to be
verified through simulations.

The loss indication filtering probabilities o; 2 =1,2---, N, in LPR can be general-
ized as follows :

N
= X"/ XM, i=1,2,---,N. (23)
j=1

where h is a non-negative constant. It is clear that LPR corresponds to the case where
h =1, whereas RLA corresponds to h = 0.
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APPENDIX

A Derivation of throughput using stochastic differential
equations

Let there be N receivers in a multicast group numbered 1,2,---, N. Assuming that
packet losses are temporally uncorrelated, let p; be the loss probability of a packet on
the path leading to receiver i (: = 1,2,-- -, N). Let B(7) be the average bandwidth share
of the multicast session when it adjusts its rate according to LIs from receiver ¢ using
one of the AIMD algorithms under consideration, and ignores all others.

We use stochastic differential equations to express B(7) as a function of p; [16]. Data
traffic is modeled as a fluid, which enables us to consider the increase in the rate variable
r (under the AIMD algorithms) to be continuous, instead of being in steps of 1 per S
units of time. Hence we can represent the increase in the rate in time dt to be dt/S.

Let us model the arrival of LIs at the source from each receiver 7 as a Poisson process
withrate \;,t =1,2,--- N

Then we can represent the underlying loss process by a Poisson counter dP),, and
express the evolution of the rate variable by the following differential equation :

dr = % + (—r/C)dPy, (24)

To calculate the expected value of 7, we can write the equation for the expected of
r, E[r]), as

SEI = El1/8) - =22,

(25)
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Solving the above equation for E[r], we get

Elr](t) = + D exp(—M\it/C) (26)

Ai S

where D is a constant.
From this we can obtain the steady state solution (! — o0) as

Elr] = [C/(A\:S)] 27)

The approximate relation between A; and p; is given by p; = A;/E|[r]. Hence from
(27) it follows that B(p;) = E[r] = [C/(p:S)]/2.

A.1 Average throughput for an LPR filter

Let us refer to the LIs arriving at the LPR filter from the ¢th receiver as LI stream 7. Every
N

arrival on the ith stream is allowed to pass through with a probability o;; = X;/ > X},
j=1

where X is the number of reported to be lost by receiver : over a window of W packets.
Let us refer to the filter output corresponding to receiver 7 as output stream ¢.

As before, let us model LIs from each receiver as a Poisson process. Let Y; be the
random variable corresponding to input stream ¢, having a Poisson distribution with rate
A;. Let Z; be the random variable associated with output stream ¢. Then it follows that
Z; has a Poisson distribution with rate a; \;. The stream of CSs that are input to the rate
adjustment algorithm is a superposition of the /N output streams. Therefore CSs also
form a Poisson process with rate A\ = % a; x \;. As before, we can write the differential

=1
equation for the rate evolution as :

dr = % + (—=r/C)dP, (28)

Following the same procedure as before, we can derive the expression for the steady-
state expected value of r as

Bl = [C/0S)"
= 1C/(S S an)]”

Substituting each \; = E|[r] * p; in the above equation leads to Brpr = E|r] =
N
[C/(S Y ayp;)]'/?, from which equation (7) follows.
i=1
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A.2 Average throughput for an RLA filter

With the same assumption about the loss process and with the same reasoning as in
the LPR case, we can show that the stream of CSs forms a Poisson process with rate

N
S
=1
A= S

Using stochastic differential equations as before, we can derive the expression for
the steady-state expected value of r to be

Elr) = [N/ W] )

Substituting each \; = E[r] % p; in the above equation leads to Br, = E[r] =
N
[(CN)/(S X p:)]'/?, from which equation (3) follows.
i=1

B Solution to minimization problem (C'1) in Section 4

The problem that we want to solve is :

(Cl) Minimize f(lL’l, To, -, ZL’N_l)
s.L. 0<z; <1, ie{l,,2---,N—1}

N-—1 N-1
where f(llfl,ZEQ,"',ZL’N_l) = [].+ E I?]/[l—f— Z ZL’Z]
i=1 =1

= 1=
It is straightforward to prove that the minimum value for f(x, xs,- -, zx_1) is obtained
when zy = xy = - -+ = xy_1. Hence the optimization problem reduces to

(C2) Minimize  g(z) = ry e st 0<z <1

Taking the first derivative of ¢g(z) with respect to x and setting it to zero leads to
(N-1Dz’+2r—-1=0 (30)

which yields z = 1/(v/N + 1) as the non-negative solution.

We have also verified that the second derivative of g(x) with respect to z is positive
for all values of x. Hence the above solution corresponds to a minima for g(x).

It therefore follows that the solution to problem Clis x; = 9 = --- = xy 1 =

1/(VN +1).
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