
Benchmarking Finite-State Verifiers

George S. Avrunin James C. Corbett Matthew B. Dwyer

Abstract
A variety of largely automated methods have been proposed for finite-state ver-

ification of software systems. Although anecdotal accounts of success are widely
reported, there is very little empirical data on the relative strengths and weaknesses
of those methods across a broad range of analysis questions and systems. But this
information is critical for the transfer of the technology from research to practice.
We review some of the problems involved in obtaining this information and sug-
gest several ways in which the community can facilitate empirical evaluation of
finite-state verification tools.

1 Introduction
Finite-state verifiers, such as SPIN [5] and SMV [6], are tools that deduce properties
of finite-state models of computer systems. They can be used to check properties such
as freedom from deadlock, mutually exclusive use of resources, and eventual response
to a request. A wide variety of analysis methods have been automated in such tools
and applied to a range of computer systems, both software and hardware. Such tools
can automate large parts of the model construction and essentially all of the analy-
sis. This high degree of automation, and the robustness of some of the tools, would
seem to make finite-state verification tools prime candidates for transfer to software
development practice.

The most common analysis method used to detect faults in software systems is, of
course, testing, in which the system is executed with particular inputs and the results
checked for correctness. The problem with testing is coverage: it is usually infeasible
to check more than a very small fraction of the possible executions of the system, and
testing can give no information about those executions that are not examined. For a
concurrent system, moreover, testing is especially problematic because the nondeter-
ministic behavior typical of such systems means that two executions with the same
input data may be quite different. Finite-state verification tools can consider all possi-
ble executions of a system, sequential or concurrent, and can be applied at any stage of
development at which an appropriate model can be constructed.

Laboratory for Advanced Software Engineering Research, Department of Computer Science, University
of Massachusetts at Amherst, Amherst, MA 01003-4610, USA, email: avrunin@math.umass.edu

Department of Information and Computer Science, University of Hawai‘i, Honolulu, HI 96822, USA,
email: corbett@hawaii.edu

Department of Computing and Information Sciences, Kansas State University, Manhattan, KS 66506-
2302, USA, email: dwyer@cis.ksu.edu

1



But, despite the fact that finite-state verification tools seem to offer a number of
advantages over the current state-of-the-practice, they have not been widely adopted.
Certainly there are many reasons for this, ranging from the scalability of the analysis
to the ease of use of the tools, but we believe one significant factor is the difficulty of
selecting one from the variety of existing methods. In particular, the performance of
these methods varies enormously from system to system, yet there is little empirical
data evaluating or comparing the effectiveness of the methods on different kinds of
systems.

Consider the related field of compiler optimization, which also involves analysis of
system descriptions. When a compiler incorporates a new optimization, the effective-
ness of that optimization is evaluated empirically by running the compiler on a suite of
standard benchmarks. The expected performance gain for a typical program (or per-
haps one with certain characteristics) can be estimated from the benchmarks. Most
importantly, the benchmarks allow a comparison of different compilers and optimiza-
tion techniques.

Contrast this to the situation in the field of finite-state verification. A researcher
builds a new verifier (or perhaps enhances an existing verifier) with a new analysis
method and reports the performance of the verifier on one or two examples on which
it performs better than some existing method. Published case studies typically report
on the application of a specific tool to a specific example; rarely are multiple verifiers
even tried, let alone compared carefully.

As a result, a practitioner seeking to apply finite-state verification might be more
confused than enlightened by the anecdotal nature of the current research literature. It is
quite natural for a discipline to begin by creating different methods to solve a problem,
but as the discipline matures, it must develop the means to compare and evaluate these
methods. Although the field of compilers is much more mature than the field of finite-
state verification (and arguably addresses an easier problem), we believe that it is time
for the finite-state verification community to develop the means to benchmark the tools
and techniques we create. The transfer of our technology from research to practice will
require at least a rough characterization of the strengths, weaknesses, and capabilities
of our methods.

In this piece, we argue for the importance of empirical evaluation in finite-state ver-
ification, discuss the barriers to empirical work in this area, and conclude with concrete
suggestions on how our community can help foster empirical work.

2 The problem
People familiar with even a single finite-state verification tool will know that the per-
formance of that tool can vary significantly with what seem to be small changes in the
system (or model) being analyzed or the property being checked. It is very difficult
to predict the performance of the tool from any straightforward measure of the size of
the system being analyzed or the property being checked. The situation is even more
striking when different tools are compared.

For example, we compared the performance of several finite-state verification tools
in checking a number of properties of the Chiron user-interface development system

2



[4]. We modeled the event dispatch mechanism in Chiron, in which a dispatcher task
delivers events to “artist” tasks, which then update the display. We constructed two
models: one with a single dispatcher for all events, and one in which there is a separate
sub-dispatcher for each event (the set of these sub-dispatchers, when composed, is
observationally equivalent to the single dispatcher). Figures 1 and 2 show the time (on
a Sun Enterprise 3500 with 2 GB of memory) required by two finite-state verification
tools, INCA [3] and SPIN, to check one property of the two versions of Chiron with
two artists and an increasing number of events. (The data shown are for checking that
the dispatcher never delivers an event to an artist that has not registered for that event.)

The figures show a quite striking change in the performance of the Inequality Nec-
essary Condition Analyzer (INCA), which uses an integer programming-based anal-
ysis, and a smaller, but still quite substantial, change in the performance of SPIN,
which uses state enumeration. (Note that the vertical axis is a logarithmic scale.) A
software developer choosing a tool to analyze a large Chiron interface with the single
dispatcher model would certainly prefer to use SPIN, since INCA cannot analyze a
system with more than a few events, but INCA performs significantly better than SPIN
on the version in which the dispatcher is decomposed. And these extreme differences
are observed on two behaviorally equivalent models of the same system.

There has been only a small amount of work comparing different tools across a
variety of software systems and properties, but these differences in performance are
typical of what has been seen. In fact, the performance of the various finite-state ver-
ification tools, as measured by time and memory requirements or the scale of system
to which they can be applied, varies sharply in ways that we do not understand very
well and cannot predict accurately. Of course, these measures of performance are only
some of the criteria that software developers would use in selecting a method to apply
to a system under development. Factors involving ease of use, such as the difficulty
of specifying properties or building a tractably small model, also vary from one finite-
state verification approach to another as the systems and properties vary, and, although
harder to measure, may be even more important to software developers.

So we have a variety of finite-state verification tools whose performance and ease
of use vary substantially when they are applied to check different properties of dif-
ferent systems, but in ways that we cannot predict very well. We cannot make sound
suggestions to software developers about which tool to use in a particular situation. Of
course, the effort required to apply one tool to check one property of one real system is
substantial, so that trying several tools is unlikely to be feasible. Is it any wonder that
software developers have not adopted these techniques?

3 The need for an empirical approach
In order to provide guidance to software developers in choosing and applying finite-
state verification tools, researchers must better understand the sources of these varia-
tions in performance. Empirical studies of the application of finite-state verification
tools to a check a wide range of properties of a wide range of systems are necessary to
develop this understanding.

There are at least two reasons why an analytic approach is unlikely to be suffi-

3



1

10

100

1000

0 5 10 15 20 25 30 35 40

tim
e 

(s
ec

on
ds

)

events

INCA
SPIN

Figure 1: Verification with Single Dispatcher Process

1

10

100

1000

0 5 10 15 20 25 30 35 40

tim
e 

(s
ec

on
ds

)

events

INCA
SPIN

Figure 2: Verification with Multiple Dispatcher Processes

4



cient. First, the underlying algorithms of many of the leading finite-state verifications
approaches are themselves not well understood, in the sense that we cannot accurately
predict their performance in particular cases. For instance, we know only a little about
the factors that determine the size of the ordered binary decision diagrams (OBDDs)
used in SMV and related symbolic model checkers. Similarly, INCA relies on integer
programming algorithms whose performance in particular cases is hard to determine a
priori.

Second, an evaluation of a method requires some measure of how the method per-
forms on typical systems that arise in practice. For any given method, it is almost
always possible to find or construct an example on which that method performs better
than other methods (these examples can usually be found in the paper describing the
method), but for comparison and evaluation, we would like to know how the method
performs on a suite of standard benchmarks that approximates a representative sample
of systems.

Of course, analytical results on the complexity of analysis methods on specific
kinds of realistic systems would be extremely useful in practice. And we believe a
wealth of empirical data on the performance of the methods might inspire such results,
which often result from the attempt to explain an observed variation in a specific case.
But broad pragmatic comparisons will require an empirical approach.

4 The lack of progress to date
Few empirical studies have attempted to compare the performance of different finite-
state verifiers on different example systems, and even these few have been quite lim-
ited. The relative scarcity of empirical work in this area (as compared to compilers, for
example) results not from laziness on the part of researchers, but from the inherent dif-
ficulty of the problem. Past studies [1, 2] have identified many problems in comparing
these tools. Among the most significant are:

Each of the different finite-state verification tools has its own input formalism
for describing the system to be analyzed, and there are a number of different
formalisms for specifying the property to be checked. These formalisms may
provide, for example, different constructs for communication between processes
and may have different expressive power. It is therefore difficult to be sure that
the tools being compared are actually working on the same problem.

Effective use of even a single tool on a system of realistic size and complexity
requires significant experience with the tool and a substantial investment of ef-
fort. A comparison of several different tools on a wide range of different systems
is beyond the scope of many research projects.

There is no standard set of examples to which to apply a method for evalua-
tion/comparison. Collecting a representative sample of systems to analyze is
effectively impossible for an individual. Obtaining real systems from industry is
complicated by proprietary restrictions.

5



We are interested not only in such measures of the performance of tools as the
time and memory they use, but also in factors affecting their ease of use by soft-
ware developers. Experiments involving human subjects, however, are difficult
to design correctly and expensive to conduct.

These issues can be addressed in a number of ways. For example, automated trans-
lation between models can be helpful in constructing appropriate input for different
tools from a single system, although validating such a translation is not straightforward.
It is not enough to make sure that the models are as close to semantically equivalent as
possible; it must be shown that the translation does not introduce bias against a particu-
lar tool or tools. This involves additional effort by individuals who are expert in the use
of the particular tools. Similarly, a publicly-available collection of standard benchmark
examples would allow different research groups to study the performance of different
tools on the same examples, and would make examples available to the entire research
community. The open source movement may make it easier to obtain real examples.

5 What the research community should do
We urge finite-state verification researchers to increase their efforts to carry out empir-
ical comparison and evaluation of finite-state verification tools. Specific actions that
can help:

Make tools freely available.

Publish full examples. If complete examples cannot be made available, perhaps
at least “sanitized” versions, such as concurrency skeletons, can be. While space
limitations in journals and conferencesmay prevent the inclusion of full source in
papers, it can certainly be provided on the web. We are creating a web repository
of examples and encourage others to do likewise.

Use standard notations, languages, and models whenever possible to facilitate
interchange.

As a community, develop a set (or sets) of realistic benchmark problems, perhaps
drawing from common design patterns or software architectures.

Increase the empirical component of research papers. As standard benchmarks
become available, researchers should apply their tools/techniques to these exam-
ples so they can be compared. As a reviewer, insist that authors include empirical
evaluations and comparisons in their papers.

Most importantly, the empirical comparison and evaluation of finite-state verifica-
tion tools must be regarded as an important part of the field. It is only through such
empirical work that we can understand the strengths and weaknesses of the different
approaches, and understanding those strengths and weaknesses is critical for the trans-
fer of these techniques from research to practice.

6



Acknowledgment
This work was partially supported by the National Science Foundation under grants
CCR-9703094 and CCR-9708184 and by NASA under grant NAG-02-1209.

References
[1] A. T. Chamillard, L. A. Clarke, and G. S. Avrunin. An empirical comparison of

static concurrency analysis techniques. Technical Report 96-84, Department of
Computer Science, University of Massachusetts, 1996. Revised May 1997.

[2] J. C. Corbett. Evaluating deadlock detection methods for concurrent software.
IEEE Trans. Softw. Eng., 22(3):161–179,Mar. 1996.

[3] J. C. Corbett and G. S. Avrunin. Using integer programming to verify general
safety and liveness properties. Formal Methods in System Design, 6:97–123, Jan-
uary 1995.

[4] K. Forester, C. MacFarlane, M. Cameron, and G. Bolcer. Chiron-1 user manual.
Arcadia Document UCI-93-07, University of California, Irvine, Sept. 1993.

[5] G. J. Holzmann. The model checker SPIN. IEEE Trans. Softw. Eng., 23(5):279–
295, May 1997.

[6] K. L. McMillan. SymbolicModel Checking. Kluwer Academic Publishers, Boston,
1993.

7


