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Abstract

Packet delay greatly influences the overall performance of network applications. It is there-
fore important to identify causes and location of delay performance degradation within a net-
work. Existing techniques, largely based on end-to-end delay measurements of unicast traffic,
are well suited to monitor and characterize the behavior of particular end-to-end paths. Within
these approaches, however, it is not clear how to apportion the variable component of end-to-
end delay as queueing delay at each link along a path. Moreover, they suffer of scalability
issues if a significant portion of a network is of interest.

In this paper, we show how end-to-end measurements of multicast traffic can be used to
infer the packet delay distribution and utilization on each link of a logical multicast tree. The
idea, recently introduced in [4, 5] is to exploit the inherent correlation between multicast ob-
servations to infer performance of paths between branch points in a tree spanning a multicast
source and its receivers. The method does not depend on cooperation from intervening net-
work elements; because of the bandwidth efficiency of multicast traffic, it is suitable for large
scale measurements of both end-to-end and internal network dynamics. We establish desirable
statistical properties of the estimator, namely consistency and asymptotic normality. We eval-
uate the estimator through simulation and observe that it is robust with respect to moderate
violations of the underlying model.

Keywords. End-to-end measurements, queueing delay, estimation theory, multicast tree, network
tomography.
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1 Introduction

Background and Motivation. Monitoring the performance of large communications networks
is essential for diagnosing the causes of performance degradation. There are two broad approaches
to monitoring. In the internal approach, direct measurements are made at or between network
elements, e.g. of packet loss or delay. In the external approach, measurements are made across a
network on end-to-end or edge-to-edge paths.

The internal approach has a number of potential limitations. Due to the commercial sensitivity
of performance measurements, and the potential load incurred by the measurement process, it is
expected that measurement access to network elements will be limited to service providers and,
possibly, selected peers and users. The internal approach assumes sufficient coverage, i.e. that
measurements can be performed at all relevant elements on paths of interest. In practice, not all
elements may possess the required functionality, or it may be disabled at heavily utilized elements
in order reduce CPU load. On the other hand, arranging for complete coverage of larger networks
raises issues of scale, both in the in the gathering of measurement data, and joining data collected
from a large number of elements in order to form a composite view of end-to-end performance.

This motivates external approaches, network diagnosis through end-to-end measurements, with-
out necessarily assuming the cooperation of network elements on the path. There has been much
recent experimental work to understand the phenomenology of end-to-end performance (e.g., see
[3, 9, 19, 26, 27, 29]). Several research efforts are working on the developments of measurement
infrastructure projects (Felix [13], IPMA [15], NIMI [18] and Surveyor [35]) with the aim to col-
lect and analyze end-to-end measurements across a mesh of paths between a number of hosts.
Standard diagnostic tools for IP networks, ping and traceroute report roundtrip loss and de-
lay, the latter incrementally along the IP path by manipulating the time-to-live (TTL) field of probe
packets. A recent refinement of this approach, pathchar [17], estimates hop-by-hop link capac-
ities, packet delay and loss rates. pathchar is still under evaluation; initial experience indicates
many packets are required for inference leading to either high load of measurement traffic or long
measurement intervals, although adaptive approaches can reduce this [10]. More broadly, measure-
ment approaches based on TTL expiry require the cooperation of network elements in returning
Internet Control Message Protocol (ICMP) messages. Finally, the success of active measurement
approaches to performance diagnosis may itself cause increased congestion if intensive probing
techniques are widely adopted.

In response to some of these concerns, a multicast-based approach to active measurement has
been proposed recently in [4, 5]. The idea behind the approach is that correlation in performance
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seen on intersecting end-to-end paths can be used to draw inferences about the performance charac-
teristics of the common portion (the intersection) of the paths, without the cooperation of network
elements on the path. Multicast traffic is particular well suited for this since a given packet only
occurs once on a given link in the (logical) multicast tree. Thus characteristics such as loss and
end-to-end delay of a given multicast packet as seen at different endpoints are highly correlated.
Another advantage of using multicast traffic is scalability. Suppose packets are exchanged on a
mesh of paths between a collection of measurement hosts stationed in a network. If the pack-
ets are unicast, then the load on the network may grow proportionally to in some parts of the
network, depending on the topology. For multicast traffic the load grows proportionally only to .

Contribution The work of [4, 5] showed how multicast end-to-to measurements can be used to
infer per link loss rates in a logical multicast tree. In this paper we extend this approach to infer the
probability distribution of the per link variable delay. Thus we are not concerned with propagation
delay on a link, but rather the distribution of the additional variable delay that is attributable to
either queuing in buffers or other processing in the router. A key part of the method is an analysis
that relates the probabilities of certain events visible from end-to-end measurements (end-to-end
delays) to the events of interest in the interior of the network (per-link delays). Once this relation
is known, we can estimate the delay distribution on each link from the measured distributions of
end-to-end delays of multicast packets.

For a glimpse of how the relations between end-to-end delay and per link delays could be
found, consider a multicast tree spanning a source of multicast probes (identified as the root of the
tree) and a set of receivers (one at each leaf of the tree). We assume the packets are potentially
subject to queuing delay and even loss at each link. Focus on a particular node in the interior of
the tree. If, for a given packet, the source-to-leaf delay does not exceed a given value on any leaf
descended from , then clearly the delay from the root to the node was less than that value. The
stated desired relation between the distributions of per-link and source-to-leaf delays is obtained
by a careful enumeration of the different ways in which end-to-end delay can be split between the
portion of the path above or below the node in question, together with the assumption that per-
link delays are independent between different links and packets. We shall comment later upon the
robustness of our method to violation of this independence assumption.

We model link delay by non-parametric discrete distributions. The choice of non parametric
distributions rather than a parameterized delay model is dictated by the lack of knowledge of
the distribution of link delays in networks. While there is significant prior work on the analysis
and characterization of end-to-end delay behavior (see [2, 24, 27]), to the best of our knowledge
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there is no general model for per link delays. The use of a non-parametric model provides the
flexibility to capture broadly different delay distributions, albeit at the cost of increasing the number
of quantities to estimate (i.e. the weights in the discrete distribution). Indeed, we believe that our
inference technique can shed light on the behavior and dynamics of per link delays and so provide
useful results for the analysis and modeling; this we will consider in future work.

The discrete distribution can be a regarded as binned or discretized version of the (possibly
continuous) true delay distribution. Use of a discrete rather than a continuous distribution allows
us to perform the calculations for inference using only algebra. Formally, there is no difficulty in
formulating a continuous version of the inference algorithm. However, it proceeds via inversion
of Laplace transforms, a procedure that is in practice implemented numerically. In the discrete
approach we can explicitly trade-off the detail of the distribution with the cost of calculation; the
cost is inversely proportional to the bin widths of the discrete distribution.

The principle results of the analysis are as follows. Based on the independent delay model,
we derive an algorithm to estimate the per link discrete delay distributions and utilization from the
measured end-to-end delay distributions. We investigate the statistical properties of the estimator,
and show it to be strongly consistent, i.e., it converges to the true distribution as the number of
probes grows to infinity. We show that the estimator is asymptotically normal; this allows us to
compute the rate of convergence of the estimator to its true value, and to construct confidence
intervals for the estimated distribution for a given number of probes. This is important because the
presence of large scale routing fluctuation (e.g. as seen in the Internet; see [26]) sets a timescale
within which measurement must be completed, and hence the accuracy that can be obtained when
sending probes at a given rate.

We evaluated our approach through extensive simulation in two different settings. The first set
used a model simulation in which packet delays obey the independence assumption of the model.
We applied the inference algorithm to the end-to-end delays generated in the simulation and com-
pared the (true) model delay distribution. We verified the convergence to the model distribution,
and also the rate of convergence, as the number of probes increased.

In the second set of experiments we conducted an ns simulation of packets on a multicast tree.
Packet delays and losses were entirely due to queueing and packet discard mechanisms, rather than
model driven. The bulk of the traffic in the simulations was background traffic due to TCP and
UDP traffic sources; we compared the actual and predicted delay distributions for the probe traffic.
Here we found rapid convergence, although with some persistent differences with respect to the
actual distributions.

These differences appear to be caused by violation of the model due to the presence of spa-
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tial dependence (i.e., dependence between delays on different links). In our simulations we find
that when this type of dependence occurs, it is usually between the delays on child and parent
links. However, it can extend to entire paths. As far as we know there are no experimental results
concerning the magnitude of such dependence in real networks. In any case, by explicitly intro-
ducing spatial correlations into the model simulations, we were able to show that small violations
of the independence assumption lead to only small inaccuracies of the estimated distribution. This
continuity property of the deformation in inference due to correlations is also to be expected on
theoretical grounds.

We also verified the presence of temporal dependence, i.e., dependence between the delays
between successive probes on the same link. This is to be expected from the phenomenology of
queueing: when a node is idle, many consecutive probes can experience constant delay; during
congestion, probes can experience the same delay if their interarrival time is smaller than the con-
gestion timescale. This poses no difficulty as all that is required for consistency of the estimator is
ergodicity of the delay process, a far weaker assumption than independence. However, dependence
can decrease the rate of convergence of the estimators. In our experiments, inferred values closely
tracked the actual ones despite the presence of temporal dependence.

Implementation Requirements Since the data for delay inference comprises one-way packet
delays, the primary requirement is the deployment of measurement hosts with synchronized clocks.
Global Positioning System (GPS) systems afford one way to achieve a synchronization to within
tenths of microseconds; it is currently used or planned in several of the measurement infrastructures
mentioned earlier. More widely deployed is the Network Time Protocol (NTP) [20]. However, this
provides accuracy only on the order of milliseconds at best, a resolution at least as coarse as the
queueing delays in practice. An alternative approach that could supplement delay measurement
from unsynchronized or coarsely synchronized clocks has been developed in [28, 30, 21]. These
authors propose algorithms to detect clock adjustments and rate mismatches and to calibrate the
delay measurements.

Another requirement is knowledge of the multicast topology. There is a multicast-based mea-
surement tool, mtrace [23], already in use in the Internet. mtrace reports the route from a
multicast source to a receiver, along with other information about that path such as per-hop loss
and rate. Presently it does not support delay measurements. A potential drawback for larger
topologies is that mtrace does not scale to large numbers of receivers as it needs to run once for
each receiver to cover the entire multicast tree. In addition, mtrace relies on multicast routers
responding to explicit measurement queries; a feature that can be administratively disabled. An
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alternative approach that is closely related to the work on multicast-based loss inference [4, 5] is to
infer the logical multicast topology directly from measured probe statistics; see [31] and [7]. This
method does not require cooperation from the network.

Structure of the Paper. The remaining sections of the paper are organized as follows. In Sec-
tion 2 we describe the delay model and in Section 3 we derive the delay estimator. In Section 4 we
describe the algorithm used to compute the estimator from data. In Section 5 we present the model
and network simulations used to evaluate our approach. Section 6 concludes the paper.

2 Model & Framework

2.1 Description of the Logical Multicast Tree

We identify the physical multicast tree as comprising actual network elements (the nodes) and the
communication links than join them. The logical multicast tree comprises the branch points of the
physical tree, and the logical links between them. The logical links comprise one or more physical
links. Thus each node in the logical tree, except for the leaf nodes and possibly the root, must
have 2 or more children. We can construct the logical tree from the physical tree by deleting all
links with one child (except for the root) and adjusting the links accordingly by directly joining its
parent and child.

Let denote the logical multicast tree, consisting of the set of nodes , including
the source and receivers, and the set of links , which are ordered pairs of nodes, indicating
a link from to . We will denote . The set of children of node is denoted by

; these are the nodes whose parent is . Nodes are said to be siblings if they have the same
parent. For each node , other than the root 0, there is a unique node , the parent of , such
that . Each link can therefore be also identified by its “child” endpoint. We shall
define recursively by with . We say that is a descendant of

if for some integer , and write the corresponding partial order in as .
For each node we define its level to be the non-negative integer such that . The
root represents the source of the probes and the set of leaf nodes (i.e., those with no
children) represents the receivers.
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2.2 Modeling Delay and Loss of Probe Packets

Probe packets are sent down the tree from the root node 0. Each probe that arrives at node results
in a copy being sent to every child of . We associate with each node a random variable taking
values in the extended positive real line . By convention . is the random
delay that would be encountered by a packet attempting to traverse the link . The
value indicates that the packet is lost on the link. We assume that the are independent.
The delay experienced on the path from the root to a node is . Note that
iff for some , i.e. if the packet was lost on some link between node and .

Unless otherwise stated, we will discretize each link delay to a set .
Here is the bin width, is the number of bins, and the point is interpreted as “packet
lost” or “encountered delay greater than ”. The distribution of is denoted by , where

with the probability that . For each link, we denote the
link utilization; then, , the probability that a packet experience delay or it is lost in
traversing link .

For each , the cumulative delay process , , takes values in ,
i.e., it supports addition in the ranges of the constituent . We set with

the probability that . Because of delay independence, for finite ,
, ; by convention .

We consider only canonical delay trees. A delay tree consists of the pair , ,
. A delay tree is said to be canonical if , , i.e., if there

is a non-zero probability that a probe experiences no delay in traversing each link.

3 Delay Distribution Estimator and its Properties

Consider an experiment in which probes are sent from the source node down the multicast tree.
As result of the experiment we collect the set of source-to-leaf delays . Our goal is
to infer the internal delay characteristics solely from the collected end-to-end measurements.

In this section we state the main analytic results on which inference is based. In Section 3.1
we establish the key property underpinning our delay distribution estimator, namely the one-to-
one correspondence between the link delay distributions and the probabilities of a well defined set
of observable events. Applying this correspondence to measured leaf delays allows us to obtain
an estimate of the link delay distribution. We show that the estimator is strongly consistent and
asymptotically normal. In Section 3.2 we present the proof of the main result which also provides

7



the construction of the algorithm to compute the estimator we present in Section 4. In Section 3.4
we analyze the rate of convergence of the estimator as the number of probes increase.

3.1 The Delay Distribution Estimator

Let denote the subtree rooted at node and the set
of receivers which descend from . Let denote the event that the
end-to-end delay is no greater than for at least least one receiver in . Let

denote its probability. Finally let denote the mapping associating the link distribu-
tions to the probabilities of the events , . The
proof of the next result is given in the following section.

Theorem 1 Let and
. is a bijection from to which is

continuously differentiable and has a continuously differentiable inverse.

Estimate by the empirical probabilities , where

(1)

denotes the indicator function of the set and are the subsidiary quantities

(2)

Our estimate of is . We estimate link utilization by .
Let denote the open

interior of . The following holds:

Theorem 2 When , as , converge almost surely to , i.e., the
estimator is strongly consistent.

Proof: Since is continuous on and is open in , it follows that is an
open set in . By the Strong Law of large numbers, since is the mean of independent
random variables, converges to almost surely for . Therefore, when , there
exists such that , . Then, the continuity of insures that converges
almost surely to as .
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3.2 Proof of Theorem 1

To prove the Theorem, we first express as function of and then show that the mapping from
to is injective.

3.2.1 Relating to

Denote , . obeys the recursion

(3)

Then, by observing that

(4)

, we readily obtain

(5)

The set of equations (5) completely identifies the mapping from to . The mapping is clearly
continuously differentiable. Observe that the above expressions can be regarded as a generalization
of those derived for the loss estimator in [4] (by identifying the event no delay with the event no
loss).

3.2.2 Relating to

It remains to show that the mapping from to is injective. To this end, below we derive an
algorithm for inverting (5). We postpone to Appendix A the proof that the inverse is unique and
continuously differentiable. For sake of clarity we separate the algorithm into two parts: in the first
we derive the cumulative delay distributions from ; then, we deconvolve to obtain .

Computing

Step 0:
Solve (5) for . This amounts solving the equation

(6)
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and
(7)

This equation is formally identical to the one of the loss estimator [4]. From [4], we have that the
solution of (6) exists and is unique in provided that which holds
for canonical delay trees. We then compute , .
Step i:

Given and , , , in this step we compute and ,
. For , in expression (5) we replace with

(from (4)) and obtain the following equation

(8)

(the unknown term is highlighted in boldface). This is a polynomial in of degree
. As shown in Appendix A we consider the second largest solution of (8).

For , we directly compute from (5), . Then we

compute , , as

Computing

Once step is completed, we compute , as follows

(9)

3.3 Example: the Two-leaf Tree

In this section we illustrate the application of the results of Section 3.1 to the two-leaf tree of
Figure 1. We assume that on each link, a probe either suffers no delay, a unit amount of delay, or
is otherwise lost; for , therefore, delay takes values in .

For this example, equations (6) and (8) can be solved explicitly; combined with (9) we obtain
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Figure 1: TWO-LEAF MULTICAST TREE.
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Figure 2: FOUR-LEAF MULTICAST TREE.

the estimates

where .

3.4 Rates of Convergences of the Delay Distribution Estimator

3.4.1 Asymptotic Behavior of the Delay Distribution Estimator

In this section, we study the rate of convergence of the estimator. Theorem 2 states that con-
verges to with probability 1 as grows to infinity; but it provides no information on the rate of
convergence. Because of the mild conditions satisfied by , we can use Central Limit Theorem
to establish the following asymptotic result

Theorem 3 When , as , converges in distribution to a multivariate
normal random variable with mean vector 0 and covariance matrix where

Cov , for , , ,

and denotes the transpose.
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Proof: By the Central Limit Theorem, it follows that the random variables are asymptotically
Gaussian as with

Here denotes convergence in distribution. Following the same lines of the proof of Theorem
1, when , there existst such that , . Then, Since is
continuously differentiable on , the Delta method (see Chapter 7 of [34]) yields that
is also asymptotically Gaussian as :

Theorem 3 allows us to compute confidence intervals of the estimates, and therefore their
accuracy and their convergence rate to the true values as grows. This is relevant in assessing:
(i) the number of probes required to obtain a desired level of accuracy of the estimate; (ii) the
likely accuracy of the estimator from actual measurements by associating confidence intervals to
the estimates.

For large , the estimator will lie in the interval

(10)

where is the quantile of the standard distribution and the interval estimate is a
confidence interval.

To obtain the confidence interval for derived from measured data from probes, we estimate
by where

and is the Jacobian of the inverse map computed for . We then use confidence
intervals of the form

(11)

3.4.2 Dependence of the Delay Distribution Estimator on Topology

The estimator variance determines the number of probes required to obtain a given level of ac-
curacy. Therefore, it is important to understand how the variance is affected by the underlying
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Figure 3: ASYMPTOTIC ESTIMATOR VARIANCE AND TREE DEPTH. Binary tree with depth 2, 3
and 4. Left: Minimum and Maximum Variance of the estimates (a) and (b) over all
links.

parameters, namely the delay distributions and the multicast tree topology. The following Theo-
rem, the proof of which we postpone to Appendix C, characterizes the behavior of the variance for
small delays. Set .

Theorem 4 As ,

...
...

...
...

with
...

...
...

...

(12)

.

Theorem 4 states that the estimator variance is, to first order, independent of the topology. To
explore higher order dependencies, we computed the asymptotic variance for a selection of trees
with different depths and branching ratio. We use the notation to denote a tree of

levels where, apart from node 0 that has one descendent, nodes at level have exactly
children. For simplicity, we consider the case when link delay takes values in , i.e., we

consider no loss, and study the behavior as function of .
In Figure 3 we show the dependence on tree depth for binary trees of depth 2, 3 and 4. We plot

the maximum value of the variance over the links (a) and (b).
In these examples, the variance increases with the tree depth. In Figure 4 we show the dependence
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Figure 4: ASYMPTOTIC ESTIMATOR VARIANCE AND BRANCHING RATIO. Binary tree with
depth 2 and 2, 4 or 6 receivers. Left: Variance of (a) and (b) for link 1 (common link)
and 2 (generic receiver).

on branching ratio for a tree of level 2. We plot the estimator variance for both link 1 (the common
link) and link 2 (a generic receiver). In these examples, increasing the branching ratio decreases
the variances, especially those of the common link estimates which increases less than linearly for

up to 0.7 when the branching ratio is larger than 3. In all cases, the variance of is larger
than .

In all cases, as predicted by Theorem 4, the estimator variance is asymptotically linear in
independently of the topology as . As increases, the behavior is affected by different
factors: increasing the branch ratio results in a reduction of the variance, while increasing the tree
depth results in variance increase. The first can be explained in terms of the increased number of
measurements available for the estimation as the number of receivers sharing a given link increases;
the second appears to be the effect of cumulative errors that accrue as the number of links along a
path increases ( is computed iteratively on the tree). We also observe that the variance increases
with the delay lag; this appears to be caused by the iterative computation on the number of bins
that progressively cumulate errors.

4 Computation of the Delay Distribution Estimator

In this section we describe an algorithm for computing the delay distribution estimate from mea-
surements based on the results presented in the previous section. We also discuss its suitability for
distributed implementation and how to adapt the computation to handle different bin sizes.
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We assume the experimental data of source-to-leaf delays from probes, as
collected at the leaf nodes . Two steps must be initially performed to render the data into a
form suitable for the inference algorithms: (i) removal of fixed delays and (ii) choosing a bin size

and computing the estimate .
The first step is necessary since it is generally not possible to apportion the deterministic com-

ponent of the source-to-leaf delays between interior links. (To see this, it is sufficient to consider
the case of the two receiver tree; expressing the link fixed delays in terms of the source-to-leaf
fixed delays results in two equations in three unknowns). Thus we normalize each measurement
by subtracting the minimum delay seen at the leaf. Observe that to interpret the observed minimum
delay as the transmission delay assumes that at least one probe has experienced no queuing delay
along the path).

The second step is to choose the bin size and discretize the delays measurements accordingly.
This introduces a quantization error which affects the accuracy of the estimates. As our results have
shown, the accuracy increases as decreases (we have obtained accurate results over a significant
range of values of up to the same order of magnitude of the links average delay). The choice of

represents a trade-off between accuracy and cost of the computation as a smaller bin size entails
a higher computational cost due to the higher dimensionality of the binned distributions.

These two steps are carried out as follows. From the measured data , we recursively
construct the auxiliary vector process

(13)

(14)

The binned estimates of are

(15)

with

Here denotes the smallest integer greater than and .
Observe that represents the largest value at which the estimate is non zero.

The estimate can be computed iteratively over the delay lag and recursively over the tree.
The pseudo code for carrying out the computation is found in Figure 5. The procedure find y
calculates and , with initialized to for and (a value
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procedure main
find y ( ) ;
foreach ( )

infer delay ( , ) ;

procedure find y ( )
foreach ( )

= find y ( ) ;
foreach ( )

;

foreach ( )
;

return ;

procedure infer delay ( , ) ;
if ( )

= solvefor1 ( , ) ;
else

= solvefor2 ( ,

) ;

;

;

foreach ( )
infer delay ( , ) ;

Figure 5: PSEUDOCODE FOR INFERENCE OF DELAY DISTRIBUTION.

larger than any observed delay suffices) otherwise. The procedure infer delay calculates
for a fixed recursively on the tree, with , , initialized to 0, except for

set to 1. The output of the algorithm are the estimates , .
Within the code, an empty product (which occurs when the first argument of infer is a leaf)

is assumed to be zero. The routines solvefor1 and solvefor2 return the value of the first
symbolic argument that solves the equation in the second argument. solvefor1 returns a solu-
tion in ; from Lemma 1 in [4] this is known to be unique. solvefor2 returns the unique
solution if the second argument is linear in ( this happen only if is a leaf-node), otherwise
it returns the second largest solution.
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4.1 Distributed Implementation

As with the loss estimator [4] the algorithm is recursive on trees. In particular, observe that the
computation of and only requires the knowledge of ; these are computed
recursively on the the tree starting from the receivers. Therefore it is possible to distribute the
computation among the nodes of the tree (or representative nodes of subtrees), with each node
being responsible for the aggregation of the measurements of its child nodes through (14) and for
the computation of .

4.2 Adopting Different Bin Sizes

Following the results of the previous section, we presented the algorithm using a fixed value of
for all links. This can be quite restrictive in a heterogeneous environment, where links may differ
significantly in terms of speed and buffer sizes; a single value of could be at the same time too
coarse grained for describing the delay of a high bandwidth link but too fine-grained to efficiently
capture the essential characteristics of the delay experienced along a low bandwidth link.

A simple way to overcome this limitation is to run the algorithm for different values of , each
best suited for the behavior of a different group of links, and retain each time only the solutions for
those links. A drawback of this approach is that each distribution is computed for all the different
bin sizes. The distributed nature of the algorithm suggests we can do better; indeed, since ,

, can be computed independently from one another, it is possible to compute each link
delay distribution only for the bin size best suited to its delay characteristics. More precisely, let

denote the bin size adopted for link . In order to compute with bin size we need to
compute both and with bin size . Thus, the overall computation requires calculating
each cumulative distribution only for the bin sizes , , i.e., only for the bin
sizes adopted for the links terminating at node and at all its child nodes rather than for bin sizes
adopted for all links.

In an implementation, we envision that a fixed value for all links is used first. This can be
chosen based on the measurements spread and the tree topology or delay past history. Then, with
a better idea of each link delay spread, it would be possible to refine the value of the bin size on a
link by link basis.

5 Experimental Evaluation
We evaluated our delay estimator through extensive simulation. Our first set of experiments focus
on the statistical properties of the estimator. We perform model simulation, where delay and loss
are determined by random processes that follow the model on which we based our analysis. In
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our second set of experiments we we investigate the behavior of the estimators in a more realistic
setting where the model assumption of independence may be violated. To this end, we perform
TCP/UDP simulation, using the ns simulator. Here delay and loss are determined by queuing
delay and queue overflows at network nodes as multicast probes compete with traffic generated by
TCP/UDP traffic sources.

5.1 Comparing Inferred vs. Sample Distributions

Before examining the results of our experiments, we describe our approach to assessing the accu-
racy of the inferred distributions. Given an experiment in which probes are sent from the source
to the receivers, for , the inferred distribution ( is computed from the end-to-end mea-
surements using the algorithm described in Section 4. Its accuracy must be measured against the
actual data, represented by a finite sequence of delays ( ), experienced by
the probes in traversing (reaching) that link. For simplicity of notation we assume, hereafter, that
each set of data has been already normalized by subtracting the minimum delay from the sequence.

We compare summary statistics of link delay, namely the mean and the variance. A finer eval-
uation of the accuracy lies in a direct comparison of the inferred and sample distributions. To this
end, we also compute the largest absolute deviation between the inferred and sample c.d.f.s. This
measure is used in statistics for the Kolmogoroff-Smirnoff test for goodness of fit of a theoretical
with a sample distribution. A small value for this measure indicates that the theoretical distribution
provides a good fit to the sample distribution; a large value leads to the rejection of the hypoth-
esis. We cannot directly apply the test as we deal with an inferred rather than a sample c.d.f.;
however, we will use the largest absolute deviation as a global measure of accuracy of the inferred
distributions.

We compute the sample distributions and using the same bin size of the estimator. More
precisely, we compute and as
, ( ) and
, ( ). (Observe that in computing , the sum
is carried out only over , the set over which the delay
along link is defined either finite or infinite.)

The largest absolute deviation between the inferred and sample c.d.f.s is, then,
. In other words, is the smallest nonnegative number such that

lies between . The same result holds for the tail
probabilities, .
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Figure 7: AGREEMENT BETWEEN SIMULATED AND THEORETICAL CONFIDENCE INTERVALS.
(a): Results from 100 model simulations. (b): Prediction from (10). The graphs show two-sided
confidence interval at 2 standard deviation for link 1 and 2. Parameters are and

for all links.
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5.2 Model Simulation

We first consider the two-leaf topology of Figure 6(a), with source 0 and receivers 2 and 3. Link
delays are independent, taking values in ; if a probe is not lost it experiences either
no delay or unit delay. In Figure 6(b) we plot the estimate versus the model values for a
run comprising 10000 probes. The estimate converges within to of the model value within
4000 probes. In Figure 7 we compare the empirical and theoretical confidence intervals.
The theoretical intervals are computed from (10). The empirical intervals are computed over 100
independent simulations. The agreement between simulation and theory is close: the two sets of
curves are almost indistinguishable.

Next we consider the topology of Figure 8. Delays are independently distributed according
to a truncated geometric distribution taking values in (in ms) . This topology
is also used in subsequent TCP/UDP simulations, and the link average delay and loss probability
are chosen to match the values obtained from these. The average delay range between 1 and 2ms
for the slower edge links and between and ms for the interior faster links; the link losses
range from to . In Figure 9 we plot the estimated average link delay and standard deviation
with the empirical confidence interval computed over 100 simulations. The results are very
accurate even for several hundred probes: the theoretical average delay always lies within the
confidence interval and the standard deviation does so for 1500 or more probes.

To compare the inferred and sample distributions, we computed the largest absolute deviation
between the inferred and sample c.d.f.s. The results are summarized in Figure 10 where we plot
the minimum, median and the maximum largest absolute deviation in 100 simulations computed
over all links as a function of (a) and link by link for (b). The accuracy increases with
the number of probes as with a spread of two orders of magnitude between the minimum
and maximum. For more than 3000 probes, the average largest deviation over all links is less
than . The accuracy varies from link to link: when the number of probes is , then
at one extreme we have link 4 with and at the other extreme link 6 with

over 100 simulations. We observe that the inferred distributions are less accurate
as we go down the tree. This is in agreement with the results of Section 3.4 and is explained in
terms of the larger inferred probabilities variances of downstream with respect to upstream nodes.

5.3 TCP/UDP Simulations

We used the topology shown in Figure 8. To capture the heterogeneity between edges and core
of a WAN, interior links have higher capacity (5Mb/sec) and propagation delay (50ms) then at the
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Figure 10: MODEL SIMULATION: TOPOLOGY OF FIGURE 8. ACCURACY OF THE ESTIMATED
DISTRIBUTION. LARGEST VERTICAL ABSOLUTE DEVIATION BETWEEN ESTIMATED AND
SAMPLE C.D.F. Minimum, median and the maximum largest absolute deviation in 100 simula-
tions computed over all links as function of (a) and link by link for (b).

edge (1Mb/sec and 10ms). Each link is modeled as a FIFO queue with a 4-packet capacity.
Node 0 generates probes as a 20Kbit/s stream comprising 40 byte UDP packets according to

a Poisson process with a mean interarrival time of 16ms; this represents of the smallest link
capacity. Observe that even for this simple topology with 8 end-points, a mesh of unicast measure-
ments with the same traffic characteristics would require an aggregate bandwidth of 160Kbit/s at
the root. The background traffic comprises a mix of infinite data source TCP connections (FTP)
and exponential on-off sources using UDP. Averaged over the different simulations, the link loss
ranges between and and link utilization ranges between and .

For a single experiment, Figure 11 compares the estimated versus the sample average delay
for representative selected links. The analysis has been carried out using (a) and

(b). In this example, we practically obtain the same accuracy despite a tenfold difference
in resolution. (Observe that is of the same order of magnitude of the average delays.)
The inferred averages rapidly converge to the sample averages even though we have persistent
systematic errors in the inferred values due to consistent spatial correlation. We shall comment
upon this later.

In order to show how the inferred values not only quickly converge, but also exhibit good dy-
namics tracking, in Figure 12 we plot the inferred versus the sample average delay for 3 links (1,
3 and 10) computed over a moving window of two different sizes with jumps of half its width. To
allow greater dynamics, here we arranged background sources with random start and stop times.
Under both window sizes (approximately 300 and 1200 probes are used, respectively), the esti-
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Figure 11: CONVERGENCE OF INFERRED VERSUS SAMPLE AVERAGE LINK DELAY IN
TCP/UDP SIMULATIONS. (a): bin-size . (b): bin size . The graphs shows
how the inferred values closely track the sample average delays.
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Figure 12: DYNAMIC ACCURACY OF INFERENCE. Sample and Inferred average delay on links
1, 3 and 10 of the multicast tree in Figure 8. (a): 5 seconds window. (b): 20 seconds windows.
Background traffic has random start stop times.
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Figure 13: ACCURACY OF INFERENCE: AVERAGE DELAY. Left: . Right: .
The graphs show the normalized Root Mean Square error between the estimated and sample aver-
age delay over 100 simulations.

mates of the average delays of links 1 and 10 show good agreement and a quick response to delay
variability revealing a good convergence rate of the estimator. For link 3 with a smaller average
delay, the behavior is rather poor, especially for the 5 seconds windows size.

For a selection of links, in Figure 13 we plot the Root Mean Square (RMS) normalized error
between the estimated and sample average delays calculated over 100 simulations using
and . The two plots demonstrate that the error drops significantly up to 2000 probes
after which it becomes almost constant. In this example, increasing the resolution by a factor of
ten improves, although not significantly, the overall accuracy of the estimates especially for those
links that enjoy smaller delays. After 10000 probes the relative error ranges from to . The
higher values occur when link average delays are small due to the fact that for these links the same
absolute error results in a more pronounced relative error.

The persistence of systematic errors we observe in Figure 13 is due to the presence of spatial
correlation. In our simulations, a multicast probe is more likely to experience similar level of con-
gestion on consecutive links or on sibling links than is dictated by the independence assumption.
We also verified the presence of temporal correlation among successive probes on the same link
caused by consecutive probes experiencing the same congestion level at a node.

To assess the extent to which our real traffic simulations violate the model assumptions, we
computed the delay correlation between links pairs and among packets on the same link. The anal-
ysis revealed the presence of significant spatial correlations up to between consecutive
links. The smallest values are observed for link 5 which always exhibits a correlation with its
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parent node that lies below 0.1. From Figure 13 we verify that, not surprisingly node 5 enjoys
the smallest relative error. We believe that these high correlations are a result of the small scale
of the simulated network. We have observed smaller correlations in large simulations as would be
expected in real networks because of the wide traffic and link diversity.

The autocorrelation function rapidly decreases and can be considered negligible for a lag larger
than 30 (approximatively 2 seconds). The presence of short-term correlation does not alter the key
property of convergence of the estimator as it suffices that the underlying processes be stationary
and ergodic (this happens for example, when recurrence conditions are satisfied). The price of
correlation, however, is that the convergence rate is slower than when delay are independent.

Now we turn our attention to the inferred distributions. For an experiment of 300 seconds
during which approximately 18000 probes were generated, we plot the complementary c.d.f. con-
ditioned on the delay being finite in Figures 14. In Figure 15 we also plot the complement c.d.f
of the node cumulative delay. (we show only the internal links as ). Here

.
From these two sets of plots, it is striking to note the differences between the accuracy of the

estimated cumulative delay distributions and the estimated link delay distributions : while the
former are all very close to the actual distributions, the latter results are inaccurate in many cases.
This is explained by observing that in presence of significant correlations, the convolution among

, , and , used in the model, does not well capture the relationship between the actual
distributions. We verified this by convolving and and comparing the result with ; as
expected, in the presence of strong local correlation, the results exhibit significant differences that
account for the discrepancies of the inferred distributions. Nevertheless, results should be affected
in a continuous way with small violations leading to small inaccuracies. Indeed, we have good
agreement for the inferred distributions of links 4, 5, 10 and 12 that are the nodes with smallest
spatial correlations. Unfortunately it is not easy to determine whether the correlations are strong
and therefore assess the expected accuracy of the estimates, even though pathological shapes of the
inferred distributions could provide evidence of strong local correlations1. A solution could be the
extension of the model to explicitly account for the presence of spatial correlation in the analysis.
This will be the focus of future research.

The accuracy of the inferred cumulative delay distributions, on the other hand, derives from
the fact that even in presence of significant local correlations, equation (8), which assumes inde-

1To this end, we observed that under strong spatial correlation inaccuracies of the estimator are often associated
to the existence of significant increasing behavior portions in the complement c.d.f. that reveals the presence of
negative inferred probabilities with possibly non negligible absolute values.
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Figure 14: Sample vs. Estimated Delay c.d.f. for selected links.

26



1e-04

1e-03

1e-02

1e-01

1e+00

0 5 10 15 20 25 30 35 40

Co
m

pl
em

en
t o

f t
he

 C
um

ul
at

ive
 D

en
sit

y 
Fu

nc
tio

n

Delay  (ms)

Estimated vs. sample node 1 cumulative delay c.d.f

sample
estimated

1e-04

1e-03

1e-02

1e-01

1e+00

0 5 10 15 20 25 30 35 40

Co
m

pl
em

en
t o

f t
he

 C
um

ul
at

ive
 D

en
sit

y 
Fu

nc
tio

n

Delay  (ms)

Estimated vs. sample node 2 cumulative delay c.d.f

sample
estimated

1e-04

1e-03

1e-02

1e-01

1e+00

0 5 10 15 20 25 30 35 40

Co
m

pl
em

en
t o

f t
he

 C
um

ul
at

ive
 D

en
sit

y 
Fu

nc
tio

n

Delay  (ms)

Estimated vs. sample node 3 cumulative delay c.d.f

sample
estimated

1e-04

1e-03

1e-02

1e-01

1e+00

0 5 10 15 20 25 30 35 40

Co
m

pl
em

en
t o

f t
he

 C
um

ul
at

ive
 D

en
sit

y 
Fu

nc
tio

n

Delay  (ms)

Estimated vs. sample node 6 cumulative delay c.d.f

sample
estimated

1e-04

1e-03

1e-02

1e-01

1e+00

0 5 10 15 20 25 30 35 40

Co
m

pl
em

en
t o

f t
he

 C
um

ul
at

ive
 D

en
sit

y 
Fu

nc
tio

n

Delay  (ms)

Estimated vs. sample node 7 cumulative delay c.d.f

sample
estimated

Figure 15: Sample vs. Estimated node cumulative delay c.d.f.
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Figure 16: TCP/UDP SIMULATION: TOPOLOGY OF FIGURE 8. ACCURACY OF THE ESTI-
MATED DISTRIBUTION. LARGEST VERTICAL ABSOLUTE DEVIATION BETWEEN ESTIMATED
AND THEORETICAL C.D.F. Minimum, median and the maximum largest absolute deviation in 100
simulations computed over all links as function of (a) and link by link for (b).

pendence, is still accurate. This can be explained by observing that (8) is equivalent to (4) which
consists of a convolution between and ; we expect the correlation between the delay ac-
crued by a probe in reaching node and the minimum delay accrued from node to reach
any receiver be rather small, especially as the tree size grows, as these delays span the entire mul-
ticast tree.

Finally in Figure 16 we plotted the minimum, median and maximum largest deviation between
inferred and theoretical c.d.f. over 100 simulations computed over all links as function of (left)
and link by link as for (right). Due to spatial correlation, the largest deviation level
off after the first 2000 probes with the median that stabilize at . The accuracy again exhibits a
negative trend as we descend the tree.

6 Conclusions and Future Work

In this paper, we introduced the use of end-to-end multicast measurements to infer network internal
delay in a logical multicast tree. Under the assumption of delay independence, we derived an
algorithm to estimate the per link discrete delay distributions and utilization from the measured
end-to-end delay distributions. We investigated the statistical properties of the estimator, and show
it to be strongly consistent and asymptotically normal.

We evaluated our estimator through simulation. Within model simulation we verified the ac-
curacy and convergence of the inferred to the actual values as predicted by our analysis. In real
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traffic simulations, we found rapid convergence, although some persistent difference to the actual
distributions because of spatial correlation.

We are extending our delay distribution analysis in several directions. First we plan to do more
extensive simulations, exploring larger topologies, different node behavior, background traffic and
probe characteristics. Moreover, we are exploring how probe delay is representative of the delay
suffered by other applications and protocols, for examples TCP.

Second, we are analyzing the effect of spatial correlation among delays and we are planning
to extend the model by directly taking into account the presence of correlation. Moreover, we
are studying the effect of the choice of the bin size on the accuracy of the results. To deal with
continuously distributed delay, we derived a continuous version of the inference algorithm we are
currently investigating.

Finally, we believe that our inference technique can shed light on the behavior and dynamics
of per link delay and so allow us to develop accurate link delay models. This will be also object of
future works.

We feel that multicast based delay inference is an effective approach to perform delay mea-
surements. The techniques developed are based on rigorous statistical analysis and, as our results
show, yield representative delay estimates for all traffic which receive the same per node behavior
of multicast probes. The approach does not depend on cooperation from networks elements and
because of bandwidth efficiency of multicast traffic is well suited to cope with the growing size of
today networks.

References
[1] R. Bellmann and R. Roth, “The Laplace Transform”, World Scientific, Singapore 1984.
[2] J. Bolot, “Characterizing End-to-End Packet Delay and Loss in the Internet.” Journal of High-Speed

Network, vol. 2 n. 3, pp. 289-298, Dec. 1993.
[3] J-C. Bolot and A. Vega Garcia “The case for FEC-based error control for packet audio in the Internet”

to appear in ACM Multimedia Systems.
[4] R. Caceres, N.G. Duffield, J.Horowitz and D. Towsley, “Multicast-Based Inference of Network Inter-

nal Loss Characteristics” to appear in IEEE Trans. on Information Theory, November 1999.
[5] R. Caceres, N.G. Duffield, J .Horowitz, D. Towsley and T. Bu, “Multicast-Based Inference of Network

Internal Loss Characteristics: Accuracy of Packet Estimation” Proc. of Infocom ’99, New York, NY,
Mar. 1999.

[6] R. Caceres, N.G. Duffield, S. Moon, and D. Towsley, “Inferring Link-Level Performance from End-
to-End Measurements” submitted for publication, Mar. 1999.

[7] R. Caceres, N.G. Duffield, J .Horowitz, F. Lo Presti and D. Towsley, “Loss-Based Inference of Mul-
ticast Network Topology” to appear in Proc. of 1999 IEEE Conference on Decision and Control,
Phoenix, AZ, Dec. 1999.

[8] K. Claffy, G. Polyzos and H-W. Braun, “Measurements Considerations for Assessing Unidirectional
Latencies”, Internetworking: Research and Experience, Vol. 4, no. 3, pp. 121-132, Sept. 1993.

29



[9] R. L. Carter and M. E. Crovella, “Measuring Bottleneck Link Speed in Packet-Switched Networks,”
PERFORMANCE ’96, Oct. 1996.

[10] A. Downey, “Usingpathchar to estimate Internet link characteristics, Proc. SIGCOMM1999, Cam-
bridge, MA, pp. 241-250, Sept. 1999.

[11] N. Duffield, F. Lo Presti, “Multicast Inference of Packet Delay Variance at Interior Networks Links”
submitted to IEEE Infocom 2000.

[12] N. Duffield, J. Horowitz, F. Lo Presti and D. Towsley, “Probabilistic Inference Methods for Multicast
Network Topology”, in preparation.

[13] Felix: Independent Monitoring for Network Survivability. For more information see
ftp://ftp.bellcore.com/pub/mwg/felix/index.html

[14] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion Avoidance,”
IEEE/ACM Transactions on Networking, Vol. 1, no. 4, August 1993.

[15] IPMA: Internet Performance Measurement and Analysis. For more information see
http://www.merit.edu/ipma

[16] IP Performance Metrics Working Group. For more information see
http://www.ietf.org/html.charters/ippm-charter.html

[17] V. Jacobson, Pathchar - A Tool to Infer Characteristics of Internet paths. For more information see
ftp://ftp.ee.lbl.gov/pathchar

[18] J. Mahdavi, V. Paxson, A. Adams, M. Mathis, “Creating a Scalable Architecture for Internet Mea-
surement,” Proc. of INET ’98, Geneva, Switzerland, July 1998.

[19] M. Mathis and J. Mahdavi, “Diagnosing Internet Congestion with a Transport Layer Performance
Tool,” Proc. INET ’96, Montreal, June 1996.

[20] D. Mills, “Network Time Protocol (Version 3): Specification, Implementation and Analysis”, RFC
1305, Network Information Center, SRI International, Menlo Park, CA, Mar. 1992.

[21] S. Moon, P. Skelly and D. Towsley, “Estimation and Removal of Clock Skew from Network Delay
Measurements” Proc. of Infocom ’99, New York, NY, Mar. 1999.

[22] S. Moon, J. Kurose, P. Skelly and D. Towsley, “Correlation of Packet Delay and Loss in the Internet”
Tech. Report University of Massachussets at Amherst,1999.

[23] mtrace – Print multicast path from a source to a receiver. For more information see
ftp://ftp.parc.xerox.com/pub/net-research/ipmulti

[24] A. Mukherjee, “On the Dynamics and Significance of Low Frequency Components of Internet Load”,
Internetworking: Research and Experience, Vol. 5, pp. 163-205, Dec. 1994.

[25] ns – Network Simulator. For more information see http://www-mash.cs.berkeley.edu/ns/ns.html
[26] V. Paxson, “End-to-End Routing Behavior in the Internet,” Proc. SIGCOMM ’96, Stanford, Aug. 1996.
[27] V. Paxson, “End-to-End Internet Packet Dynamics,” Proc. SIGCOMM 1997, Cannes, France, pp. 139-

152, Sept. 1997.
[28] V. Paxson, “Measurements and Analysis of End-to-End Internet Dynamics,” Ph.D. Dissertation, Uni-

versity of California, Berkeley, Apr. 1997.
[29] V. Paxson, “Automated Packet Trace Analysis of TCP Implementations,” Proc. SIGCOMM 1997,

Cannes, France, pp. 167-179, Sept. 1997.
[30] V. Paxson, “On calibrating measurements of Packet Transit Times”, Proc. of SIGMETRICS ’98, Madi-

son, June 1998.
[31] S. Ratnasamy and S. McCanne, “Inference of Multicast Routing Tree Topologies and Bottleneck

Bandwidths using End-to-end Measurements”, Proceedings IEEE Infocom’ 99, New York, NY,
Mar. 1999.

[32] D. Sanghi, A. Agrawala and B. Jain, “Experimental assessment of end-to-end behavior on Internet”,
Proc. IEEE Infocom ’93, San Francisco, CA, pp. 867-874, Mar. 1993.

[33] D. Sanghi, O. Gudnumdsson, A. K. Agrawala, “Study of network dynamics”, Proc. 4th Joint Euro-
pean Networking Conference, Trondheim, Norway, pp. 241-249, May 1993.

[34] M.J. Schervish, “Theory of Statistics”, Springer, New York, 1995.
[35] Surveyor. For more information see http://io.advanced.org/surveyor/

30



A Uniqueness andContinuouslyDifferentiability of the Inverse

The algorithm presented in Section 3.2.2 computes a solution of the system of equations (5) in the
unknown given . By deconvolution we then
compute .

We now show that solution so computed is the unique solution of the equation , i.e.
that it is uniquely defined the inverse . To this end we rewrite the mapping as

where is clearly a bijection. It remains to show that is also a bijection.
To prove this consider , and such that and . We first show that ,

is the second largest solution of (8).
In the binary case we can directly solve (8) to obtain the two solutions

and

For the general case we have the following Lemma

Lemma 1 Let , denote the real solutions of the equation

(16)

Then .

Proof: Substitute in equation (16) obtaining

(17)
To prove the lemma we simply need to show that is the second largest solution of (17).
Expanding the product in the second term we get
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where , . Observing that the constant terms sums
to 0 (equation (5) and dividing by ) this reduces to

Grouping with respect to , we obtain

The coefficients of the polynomial are all positive but the last which is negative. The proof follows
observing that since , and , , there is one and only one
solution of (17) greater than zero.

From the uniqueness of the solution of (6) for canonical delay trees and by induction on , it
then follows that is a bijection; thus, the inverse is uniquely defined.

To prove that the inverse is continuously differentiable we proceed as follows. Denote ,
, , the left hand side of (8). Define the function .

is the system of equations to be solved to compute given . Denote the unique
solution to . The proof that the inverse is continuously differentiable amounts to
show that so is (as and its inverse clearly are). For canonical trees,

, , and therefore is continuously differentiable. Then, by the Implicit Function
Theorem, so is provided that the determinant of the Jacobian is different from

zero. To see this, observe that if or ; hence the Jacobian matrix is

always triangular. The diagonal elements are .

B The Continuous Model: Delay Distribution Analysis

In this Appendix we formulate the delay analysis for continuous delay distributions, rather than
for the discrete distributions. We assume now that and the distribution to be
absolutely continuous w.r.t Lebesgue measure on with density , together with an atom at

of mass , the probability that a packet is lost traversing the link
terminating at . (For simplicity of notation, here we do not consider the atom in 0 representing
the probability that a probe experiences minimum delay.) is defined similarly for the source to
root delays . Similar to the discrete case we define as the event and

, . Finally, let , . From the

32



above definitions, the following relations hold:

where we set ,

(18)

and
(19)

which is the continuous version of (5). Empty products are assumed to be equal to zero.
The above equation can be rewritten in more convenient form using the Laplace transform

(20)

or
(21)

where, is the Laplace transform of , is the convolution operator in
the domain , , and .

Given , , (21) represents a system of independent equations in the unknown
, . can then be computed by the quotients

Solving equation (21) is not trivial especially because of the convolution in the right hand side
which in general can be computed only numerically. Furthermore, we have not been able yet
to establish whether the solution is unique. The inversion of the Laplace transform poses other
challenges. It is well known, indeed (see for example [1]), that the Laplace inverse transform is an
unbounded operator. In other words arbitrary small changes in the transform will produce arbitrary
large changes in the original function. Therefore it may not be easy to control the accuracy of the
results obtained with such an approach. All these issues will be subject of further investigation.
The estimator can be computed in the same manner from the estimates we obtain from
the measurements. (21) can be written as a fixed point equation for the ; this suggests the
possible use of contraction mapping theorem in order to establish existence and uniqueness of
solutions.
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C Proof of Theorem 4

The proof proceeds by a number of subsidiary results.

C.1 Limit Behavior of , and

As ,
(i)

(22)

(ii)
(23)

(iii)
(24)

where

(25)

The relation (i) is clear for by expanding ; for , it follows by
an inductive argument on and : it is true for and ; if it is true for and for

, then

Also (ii) follows by an inductive argument. Observe from (3) that if (ii) hold for all in
and then . Since for ,

, (ii) holds for all and . (iii) then follows expanding
(Observe that the terms within square bracket are always of the form

).

C.2 Limit Behavior of the Covariance Matrix

As ,
(26)

where denote the minimal common ancestor of and with respect to .
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To see this, we write . By defini-
tion, and
2. We have three cases:

(i) , .

In this case and .
Thus,

(26) follows as and .

(ii) , .

Write
. The first two terms are and .

Then, as for

(27)

it readily follows that as

(28)

To compute we need to define some additional
quantities. Denote a set of nodes that induces a partition on , i.e., is
such that and , , . Associate to a set
of delay values . The quantities we introduce below are a generalization of the

and , where we use for different sets of receivers, namely , different delays,
. For , define

(29)

Then, obey to the recursion

(30)

(31)
2Since probes are assumed independent, it suffices to evaluate all random quantities for probes.
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where and . Probabilities with negative
index are assumed to be equal to zero.

For a given node , define now

(32)

The following, which can be regarded as a generalization of (5), holds

(33)

(34)

For , it is easy to verify that behaves as (the terms within square
bracket are always of the form ). In other words, .

With the definitions above, we can now write

(35)

where , , and , with and , .
Then, as ,

(36)

Thus,
(37)

(26) follows as and .

(iii) .

We proceed as for (ii). In this case, we can write

(38)

where , and , and , with , and
, (for (38) to hold, we need to set to -1, , or any other negative number,

to insure that all events regarding receivers different from and have probability zero).
Thus, as ,

(39)
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Thus,
(40)

C.3 Limit Behavior of the Jacobian

As ,

where
otherwise

(41)

where is a matrix with entries , denote the Knonecker
product and if and 0 otherwise.

To establish this, we first show that its inverse whose elements are
has the following form for ,

where
otherwise

(42)

where is a unit lower triangular matrix, i.e., . To this end we rewrite as
. We have the following three cases:

(i) , .

Let be such that . Then, for

(43)

(44)

(45)

(46)
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as the first term of (45) goes to 1 while the second goes to because in any product there is at least
one such that .

(ii) , .

Let be such that there exists an such that . Then,

(47)

(48)

(49)

as each product goes to 0, as .

(iii) .

In this last case, does not depend on and the derivative is 0.
Since matrix inversion is continuous in an open neighborhood on non-singular matrices, then

(41) follows since and are inverses (see Section 10 of [4]) as also are and (trivial) and
since for invertible square matrices and , .

C.4 Proof

From Theorem 3, (26), (41) and continuity of finite dimensional matrix products, we have for
that

(50)

It remains to evaluate

(51)

When , then (51) yields 0. Indeed, if , , while
, and hence (51) is zero. Similar for . In all other
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cases, and so and
(51) is again zero.

When , , and (51)
reduces to

(52)

Substituting in (52), it is easy to verify the following:

(53)
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