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Abstract

BIG is a sophisticated, web-based, information gathering agen t
that recommends software packages.  BIG plans, locates a n d
processes free-format WWW documents via natural language
processing and other text extraction techniques.  BIG uses t h e
processed information to create models of software products a n d
then compares the models to the client’s criteria a n d
recommends a product for the client to purchase.  BIG also uses
the information extracted during the search to adapt and ref ine
the search process itself – for example, deciding to gather m o r e
information on a particularly highly referred product.  This
paper discusses techniques used by BIG to control: 1) the a m o u n t
of monies spent in acquiring information from sites that charge a
fee for accessing their information, 2) the balance between t h e
scope/coverage of information gathered and the precision o f
resulting decision, and 3) the end-to-end time that t h e
information gathering and processing activities will take.  As p a r t
of this discussion, we present the DTC (Design-to-Criteria)
scheduler and the domain-independent activity representat ion,
called TAEMS, that is used to describe and quantify BIG’s p rob lem
solving activities for the scheduler. We also present experimental
results showing how BIG reconfigures its activities to meet
resource and cost constraints.

                                                  
1 This material is based upon work supported by the Department of Commerce, the Library of Congress, and the National
Science Foundation under Grant No. EEC-9209623, and the National Science Foundation under Grant No. IRI-9523419,
and the Department of the Navy and Office of the Chief of Naval Research, under Grant No. N00014-95-1-1198.  The
content of the information does not necessarily reflect the position or the policy of the Government or the National
Science Foundation and no official endorsement should be inferred.
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1.  Introduction

Over the last five years, we have been developing a next generation, web-based
information gathering (IG) agent, called BIG (resource Bounded Information
Gathering). BIG locates, retrieves a nd processes information to support a h u m a n
decision process.  Specifically, BIG helps clients pick software packages, although t h e
techniques it uses are general enough to apply to a wide range of domains.  For
example, a client can instruct BIG to r ecommend a database package for Windows 9 8
and specify constraints on both the search process (e.g., how much money to s p e n d
gathering information) and on the product, e.g.,  the amount of money he or she is
willing to pay for the product, reliability, ease-of-use, etc.  BIG will then formulate a
plan, locate, and process relevant information, and return a recommendation to t h e
client, along with the supporting da ta .

Like meta-search engines [15, 11, 16, 33] BIG may use multiple different web search
tools to l ocate information on the web.  In contrast to the meta-search engines, BIG
learns about products over time and reasons about the time/quality trade-offs o f
different web search options.  Like a personal information agent [1, 25], BIG gathers
documents by a ctively searching the web (both by following links and using search
engines), however, BIG does not stop at just locating relevant information, b u t
instead can analyze the documents found using a variety of techniques that include
a heavy-weight natural language text extraction system, BADGER [27], a variety o f
lighter weight extraction approaches such as a Unix-style grep and site-specific
wrapper utilities. Conceptually, BIG “reads” free-format text, identifies p r o d u c t
features like prices, disk requirements, support policies, etc., extracts these features
from the documents and then reasons about them. Like shopping agents [19, 8, 17] ,
BIG gathers information to support a decision process.  However, BIG differs from a
shopping agent in the complexity of i ts decision process (BIG is not just compar ing
product prices) and in the complexity of its runtime information processing
facilities.  BIG is related to the WARREN [5] multi-agent portfolio managemen t
system, which also retrieves and processes information, however, BIG differs in i ts
reasoning about the trade-offs of alternative ways to gather information, i ts
ambitious use of gathered information to drive further gathering activities, i ts
bottom-up and top-down directed processing, and its explicit representation o f
sources-of-uncertainty associated with both inferred and extracted information.
Other related work can also be seen in [12, 28, 14, 32, 26]. An example of a typical
client query to BIG and its output is shown in Figure 1 .
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Figure 1:  A Query/Response Search Episode
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Figure 2: The BIG Agent Architecture

The BIG agent architecture (shown in Figure 2) and its overall per formance
capabilities have been well documented previously [21, 22, 23] .  The following is a
brief description of the ma jo r components :
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RESUN Planner – A blackboard-based  interpretation planner that is the d o m a i n
expert.  Gathers and processes information, builds models of products, a n d
recommends purchase decisions.

Information Extractors - Text extraction tools that process free-format text t o
produce structured da ta .

Document Classifiers - Qualify text before sending onto the informat ion
extractors.  Prevents BIG from being distracted by information unrelated to t h e
query at h a n d .

Server Information Database  - While BIG uses commercial index-based engines
like AltaVista and Infoseek, BIG also maintains a local database of informat ion
sources.

Object Database - Where BIG stores information about products as it constructs
models of the products.  Also where BIG keeps information learned from p r io r
searches.

Design-to-Criteria (DTC) Scheduler - Agent control problem solver, enables BIG
to meet deadlines and cost restrictions.

TAEMS Modeling Framework - Used to quantify and model the agent's p rob lem
solving behaviors for the DTC scheduler .

Task Assessor  - Responsible for managing the interface between the RESUN
opportunistic planner and the DTC scheduler .

In this paper, we focus on a recently developed capability of BIG’s: its ability t o
schedule its information gathering activity in order to control the amount of monies
spent in acquiring information from sites that charge a fee for accessing the i r
information. We feel that the model of free access for information on the WWW
based on advertisers’ fees will, in time, not be the dominant model for WWW.  A
number of sites, for example Consumer Reports (www.consumerreports.com) a n d
the Wall Street Journal (www.wsj.com), already charge access fees for t he i r
information.  In turn, they provide high quality, screened information that would b e
useful for an intelligent assistant.  This is especially true as the type of intelligent
agent assistance exemplified in systems like BIG become the more c o m m o n mode l
for how users make purchasing decisions and other high-level decisions which
require extensive information gathering on the WWW.  Recent work on digital
libraries [10] supports this view that there will be an information economy on t h e
WWW.  Though our work reported here does not emphasize a marketplace model fo r
acquisition of information where costs can be negotiated, our basic approach will
support this more dynamic costing model .

This new capability fits very nicely with BIG’s existing ability to control both t h e
end-to-end time that the information gathering will take and the balance be tween
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the scope/coverage of information gathered and the precision of resulting decision.
From the perspective of the software domain, this latter point refers to the n u m b e r
of products that are discovered and analyzed versus the amount of detailed a n d
overlapping information that is gathered on each product which is used to make t h e
final decision. More generally, BIG is designed with the view that informat ion
gathering on WWW must of necessity be resource-bounded and in different
situations, the criterion for how to control the resource-boundedness of the sys tem
will change. We feel it is impossible to perform an exhaustive search to ga the r
information on a particular subject, or even in many cases to determine the to ta l
number of instances (e.g. particular word processing programs) of the general
subject (e.g. word processing) that is being investigated. Consequently, any solut ion
to this IG problem needs to s u p p ort reasoning about trade-offs among resource
constraints (e.g. the decision must be made in 1 hour), the quality of the selected
item, and the quality of the decision process (e.g. comprehensiveness of search,
effectiveness of information extraction methods usable within specified time limits).
Because of the need to conserve time, it is important for an IG system to be able t o
save and exploit information about pertinent objects learned from earlier forays in to
the WWW.  Additionally, we argue that an IG solution needs to support constructive
problem solving , in which potential answers (e.g. models of products) to a user's
query are incrementally built up from features extracted from raw documents a n d
compared for consistency or suitability against other partially-completed answers.

In Section 2, we discuss the general framework that allows BIG to make resource-
bounded decisions about how to organize its processing to achieve cost objectives,
end-to-end completion time, and scope/precision trade-offs given user specified
criteria. Section 4 provides detailed experimental data indicating how BIG
reorganizes its search process to live within specific monetary constraints on h o w
much can be spent on accessing information useful in making a software purchas ing
decision. In Section 5, we conclude the article with a review of the major points .

2. Planning to Address Resource Bounds

BIG addresses time and cost limitations by using the Design-to-Criteria (DTC)
domain-independent agent scheduler [30, 31].  The DTC scheduler’s expertise lies i n
analyzing an agent's candidate set of problem solving actions and choosing a course
of action for the agent that meets complex, multi-dimensional design criteria.  I n
BIG, the design criteria specifies the relative impor tance of solution completeness
and coverage, as well as cost and time restrictions.  Design-to-Criteria achieves
domain independence through the TAEMS task model ing framework, which
describes and quantifies key activities and key decision points in the agent ' s
problem solving process.  Design-to-Criteria interfaces with the IG expert planner, a
RESUN interpretation planner [ 2, 3, 4 ], through TAEMS and another componen t
called the task assessor that abstracts RESUN's information gathering process in to
TAEMS mode ls for evaluation and scheduling.  It is important to note that the DTC
scheduling problem has commonaltie s with both classic scheduling and p lanning
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problems.  One aspect of scheduling a TAEMS task structure is deciding which
alternative tasks to perform or which methods to use to achieve a particular
objective; the other aspect is in determining the best sequence in which to pe r fo rm
the activities.  We not only order the activities, we can concurrently schedule n o n -
local activities: e.g. new document re t r ieval requests to web search engines can b e
scheduled simultaneously with the  local processing of documents already retr ieved.
This point is particularly important as the element of choice in BIG's p rob lem
solving process, i.e., having alternative ways to achieve goals, is what gives DTC t h e
room to maneuver and address resource limitations.  Without this element of choice,
this flexibility, BIG's problem solving behavior would not be adjustable to different
resource situations.  The other important intellectual point is that quantification o f
the different problem solving options is necessary for DTC to make “good” o r
reasoned choices when comparing the different options.  Without quantified choice
in BIG's process, BIG's behaviors would be very limited.  To truly illustrate the issue
of flexibility and choice, and their role in resource bounded information gathering,
we must take a closer look at TAEMS and BIG's information gathering process.

TAEMS (Task Analysis, Environment Modeling, and Simulation) is a  domain
independent task model ing framework used to describe and reason about complex
problem solving processes.  TAEMS models are used in multi-agent coordinat ion
research [5, 31] and are being used in many other research projects, including:
cooperative-information-gathering [23],  collaborative distr ibuted design [7],
intelligent environments [20], coordination of software process [9], and others [4,
29, 13].  Typically a problem solver represents domain problem solving actions i n
TAEMS, possibly at some level of abstraction, and then passes the TAEMS models o n
to agent control problem solvers like the Design-to-Criteria scheduler .

TAEMS models are hierarchical abstractions of problem solving processes t h a t
describe alternative ways of accomplishing a d e sired goal; they represent ma jo r
tasks and major decision points, interactions between tasks, and resource constraints
but they do not describe the intimate details of each primitive action.  All primit ive
actions in TAEMS, called methods, are statistically characterized via discrete
probability distributions in three dimensions: quality, cost and duration.  Quality is
a deliberately abstract domain-independent concept that describes the contr ibut ion
of a particular action to overall problem solving.  Durat ion describes the amount o f
time that the action modeled by the method will take to execute, and cost describes
the financial or opportunity cost inherent in performing the action.  Uncertainty i n
each of these dimensions is implicit in the performance characterization - t h u s
agents can reason about the certainty of particular actions as well as their quali ty,
cost, and duration trade-offs.  The uncertainty representation is also applied to task
interactions like enablement, facilitation and hindering effects2, e.g., “10% of t h e
time facilitation will increase the quality by 5% and 90% of the time it will increase
                                                  
2 Facilitation and hindering task interactions model soft relationships in which a result produced by some task may be
beneficial or harmful to another task.  In the case of facilitation, the existence of the result, and the activation of this task
interaction, generally increases the quality of the recipient task or reduces its cost or duration.
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the quality by 8%.” The quantification of methods and interactions in TAEMS is n o t
regarded as a perfect science.  Task structure programmers or problem solver
generators estimate the performance characteristics of primitive actions.  These
estimates can be refined over time through learning [3 4] and reasoning components
typically replan and reschedule when unexpected events occur.
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Figure 3:  TAEMS IG Task Structure

To illustrate, consider Figure 3, which is a conceptual, simplified sub-graph of a task
structure emitted by BIG.  The actual task structures are too complex fo r
introductory example purposes - we present an actual TAEMS task structure emi t ted
by BIG in Figure 6.  Figure 3 describes the portion of the information gather ing
process that pertains to constructing models or objects of commercial products.  T h e
top-level task is to construct product models of retail PC systems.  It has two
subtasks, Get-Basic and Gather-Reviews, both of which are decomposed into me thods
that are described in terms of their expected quality, cost, and duration.  T h e
enables arc between Get-Basic and Gather-Reviews is a non-local-effect (NLE), or task
interaction; it models the fact that the review gathering methods need the names o f
products as a precondition to gathering reviews for them.  As we shall illustrate, t ask
interactions are important in BIG’s behavior model because they describe t h e
relationship b etween obtaining more documents and text processing, and solut ion
attributes, such as coverage or precision.  Task interactions are also important w h e n
we contemplate a multi-agent information gathering scenario because they identify
instances in which tasks assigned to different agents are interdependent - t h e y
model, in effect, implicit joint goals or joint problem solving activity [2 4].
Coordination is motivated by the existence of these interactions [6].

Returning to the example, Get-Basic has two methods, joined under the s u m ( )
quality-accumulation-function (QAF), which defines how performing the subtasks
relate to performing the parent task.  In this case, either method or both may b e
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employed to achieve Get-Basic.  The same is true for Gather-Reviews.  The QAF fo r
Build-PC-Product-Objects is a seq_sum( )  which indicates that the two subtasks m u s t
be performed, in order, and that their resultant qualities are summed to de te rmine
the quality of the parent task; thus there are nine alternative ways to achieve t h e
top-level goal in this particular sub-structure.  In general, a TAEMS task s t ruc ture
represents a family of plans, rather than a single plan, where the different p a t h s
through the network exhibit different statistical characteristics or trade-offs.

TAEMS also supports modeling of tasks that arrive at particular points in t ime,
individual deadlines on tasks, earliest start times for tasks, and non-local me thods
(those belonging to other agents).  In the development of TAEMS there has been a
constant tension between representational power and the combinatorics inherent i n
working with the structure.  The result is a model that is non-trivial to process a n d
schedule in any optimal sense (in the general case), but also one that lends itself t o
flexible and approximate processing strategies.

Given the process described in Figure 3, Design-to-Criteria can construct cus tom
schedules for BIG to meet its current situation.  Even this simple task structure gives
DTC room to adapt BIG's problem solving.  Figure 4 shows four different schedules
constructed for different BIG clients that have different objectives and criteria.
Schedule A is constructed for a client that has both time and financial resources - h e
or she is simply interested in maximizing overall solution quality.  Schedule B is
constructed for a client that wants a free solution.  Schedule C is constructed for a
client interested in trading-off quality, duration, and cost equally.  Schedule D mee t s
the needs of a client interested in maximizing quality while meeting a hard deadl ine
of 7 minutes.  Note that schedule D is actually preferred over a schedule t h a t
includes method Query-and-Extract-PC-Connection even though said method has a
higher expected value than Query-and-Extract-PC-Mall.  This is because the PC-
Connection  method has a higher probability of failure.  Because of the enables n l e
from the task of getting product information to retrieving reviews, this h igher
probability of failure also impacts the probability of being able to query t he
Consumer's site for a review.  Thus, though the local choice would be to prefer PC-
Connect ion  over PC-Mall for this criteria, the aggregate effects lead to a different
decision.   The general approach to specifying design criteria is a slider m e t a p h o r
(Figure 5) via which scheduler clients specify the relative importance of quali ty,
cost, duration, certainty in these dimensions, and limits or thresholds on these
values.
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Figure 4: Custom Schedules for the IG Task Structure

 Figure 5:  Scheduler Design Criteria Metaphor
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As mentioned earlier, the BIG agent uses the RESUN interpretation planner to t rack
and resolve uncertainties about the gathered information and generated hypotheses
during information gathering.  However, RESUN does not plan internally using t h e
TAEMS modeling framework, in fact, RESUN's opportunistic/blackboard style o f
problem solving is at odds with the planned-view taken by TAEMS and needed b y
the scheduler to address resource limitations.  The interface between RESUN a n d
TAEMS/DTC is accomplished by a different reasoning component called the task
assessor.  The task assessor is responsible for formulating the initial informat ion
gathering plan and for revising the plan as new information is learned.  It manages
the high-level process-centered view of the information gathering activities a n d
describes this process via TAEMS for the DTC scheduler.  The scheduler, in t u r n ,
analyzes the task structure and decides on a course of action for the agent.  There is
a constant tension between RESUN's opportunistic control and the end-to-end view
required to meet deadline and cost constraints.  While the details of how th is
balance is maintained are beyond the scope of this paper [2 3], the important po in t
is that the task assessor serves as the TAEMS-emitting intermediary between RESUN
and DTC.

2.1 Precision versus Coverage in BIG

Thus far we have illustrated Design-to-Criteria's abilities and TAEMS using a small
example.  Figure 6 shows a complete TAEMS task structure as emitted by the task
assessor.  Note that there are many more decision points or opportunities for choice
in this task structure than in the sample structure of Figure 3.  This is how BIG c a n
adjust problem solving not only to meet time and cost limitations, but also t o
balance between solution precision and solution coverage. Precision versus coverage
is an issue often discussed in literature relating to information gathering o r
information retrieval.  In the BIG context, once a satisfactory amount of informat ion
has been processed to support a high quality decision process, the issue becomes
how best to spend the remaining time, cost, or other most constrained resource.
One alternative is to spend the time gathering more information about o t h e r
products, i.e., discovering new products and building models of them.  Another
alternative is to spend the time discovering new information about the existing
products in order to increase the precision of the product models.  Both al ternatives
can lead to higher quality decision p r ocesses since both expand the range o f
information on which the decision is based.

BIG supports both of these behaviors, and a range of behaviors in between t h e
binary extremes of 100% emphasis on precision and 100% emphasis on coverage.
BIG clients specify a precision/coverage preference via a percentage value t h a t
defines the amount of “unused” (if there is any) time that should be s p e n t
improving product precision.  The remainder is spent trying to discover a n d
construct new products.  For example, if a  client specifies .3, this expresses the idea
that 30% of any additional time should be spent improving precision and 70%
should be spent discovering new products.  BIG achieves this trade-off behavior i n
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two ways: by planning and scheduling for it a priori, and by responding
opportunistically to the problem solving context within the constraints of t h e
schedule.  

Scheduling for the precision / coverage trade-off is accomplished by relating t h e
precision and coverage specification to quality for the Design-to-Criteria scheduler
and giving the scheduler a set of options, from which to choose a course of action.
In Figure 6, Get-Extra-Information has two subtasks, Get-More-Objects and Detail-
Product-Information denoting the two different ends of the spec t rum.  Get-More-
Objects represents the coverage end and Detail-Product-Information represents t h e
precision end.  The sum() quality accumulation function under the parent task, Get-
Extra, models the idea that the scheduler may choose from either side, d e p e n d ing o n
the quality, cost, duration, and certainty, characteristics of the primitive act ions
under each.  Client precision/coverage preference is related to quality for t h e
primitive actions under these tasks, i.e., the actions pertaining to precision receive
higher quality when increased weight is given to precision.  This approach enables
the scheduler to reason about these extra activities and their value, and re la te t h e m
to the other problem solving options from a unified perspective.  Thus, the overall
value of pre-allocating “extra” time to coverage or precision is also considered i n
light of the other candidate activities.

BIG can also work opportunistically to improve coverage or precision.  While t h e
details are beyond the scope of this paper [23], the general idea is that scheduling
often pertains to activities that represent one or more actions in the RESUN planner .
This means that within each TAEMS method, RESUN has some flexibility to r e s p o n d
to the current problem solving context or to emphasize coverage or precision.  A
third option, not currently implemented, is for BIG to revise its problem solving
options as new information is gained and the context (state of the blackboard,
environment, time remaining, etc.) changes.  This would enable BIG to reac t
opportunistically but to do so wholly in the context of reasoning about the quali ty,
cost, duration, certainty trade-offs of its options from a unified perspective.
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Figure 6:  Actual BIG IG Task Structure

2.2 Scheduling for Hard Deadlines

Design-to-Criteria employs a complex set of approximations, heuristics, a n d
satisficing methodologies to cope with the high-order combinatorics of the TAEMS
scheduling problem.  During the course of the BIG project, we encountered a n
interesting problem with the satisficing focusing methodology used in Design-to-
Criteria when it is combined with hard deadlines and certain classes of very large
task structures.  Without delving into exhaustive detail, the problem is that in order
to cope with the high-order combinatorics in these particular situations, t h e

 Figure 7:  Alternative Sets Lead to Cumbersome Combinatorics
scheduling algorithm must prune schedule approximations, called alternatives, a n d
then develop only a subset of these.  Herein lies the p r oblem.  
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Alternatives are constructed bottom-up from the leaves of the task hierarchy to t h e
top-level task node, i.e., the alternatives of a task are combinations of t h e
alternatives for its sub-tasks.  Figure 7 shows the alternative set generation process
for a small task structure.  Alternatives are generated for the interior tasks T1 and T2,
and these alternatives are combined to produce the alternative set for the root task,
T.  The complexity of the alternative generation process is pronounced.  A t a sk
structure with n  methods leads to O(2n)  possible alternatives at the root level.  We
control this combinatorial complexity by focusing alternative generation a n d
propagation on alternatives that are most likely to result in schedules that “best”
satisfice to meet the client's goal criteria; alternatives that are less good a t
addressing the criteria are pruned from intermediate level alternative sets.  For
example, a criteria set denoting that certainty about quality is an important issue
will result in t he pruning of alternatives that have a relatively low degree of qual i ty
certainty.  After the set of alternatives for the high-level task is constructed, a subse t
of alternatives are selected for scheduling.

For situations in which there are no overall hard deadline, or in which shor te r
durations are also preferred, the focusing mechanism works as advertised.  However,
in the BIG project, we are also interested in meeting real-time deadlines and o t h e r
hard resource constraints (in contrast to those that are relaxable), and often these
preferences are not accompanied by a general preference for low duration or low
cost.  In these cases, the problem lies in making a local decision about which
alternatives to propagate (at an interior node) when the decision h as implications t o
the local decisions made at other nodes -- the local decision processes a r e
interdependent and they interact over a shared resource, e.g., time or money .
Casting the discussion in terms of Figure 7: assume T has an overall deadline of 5
minutes and T1's alternatives require anywhere from 2 minutes to 20 minutes t o
complete, and T2's alternatives are similarly characterized.  Assume that quality is
highly correlated with duration, thus the more time spent problem solving, t h e
better the r esult.  If the criteria specifies maximum quality within the deadline, t h e
alternatives propagated from T1 to T will be those that achieve maximum qual i ty
(and also have high duration).  Likewise with the alternatives propagated from T2.
The resulting set of alternatives, ST at node T will contain members characterized b y
high quality, but also high duration, and the scheduler will be unable to construct a
schedule that meets the hard deadline.  The optimal solution to this problem is
computationally infeasible (!(2 n)  and o(n n)) as it amounts to the general scheduling
problem because of task interactions and other constraints.

Two approximate solutions are possible.  One approach is to pre-process the task
structure, producing small alternative sets at each node that characterize the larger
alternative population for that node.  Then examining the ranges of alternatives a t
each node and heuristically deciding on an allocation or apportionment of t h e
overall deadline or cost limitation to each of the interior nodes.  This local-view o f
the overall constraint could then be used to focus alternative production on those
that will lead to a root-level set that meets the overall constraint.  The o t h e r
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approach, which we have employed, is to detect when the local-view of the decision
process is problematic and in those cases sample from the population o f
alternatives, producing a subset that exhibits similar statistical properties, a n d
propagating these alternatives.  This leads to a set of root level alternatives t hat is
less-focused than the prior approach, but it saves on the added polynomial level
expense of the first approach. This solution has served us well in the BIG project a n d
enabled the scheduler to maintain its soft real-time level of performance while still
producing good schedules.  

3. Cost Based Information Gathering Experiments

To study how BIG address cost limitations, a series of experiments were run.  T h e
experimental environment was set up as follows.  To simulate widespread fee-for-
access mode ls, eight WWW sites that are often used by BIG are arbitrarily assigned
different qualities and costs:

+--------------------+----------------+--------+
|        site        |     quality    |  cost  |
+--------------------+----------------+--------+
+--------------------+----------------+--------+
| pcmall             |     high (3)   |  1.2   |
+--------------------+----------------+--------+
| pczone             |    medium (2)  |  0.8   |
+--------------------+----------------+--------+
| warehouse          |     high (3)   |  1.6   |
+--------------------+----------------+--------+
| zdnet              |      low (1)   |  0.0   |
+--------------------+----------------+--------+
| netsales           |      low (1)   |  0.6   |
+--------------------+----------------+--------+
| benchin-review     |     high (3)   |  2.0   |
+--------------------+----------------+--------+
| review-finder      |    medium (2)  |  1.5   |
+--------------------+----------------+--------+
| cybout-review      |      low (1)   |  0.0   |
+--------------------+----------------+--------+

All other sites are assumed to be free and their quality is determined by the relative
number of external references to them (external sites that link to them).  T h e
assumption is that the more frequently a site is referred to, the higher its quality is
likely to be. Methods making queries to these sites are also associated with different
quality and cost characterizations, based on the quality and cost of associated wi th
the site they access.

3.1 Different Schedules Based on Cost

The following experiments show examples of how the BIG system constructs
different schedules,  which achieve different decisions and have varying
characteristics, when given different cost constraints. The sample query to BIG is t o
find word-processing software for the Windows platform, given an end- to-end
completion time of 10 minutes and a price limit of $200 for the final product. T h e
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DTC scheduler was used with the following objective function or design criteria,
which as noted above dictates how it should value tradeoffs between alternatives.
The relative importance of the three criteria for the searching process is specified a s
follows: quality, 85%; cost, 10%; duration 5%. This setting implies quality should b e
the most important criterion when evaluating schedules. The relative importance o f
the cost limit and the time deadline is 90% and 10%, respectively — the cost limit is
far more important than the duration limit. These specifications tell the DTC
scheduler to search for a schedule that achieves the highest quality within the cost
limit. However, the time deadline may not be met in every instance because t h e
duration limit is less impor tan t .

Given different searching cost criterion, the scheduler generates d ifferent schedules
that try to stay under the given cost threshold while also attempting to maximize
time and quality objectives. When given cost thresholds of $0, $1, $3, $6, $ 9 ,
different schedules are constructed, as shown in Table 1. In this table, a “Y” in a row
indicates that the method in that row is included in the schedule with a specific cost
threshold. For example, method Query_To_Netsales is only used in the schedule
where the cost threshold is nine dollars.

+------------------------+---------+------+-------------------------------+
|      Method Name       | Quality | Cost |      Given Searching Cost     |
+------------------------+---------+------+-------------------------------+
+------------------------+---------+------+-----+-----+-----+------+------+
|                        |         |      |  $0 |  $1 |  $3 |  $6  |  $9  |
+------------------------+---------+------+-----+-----+-----+------+------+
+------------------------+---------+------+-----+-----+-----+------+------+
|    Query_To_Zdnet      |  56     |  0   |  Y  |  Y  |  Y  |  Y   |  Y   |
+------------------------+---------+------+-----+-----+-----+------+------+
|    Query_To_Pczone     |   112   | 0.8  |     |  Y  |  Y  |  Y   |  Y   |
+------------------------+---------+------+-----+-----+-----+------+------+
|   Query_To_Netsales    |   56    | 0.6  |     |     |     |      |  Y   |
+------------------------+---------+------+-----+-----+-----+------+------+
|  Query_To_Warehouse    |   168   | 1.5  |     |     |     |      |  Y   |
+------------------------+---------+------+-----+-----+-----+------+------+
|    Query_To_Pcmall     |   168   | 1.2  |     |     |     |  Y   |  Y   |
+------------------------+---------+------+-----+-----+-----+------+------+
|   Text_Extraction_4    |   40    |  0   |  Y  |  Y  |  Y  |  Y   |  Y   |
+------------------------+---------+------+-----+-----+-----+------+------+
|   Text_Extraction_6    |   49    |  0   |  Y  |  Y  |     |  Y   |  Y   |
+------------------------+---------+------+-----+-----+-----+------+------+
|  Text_Extraction_12    |   69    |  0   |  Y  |  Y  |     |  Y   |  Y   |
+------------------------+---------+------+-----+-----+-----+------+------+
|Text_Extraction+Cgrep_3 |   40    |  0   |  Y  |  Y  |  Y  |  Y   |  Y   |
+------------------------+---------+------+-----+-----+-----+------+------+
|Text_Extraction+Cgrep_4 |   56    |  0   |  Y  |  Y  |  Y  |  Y   |  Y   |
+------------------------+---------+------+-----+-----+-----+------+------+
|Text_Extraction+Cgrep_8 |   72    |  0   |  Y  |     |  Y  |  Y   |  Y   |
+------------------------+---------+------+-----+-----+-----+------+------+
|  Quick_Extraction_6    |   22    |  0   |  Y  |  Y  |     |  Y   |  Y   |
+------------------------+---------+------+-----+-----+-----+------+------+
|  Quick_Extraction_9    |   27    |  0   |     |  Y  |  Y  |  Y   |  Y   |
+------------------------+---------+------+-----+-----+-----+------+------+
|  Quick_Extraction_19   |   39    |  0   |     |     |  Y  |  Y   |  Y   |
+------------------------+---------+------+-----+-----+-----+------+------+
|    Benchin_Review      |   189   | 2.0  |     |     |  Y  |  Y   |  Y   |
+------------------------+---------+------+-----+-----+-----+------+------+
|  Benchin_User_Review   |   175   | 2.0  |     |     |     |  Y   |  Y   |
+------------------------+---------+------+-----+-----+-----+------+------+
|     Cybout_Review      |   41    |  0   |  Y  |  Y  |  Y  |  Y   |  Y   |
+------------------------+---------+------+-----+-----+-----+------+------+
|     Review_Finder      |   81    | 1.5  |     |     |     |      |      |
+------------------------+---------+------+-----+-----+-----+------+------+
|     Make_Decision      |   90    |  0   |  Y  |  Y  |  Y  |  Y   |  Y   |



16

+------------------------+---------+------+-----+-----+-----+------+------+
+------------------------+---------+------+-----+-----+-----+------+------+
|      total cost        |         |      |  0  | 0.8 | 2.8 |  6   | 8.2  |
+------------------------+---------+------+-----+-----+-----+------+------+
|     total quality      |         |      | 565 | 653 | 776 | 1277 | 1502 |
+------------------------+---------+------+-----+-----+-----+------+------+

Table 1: BIG schedules under varying cost thresholds.

When the search cost of threshold is $0, the BIG system first makes a query to t h e
free site “zdnet” to get basic product information, it then chooses seven text-
processing methods to process information (these methods are also free). It t h e n
elects to query a free review site, “cybout review,” to get review information. Finally,
it makes a decision based on the available information. In contrast, when given t h e
search cost threshold is $1, the system makes an extra query to the “pczone” si te
that charges $0.8 and gains 112 q u a lity units from this method. When the search
cost threshold increases to $3, the system spends $2 on the “benchin” review site
and earns 189 quality units from this action. Given $6, the system queries t h r e e
product sites: “zdnet,” “pczone,” and “pcmall.” It also queries the “benchin” si te
twice for different review information: company reviews and user reviews. When
given a searching cost of $9, the system chooses to query all five product sites a n d
three review methods. In all five cases, the method “Review_Finder” is not chosen
because its quality/cost ratio is lower relative to other alternatives.

3.2 Experimental Results

We ran experiments with five different given cost thresholds, $0, $1, $3, $6, and $ 9 .
For each specific cost, we ran the system 10 t imes and present the exper iment
results in the Table 2 .

The first column and the second column are the user-specified cost limit (S.C.) a n d
the real searching cost (R.C.). The real searching cost is very close to the u s e r
request cost limit without exceeding the limit because the scheduler was directed t o
put great importance (90%) on not going over the cost threshold. The next f o u r
columns denote the number of considered products (C.P.), total number of p roduc t s
found (T.P.), aggregate information coverage (I.C.), and average informat ion
coverage per product object (A.C.). These values reflect the number of informat ion
sources used to generate the final decision. Given additional cost, BIG will adjust i ts
searching behavior in an attempt to find both more sources of information, a n d
more supporting information for previously discovered products. The number o f
products considered and the total number of products found (T.P.) did not increase
from the experiment with a cost of $1 to the experiment with a cost of $3.  In b o t h
cases, BIG chose to spend the extra $2 on a high-quality review site to get be t t e r
review information on previously discovered products, which is consistent with t h e
semantics behind the objective criteria we supplied. The next column is t h e
information quality (I.Q.), which reflects the quality of the information sources t h a t
contributed to the decision. The information quality increases according t h e
searching cost because high-quality sites charge a higher fee than lower quality sites.
The next column denotes the extraction processing accuracy per object (P.A.),
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supplied in part by the information processing tools. This characteristic is n o t
affected by the searching cost, because our text processing tools are cost
independent. Decision confidence (D.C.), generated by the decision m a k e r, reflects
the likelihood that the selected product is the best choice among the entire set o f
products considered. This value is based on the quality distributions of e a c h
product, and represents the chance that the expected quality is correct. This value is
not directly related to search cost thresholds. The scheduling time (S.T) for the first
three experiments is very close to the given deadline. The last two experiments
exceed the deadline because the s c heduler has significantly more money to spend ,
and therefore can expect to obtain a higher quality decision, so it chooses to s p e n d
more time. The execution time (E.T.) increases with cost because the increased
amount of money spent makes it more likely that queried sites will contain re levant
material.  This in turn will increase the overall time it will take to extract re levant
information, since there will be more documents to process. The final column shows
the more frequently chosen product as the final decision in the set of ten runs .
Overall, the results indicate that the more money a client is willing to spend i n
gathering high quality information, the higher the quality will be of the final
product selection decision BIG makes -although clearly this trend cannot cont inue
forever (in the final two runs the same product was chosen).  Note also that it is
quite possible to find the best product without spending any money at all, in this
example we show that it is just more likely that a better product c an be found as a
result of the higher quality evidence gathered because more money was spent .

S.C. R.C. #C.P. #T.P. I.C. A.C. I.Q. P.A. D.C. S.T. E.T. final decision
average 0 0 1 3 8 1 0.33 1.83 1 667 133 product name: Lotus FastSite 2.0
st.dev. 0 0 0 0 0 0 0 0 0 2.2 price: 99

  occurrence: 10/10
average 1 0.8 8 22 28 1 0.57 1.08 0.84 600 414 product name: Lotus Word  Pro 97
st.dev. 0 0 0 0 0 0 0 0 0 35.4 price: 63.98

 occurrence: 6/10
average 3 2.8 7 22 33 1.71 0.64 0.96 0.88 670 470 product name: Lotus Word  Pro 97
st.dev. 0 0 0 0 0 0 0 0 0 11.3 price: 63.98

 occurrence: 8/10
average 6 6 15.2 54 67.5 1.5 0.83 1.16 0.83 990 1041 product name: Word Pro 97 CD WIN/W95
st.dev. 0 0.87 0 1.96 0.1 0 0.03 0.06 0 50.5 price: 59.19

 occurrence: 8/10
average 9 8.2 21.6 69.8 80.5 1.44 0.92 1 0.85 974 1134 product name: Word Pro 97 CD WIN/W95
st.dev. 0 1.36 0.6 0.5 0.01 0.02 0.05 0 0 52.1 price: 59.19

 occurrence: 10/10

Table 2: Experimental results when running BIG with different cost thresholds

4. Conclusions

In this article, we have discussed how a sophisticated information gathering agent ,
BIG, can be organized so that it can take into account complex resource-bounded
constraints on its activities. We have detailed how the domain-independent Design-
To-Criteria scheduler can be integrated into the architecture so it generates
appropriate schedules based on complex client criteria. We have also shown i n
experimental results that the ability to access costly, but high quality, informat ion
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WWW sites can produce a higher quality decision process.  More generally, we h a v e
indicated that it is feasible to begin to develop complex information gather ing
agents that can adjust their behavior based on available processing and mone ta ry
resources. We feel that as the trend develops to charge for accessing valuable
information, i.e. an i nformation marketplace, and agents develop the ability to n o t
only retrieve documents but also process their contents, the capabilities we h a v e
explored in BIG will become the norm. We also feel that the basic architecture we
have laid out for resource-bounded reasoning will also be appropriate when t h e
prices for accessing information may involve more sophisticated negotiation. In th i s
case, the scheduler can be used to assess what the expected effects of cer ta in
information costs on the overall decision process of an agent. This analysis is a key
component in the agent deciding what would be a reasonable price to pay fo r
specific information and comparing alternative bids from other sites which m a y
have different quality and coverage at tr ibutes .
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