
Design-to-Criteria Scheduling: Real-Time Agent Control

Thomas Wagner
Computer Science Department

University of Maine
Orono, ME 04469

wagner@umcs.maine.edu

Victor Lesser
Computer Science Department

University of Massachusetts
Amherst, MA 01003
lesser@cs.umass.edu

Abstract

Design-to-Criteria builds custom schedules for agents that
meet hard temporal constraints, hard resource constraints,
and soft constraints stemming from soft task interactions or
soft commitments made with other agents. Design-to-Criteria
is designed specifically for online application – it copes with
exponential combinatorics to produce these custom schedules
in a resource bounded fashion. This enables agents to re-
spond to changes in problem solving or the environment as
they arise.

Introduction
Complex autonomous agents operating in open, dynamic en-
vironments must be able to address deadlines and resource
limitations in their problem solving. This is partly due to
characteristics of the environment, and partly due to the
complexity of the applications typically handled by software
agents in our research. In open environments, requests for
service can arrive at the local agent at any time, thus making
it difficult to fully plan or predict the agent’s future work-
load. In dynamic environments, assumptions made when
planning may change, or unpredicted failures may occur 1.
In most real applications, deadlines or other time constraints

UMass Computer Science Technical Report 1999-58. A ver-
sion appears in the Proceedings of 2000 AAAI Spring Symposium
on Autonomous Real-Time Systems.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. IIS-9812755, by the
Department of the Navy and Office of the Chief of Naval Re-
search, under Grant No. N00014-97-1-0591, and by the Defense
Advanced Research Projects Agency (DARPA) and AFRL under
Grant No. F30602-99-2-0525. This work is also funded by the
National Defense Center of Excellence for Research in Ocean Sci-
ences (CEROS). CEROS is a part of the Natural Energy Labora-
tory of Hawaii Authority (NELHA), an agency of the Department
of Business, Economic Development & Tourism, State of Hawai-
i. CEROS is funded by DARPA through grants to and agreements
with NELHA. The content of the information does not necessarily
reflect the position or the policy of the Government, NSF, ONR,
DARPA, AFRL, or CEROS, and no official endorsement should be
inferred.

1This differs from states that are explicitly recognized and
planned for [1] as software agents may be required to perform a
different set of tasks, as well as having to react to changes in the
environment.

!"#$%&'()*+,-.
/01&(22

%&'()*+(2"345%
51)(+2

!(2&0,6(2
7"879$#1-2:0;,-:2

7(;21-2$361*:
7"879$#1-2:0;,-:2
,-79<;2',1-

3))0(22(2
7"879$#1-2:0;,-:2

Figure 1: Modeling and Online Scheduling for Real Time and
Resource Boundedness

are present on the agent’s problem solving [16, 8]. For ex-
ample, in an anti-submarine warfare information gathering
application [3], there is a deadline by which the mission
planners require the information. Resource limitations may
also stem from agents having multiple different tasks to per-
form and having bounded resources in which to perform
them. Temporal constraints may also originate with agent
interactions – in general, in order for agent to coordinate
with agent , the agents require mutual temporal informa-
tion so that they can plan downstream from the interaction.

In this paper, we focus on the issue of resource bounded
agent control. We use the term resource bounded to denote
the existence of deadlines and of other constraints like cost
limitations or application specific resource limitations (e.g.,
limited network bandwidth). Where it is important to differ-
entiate hard and soft deadlines from these other constraints,
we refer to them explicitly.

For agents to adapt rationally to their changing problem
solving context, which includes changes in the environment 2

and changes to the set of duties for the agent to perform, they
must be able to:

1. Represent or model the time and resource constraints of
the situation and how such constraints impact their prob-
lem solving. We believe this must be done in a quantified
fashion as different constraints have different degrees of
effect on problem solving.

2. Plan explicitly to address the resource limitations. In our
work, this may imply performing a different set of tasks,
using alternate solution methods, or trading-off different
resources (or quality), depending on what is available.

2Including resources uncontrollably becoming more or less
constrained. For example, network latency increasing due to some
activity other than the agent’s problem solving.

3. Perform this planning online – in the general case, this
implies coping with exponential combinatorics online in
soft real time.

While the first two requirements obviously follow from
the domain, the third requirement is less obvious. Agents
must be able to perform real time control problem solving
online because of the dynamics of the environment. If it
is difficult to predict the future and there is a possibility of
failure, or new tasks arriving, agents will, by necessity, have
to react to new information and replan online.

The Design-to-Criteria (DTC) agent scheduler and the
TÆMS task modeling framework are our tools for address-
ing these requirements and achieving resource-bounded
agent control (Figure 1). TÆMS provides agents with the
framework to represent and reason about their problem solv-
ing process from a quantified perspective, including mod-
eling of interactions between tasks and resource consump-
tion properties. Design-to-Criteria performs analysis of the
processes (modeled in TÆMS) and decides on an appro-
priate course of action for the agent given its temporal
and resource constraints. Design-to-Criteria both produces
resource-aware schedules for the agent, and, does this rea-
soning process online in a resource bounded fashion.

While the output of Design-to-Criteria is real time in the
sense that the schedules address hard and soft deadlines, and
resource constraints, the schedules are not hard real time and
are not fault tolerant in the sense that they may contain un-
certainty and known potential failure points. Because DTC
is applied in domains where failure is expected, and mod-
eled, and rescheduling is expected, it may often be prudent
to choose a schedule that contains some probability of fail-
ure, but, also some probability of higher returns. The issue
of uncertainty, and its role in addressing hard deadlines, is
covered in greater detail later. For situations in which a mid-
stream schedule failure leads to catastrophic system-wide
failure, we have developed an offline variant of DTC that
uses contingency analysis [17, 23] to explore and evaluate
recovery options from possible failure points.

This paper is organized as follows: in Section we present
TÆMS and describe its role in our domain independent ap-
proach to agent control. In Section we describe how DTC
reasons about the agent’s context and makes control deci-
sions to produce resource bounded schedules. In Section ,
DTC’s approximate online solution strategy is presented and
in Section we discuss limitations, open questions, and future
work.

TÆMS Task Models
TÆMS (Task Analysis, Environment Modeling, and Sim-
ulation) [6] is a domain independent task modeling frame-
work used to describe and reason about complex problem
solving processes. TÆMS models are used in multi-agent
coordination research [24, 11] and are being used in many
other research projects, including: cooperative-information-
gathering [14], hospital patient scheduling [5], intelligent
environments [13], coordination of software process [12],
and others [20]. Typically, in our domain-independent agent
architecture, a domain-specific problem solver or planner

translates its problem solving options in TÆMS, possibly at
some level of abstraction, and then passes the TÆMS mod-
els on to agent control problem solvers like the multi-agent
coordination modules or the Design-to-Criteria scheduler.
The control problem solvers then decide on an appropriate
course of action for the agent, possibly by coordinating and
communicating with other agents (that also utilize the same
control technologies).

TÆMS models are hierarchical abstractions of problem
solving processes that describe alternative ways of accom-
plishing a desired goal; they represent major tasks and ma-
jor decision points, interactions between tasks, and resource
constraints but they do not describe the intricate details of
each primitive action. All primitive actions in TÆMS, called
methods, are statistically characterized via discrete probabil-
ity distributions in three dimensions: quality, cost and dura-
tion. Quality is a deliberately abstract domain-independent
concept that describes the contribution of a particular action
to overall problem solving. Duration describes the amount
of time that the action modeled by the method will take to
execute and cost describes the financial or opportunity cost
inherent in performing the action. Uncertainty in each of
these dimensions is implicit in the performance characteriza-
tion – thus agents can reason about the certainty of particular
actions as well as their quality, cost, and duration trade-offs.
The uncertainty representation is also applied to task inter-
actions like enablement, facilitation and hindering effects, 3

e.g., “10% of the time facilitation will increase the quality
by 5% and 90% of the time it will increase the quality by
8%.”

The quantification of actions and interactions in TÆMS
is not regarded as a perfect science. Task structure program-
mers or problem solver generators estimate the performance
characteristics of primitive actions. These estimates can be
refined over time through learning and reasoners typically
replan and reschedule when unexpected events occur.

To illustrate, consider Figure 2, which is a conceptu-
al, simplified sub-graph of a task structure emitted by the
BIG [14] resource bounded information gathering agent; it
describes a portion of the information gathering process.
The top-level task is to construct product models of retail
PC systems. It has two subtasks, Get-Basic and Gather-
Reviews, both of which are decomposed into actions, that
are described in terms of their expected quality, cost, and
duration. The enables arc between Get-Basic and Gather
is a non-local-effect (NLE) or task interaction; it models
the fact that the review gathering actions need the names
of products in order to gather reviews for them. Other
task interactions modeled in TÆMS include: enablemen-
t, facilitation, hindering, bounded facilitation, disablement,
consumes-resource and limited-by-resource. Task interac-
tions are important to scheduling because they denote points
at which a task may be affected, either positively or nega-

3Facilitation and hindering task interactions model soft rela-
tionships in which a result produced by some task may be beneficial
or harmful to another task. In the case of facilitation, the existence
of the result generally increases the quality of the recipient task or
reduces its cost or duration.

9*,+)$/#$/01)*&:
=6>(&:2

?(:$9;2,&$/01)*&:
@-A10B;:,1-

C*(0DE4F:0;&:
G(-)10$B

C*(0DE4F:0;&:
/122,6+($5;H(0$-

?;:'(0$7(I,(J2

%(;0&'E/01&(22
K!-(:L7(I,(J2

%(;0&'E/01&(22
/#$M10+)

C*(0DE/01&(22
#1-2*B(02L7(N10:2L

7(I,(J2

OP2(OP+;2:QR

OP2*BQR

OP2*BQR

O$QSTU$TRQVTU$WXYR
&$QSTTU$TR
)$QSTU$ZB,-RQSTU$ZXYB,-RQWTU$[B,-R

O$QZTU$TRQWTU$STR
&$QSTTU$TR
)$QYTU$SB,-RQYTU$ZB,-R

C*(0DE4F:0;&:
/#L#1--(&:,1-

C*(0DE$4F:0;&:
/#L5;++

O$QZYU$TRQ\YU$[TR
&$QSTTU$]ZR
)$QVTU$[RQSTU$YR

O$QSTU$TRQVTU$ZTR
&$QSTTU$TR
)$Q[TU$[B,-R
$$$Q[TU$^B,-R
$$$Q^TU$YB,-R

OQXXR_$&QXXR_$)QXXR
OQXXR_$)QXXR_$&QXXROQXXR_$&QXXR_$)QXXR

";2H

5(:'1)

7(21*0&($-+(

";2H$-+(

%*6:;2H$7(+;:,1-

`(D

(-;6+(2

Figure 2: Conceptual Information Gathering Task Structure of the BIG Agent

tively, by an outcome elsewhere in the task structure (or at
another agent).

Returning to the example, Get-Basic has two action-
s, joined under the sum() quality-accumulation-function
(QAF), which defines how performing the subtasks relate
to performing the parent task. In this case, either action or
both may be employed to achieve Get-Basic. The same is
true for Gather-Reviews. The QAF for Build-PC-Product-
Objects is a seq last() which indicates that the two subtasks
must be performed, in order, and that the quality of Build-
PC-Product-Objects is determined by the resultant quality of
Gather-Reviews. There are nine alternative ways to achieve
the top-level goal in this particular sub-structure. 4 In gen-
eral, a TÆMS task structure represents a family of plans,
rather than a single plan, where the different paths through
the network exhibit different statistical characteristics or
trade-offs. The process of deciding which tasks/actions to
perform is thus an optimization problem rather than a satis-
faction problem.

TÆMS also supports modeling of tasks that arrive at par-
ticular points in time, parallelism, individual deadlines on
tasks, earliest start times for tasks, and non-local tasks (those
belonging to other agents). In the development of TÆMS
there has been a constant tension between representational
power and the combinatorics inherent in working with the
structure. The result is a model that is non-trivial to pro-
cess, coordinate, and schedule in any optimal sense (in the
general case), but also one that lends itself to flexible and ap-
proximate processing strategies. This element of choice and
flexibility is leveraged both in designing resource-bounded
schedules for agents and in performing online scheduling in
a resource bounded fashion.

4While it might appear per the seq last() QAF that there are
only two possible resultant quality distributions, the enables inter-
action between Build and Gather affects the possible quality values
for Gather.

Modeling and Reasoning about Temporal and
Resource Constraints

TÆMS tasks may have both soft and hard constraints that
must be considered when scheduling. In terms of hard tem-
poral constraints, any TÆMS task may have a hard deadline,
by which some quality must be produced (or it is consid-
ered a failure), as well as an earliest-start-time, before which
the task may not be performed (or zero quality will result).
These hard constraints may also be caused by hard commit-
ments5 made with other agents or hard delays between task
interactions. The constraints may also be inherited from n-
odes higher in the structure – thus a client may specify a hard
deadline on the Build-PC task that applies to all subtasks, or
a deadline may be specified on the process of Gathering-
Reviews. If multiple temporal constraints are present, the
tightest or most conservative interpretation applies.

Recall that actions in TÆMS are characterized using dis-
crete probability distributions. Because durations may be
uncertain, and because actions are sequenced in a linear
fashion,6 the implication of duration uncertainty is that there
is generally uncertainty in both the start and finish times of
tasks – even tasks that do not have duration uncertainty of
their own. When each TÆMS action is added to a schedule,
or considered for a particular schedule point, a data structure
called a schedule element is created and the start, finish, and
duration distributions for the schedule element are computed
as a function of the characteristics of the previous schedule
element and the action being scheduled. The constraints as-
sociated with the action (and higher level task) are then ex-
amined and compared to the characteristics that will result if
the action is performed at the “current” time or point in the
schedule.

One approach for determining whether or not a given
action will violate a hard deadline, for example, is to look
at some single statistic (median, mean, max, min) of the

5In contrast to commitments that are soft or relaxable, possibly
through a decommitment penalty mechanism.

6While DTC supports scheduling of specialized parallel activi-
ties, even when activities are scheduled in parallel, they may inherit
uncertainty from prior activities.

QUALITY

10

20

30

50 100

Histogram of Quality - Action Mx

100% Density

FINISH_TIME

10

20

30

40

5 10 2015

Histogram of Finish_Time - Action Mx

Exceeds
Deadline
10% of the Time

Quality

10

20

30

50 100

Histogram of Modified Quality
Action Mx

90% Density10% Density

0

Figure 3: Reflecting Probability of Missing Deadline in Method Quality

action and to compare that statistic to the deadline, e.g.,

. This approach is used during some of the
approximation processes of the scheduling algorithm.
Another reasonable approach is to compute the proba-
bility that the action will violate its hard constraint and
compare the probability to a predetermined threshold, e.g.,

.
However, TÆMS provides us with a better tool for rea-

soning about constraint violation. Because zero quality re-
flects failure, and in TÆMS an action that violates its hard
deadline produces zero quality, we can reason about the
probability that a given action violates its hard deadline sim-
ply by reflecting said probability in the quality distribution
of the action and then treating it like any other TÆMS ac-
tion.7 Enforcing hard deadline constraints on the agent’s en-
tire process (analogous to imposing a deadline on the task
structure root) is handled in the same way. For example,
as shown in Figure 3, if has a 10% chance of exceed-
ing its deadline (and thus failing), the densities of all the
members of its quality distribution are multiplied by 90%
(thus re-weighting the entire distribution) and a new den-
sity / value pair is added to the distribution to reflect the
10% chance of returning a result after the deadline. The
leftmost histogram describes ’s expected finish time, the
middle histogram describes ’s unmodified quality distri-
bution, and the rightmost figure shows the modified quali-
ty distribution after re-weighting and merging with the new

pair. Through this solution approach, the
scheduler may actually select a course of action for the agent
that has some probability of failure, however, the probabili-
ty of failure is reflected directly in solution quality so that if
the risk is not worthwhile (relative to the other solution paths
available to the agent) it will not be taken. In other words,
a path containing a possible deadline violation will only be
chosen if it has a higher quality than the other solutions on
an expected value basis.

On the surface, this model is not appropriate for hard real
time applications in which the failure of the action results in
no solution for the agent. However, if this is the case, the ac-
tion will serve a key role in the task structure or will interact

7Professor Alan Garvey, developer of a forerunner to Design-
to-Criteria, Design-to-Time, first used a similar technique in
Design-to-Time. The technique presented here was developed in-
dependently in the DTC research.

with (e.g., enable) other actions in the structure and thus the
failure will result in the quality of the affected actions also
being decreased and further lower solution quality. The view
presented here, if modeled appropriately, gives the scheduler
a very powerful tool for reasoning about the implications of
possible failures and their impact on overall problem solv-
ing.

In addition to hard temporal constraints, TÆMS also
models hard resource constraints. For example, a given task
may require the use of a network connection and without
this connection, the task may produce zero quality (fail). In
TÆMS, the effects of resource constraints are modeled us-
ing a limits NLE from the resource to the task where the N-
LE describes a multiplier relationship between the resource
and the task. For example, running out of a resource may
cause the task to take 1.5 times as long to execute, or it may
cause the quality to decrease by 50%, or it may cause the
cost to increase, or it may simply cause failure. As with vi-
olating a hard temporal constraint, if a resource constraint
causes action failure, it is reflected in the quality of the ac-
tion and any actions or tasks that are acted-upon (e.g., by an
enables from the affected action) will also have their quali-
ties adjusted to reflect the effects of the resource problem.

Soft constraints in TÆMS take the form of soft commit-
ments made with other agents and soft interactions between
tasks. For example, if task facilitates , performing
before will positively affect , possibly by shorting ’s
duration, but the facilitation does not need to be leveraged to
perform either task. When scheduling for soft constraints as-
sociated with actions, the scheduler attempts to utilize them
when possible (or avoid the in the case of a soft negative
interaction, e.g., hinders). However, whenever a soft con-
straint is violated, either on the positive or negative side, the
quality distributions of the involved actions are modified to
reflect the situation and thus the scheduler can again rea-
son directly about the impact of constraint violation on the
agent’s process.

The scheduler also supports soft constraints on overal-
l problem solving. In addition to setting hard temporal
constraints, the scheduler client may specify an overall soft
deadline, soft cost limit, or soft quality requirement. These
soft constraints are members of a package of client prefer-
ences called design criteria that describes for the scheduler
the client’s objective function. The scheduler then works to
produce a schedule (or set of schedules) to suit the client’s
needs. The criteria mechanism is soft because, due to the

C*(0DL;-)L4F:0;&:L/#L#1--(&:,1-aC*(0DL;-)L4F:0;&:L/#L5;++aC*(0DL;-)L/01&(22LK!-(:aC*(0DL;-)L/01&(22L#1-2*B(02

C*;+,:D$),2:0,6*:,1-b$QTXT^$TXTTRQTXZZ$ZTXTTRQTXT\$[TXTTRQTXcc$YTXTTR
4FN(&:()$I;+*(b$$[VXcV
/016;6,+,:DO10$.0(;:(0b$$TXcc
#12:$),2:0,6*:,1-b$QSXTT$ZXTTR
4FN(&:()$I;+*(b$$ZXTT
/016;6,+,:D$&$10$+1J(0b$$SXTT
<,-,2'$:,B($),2:0,6*:,1-b$QTXTZ$VXTTRQTXS^$STXTTRQTXT[$STXYTRQTXZY$SSXTTRQTXT[$SSXYTRQTXTT$SSXcYRQTX[T$SZXTTRQTXSW$S[XTTR
$$$$$$$$$$$$$$$$$$$$$$$QTXT[$S^XTTRQTXTZ$SYXTTR
4FN(&:()$I;+*(b$$SSXcY
/016;6,+,:D$)$10$+1J(0b$$TX^\

!"#$%&'$()L#+,(-:$';2$-1$0(21*0&($+,B,:;:,1-2_$B;F,B,d($O*;+,:DX

CE4L/#L5;++aCE/L#1-2*B(02

C*;+,:D$),2:0,6*:,1-b$QTX[V$TXTTRQTXcS$[TXTTR
4FN(&:()$I;+*(b$$SWXZ[
/016;6,+,:DO10$.0(;:(0b$$TXcS
#12:$),2:0,6*:,1-b$QSXTT$ZXTTR
4FN(&:()$I;+*(b$$ZXTT
/016;6,+,:D$&$10$+1J(0b$$SXTT
<,-,2'$:,B($),2:0,6*:,1-b$QTXTV$YXTTRQTXTV$YXYTRQTX\Z$cXTTRQTXTS$\XTTR
$$$$$$$$$$$$$$$$$$$$$$$$$$QTXTS\XYTRQTXTWWXTTR
4FN(&:()$I;+*(b$$cXTY
/016;6,+,:D$)$10$+1J(0b$$TXVT

!"#$%&'$(*(L$5;F,B,d($O*;+,:D$J',+($B((:,-.$';0)$)(;)+,-($1A$cB,-X

$CE4L/#L#1--(&:,1-$a$CE4L/#L5;++$a$CE/LK!-(:

C*;+,:D$),2:0,6*:,1-b$QTXSZ$TXTTRQTXWW$ZTXTTR
4FN(&:()$I;+*(b$$S\Xc^
/016;6,+,:DO10$.0(;:(0b$$TXWW
#12:$),2:0,6*:,1-b$QSXTT$TXTTR
4FN(&:()$I;+*(b$$TXTT
/016;6,+,:D$&$10$+1J(0b$$SXTT
<,-,2'$:,B($),2:0,6*:,1-b$$QTXTZ$cXTTRQTXTZ$cXYTRQTXSY$\XTTRQTXT[$\XYTR
$$$$$$$$$$QTXZW$WXTTRQTXT^$WXYTRQTX[T$VXTTRQTXTZ$VXYTRQTXSc$STXTTR
4FN(&:()$I;+*(b$$WX^Y
/016;6,+,:D$)$10$+1J(0b$$TX^V

!"#$%&'$(+(L$#+,(-:$,-:(0(2:()$,-$;$A0(($21+*:,1-X

Figure 4: Different Schedules for Different Clients

combinatorics of reasoning about TÆMS task structures, it
is often difficult to predict what types of solutions are pos-
sible. Instead, the client describes the desired solution s-
pace in terms of relaxable, relative, design criteria (in quali-
ty, cost, duration, uncertainty in each dimension, and limits
and thresholds on these) and the scheduler makes trade-off
decisions as needed to best address the client’s needs. The
criteria metaphor is based on importance sliders for quality,
cost, duration, limits and thresholds on these, and certain in
each of these dimensions. The metaphor, the formal mathe-
matics of the criteria mechanism, and the scheduler’s trade-
off computations have been fully documented in [22, 21].

Let us revisit BIG’s process, shown in Figure 2, and illus-
trate DTC’s creation of custom, resource bounded, sched-
ules and the role of task interaction in modeling the effects
of failure. Even this simple task structure gives DTC room
to adapt BIG’s problem solving. Figure 4 shows three differ-
ent schedules constructed for different BIG clients that have
different objectives. For brevity, the detailed distributions
associated with each action are omitted, however, the aggre-
gate schedule statistics are shown. Schedule A is construct-
ed for a client that has both time and financial resources –
he or she is simply interested in maximizing overall solution
quality. Schedule B is constructed for a client that wants
a free solution. Schedule C meets the needs of a client in-
terested in maximizing quality while meeting a hard dead-
line of 6 minutes. Note that schedule C is actually preferred
over a schedule that includes action Query-and-Extract-PC-
Connection even though said action has a higher expected
quality than Query-and-Extract-PC-Mall. This is because
the PC-Connection action also has a higher probability of
failure. Because of the enables NLE from the task of getting
product information to retrieving reviews, this higher proba-
bility of failure also impacts the probability of being able to
query the Consumer’s site for a review. Thus, though the lo-
cal choice would be to prefer PC-Connection over PC-Mall
for this criteria, the aggregate effects lead to a different de-

cision. Note also that schedule C also exceeds its deadline
10% of the time. The deadline over-run and the enablement
from PC-Mall contribute to the probability of failure exhib-
ited by the schedule (probability of returning a zero quality
result), i.e., Consumer’s fails 25% of the time without con-
sidering these other constraints. When considering the other
constraints, probability of failure is: (((25% * .90) + 10%) *
.90) + 10% = 39.25%.

Online Scheduling - Coping with Exponential
Combinatorics

As TÆMS task structures model a family of plans, the DTC
scheduling problem has conceptually certain characteristic-
s in common with planning and certain characteristics of
more traditional scheduling problems, and it suffers from
pronounced combinatorics on both fronts. The scheduler’s
function is to read as input a TÆMS task structure (or a set
of task structures) and to 1) decide which set of tasks to per-
form, 2) decide in what sequence the tasks should be per-
formed, 3) to perform the first two functions so as to address
hard constraints and balance the soft criteria as specified by
the client,8 and 4) to do this computation in soft real time (or
interactive time) so that it can be used online.

Meeting these objectives is a non-trivial problem. In gen-
eral, the upper-bound on the number of possible schedules
for a TÆMS task structure containing actions is given in
Equation 1. Clearly, for any significant task structure the
brute-strength approach of generating all possible schedules
is infeasible – offline or online. This expression contains
complexity from two main sources. On the “planning” side,
the scheduler must consider the (unordered) different
alternative different ways to go about achieving the top level

8Because there may be alternative ways to perform a given task,
and some of the options may not have the same associated dead-
lines, the scheduler actually balances both meeting hard constraints
and the design criteria.

task (for a task structure with actions). On the “schedul-
ing” side, the scheduler must consider the different pos-
sible orderings of each alternative, where is the number
of actions in the alternative.

(1)

In general, the types of constraints present in TÆMS, and
the existence of interactions between tasks (and the different
QAFs that define how to achieve particular tasks), prevent
a simple, optimal solution approach. DTC copes with the
high-order combinatorics using a battery of techniques. S-
pace precludes detailed discussion of these, however, they
are documented in [22]. From a very high level, the sched-
uler uses:
Criteria-Directed Focusing The client’s goal criteria is not

simply used to select the “best” schedule for execution,
but is also leveraged to focus all processing activities on
producing solutions and partial solutions that are most
likely to meet the trade-offs and limits/thresholds defined
by the criteria.

Approximation Schedule approximations, called alterna-
tives, are used to provide an inexpensive, but coarse,
overview of the schedule solution space. One alternative
models one way in which the agent can achieve the top
level task. Alternatives contain a set of unordered actions
and an estimation for the quality, cost, and duration char-
acteristics that will result when the actions are sequenced
to form a schedule. This, in conjunction with criteria-
directed focusing enables DTC to address the “planning”
side complexity.

Heuristic Decision Making To address the scheduling side
complexity, DTC uses a superset of the techniques used
in Design-to-Time [8], namely an iterative, heuristic, pro-
cess of sequencing out the actions in a given alternative.
These action rating heuristics rate each action and the rat-
ings (in DTC) are stratified so that certain heuristics and
constraints dominate others. The net effect is a reduction
of the (and by Stirling’s Approxima-
tion) complexity to polynomial levels in the worst case.

Heuristic Error Correction The use of approximation and
heuristic decision making has a price – it is possible to
create schedules that are suboptimal, but, repairable. A
secondary set of improvement [27, 19] heuristics act as a
safety net to catch the errors that are correctable.
The Design-to-Criteria scheduling process falls into the

general area of flexible computation [9], but differs from
most flexible computation approaches in its use of multiple
actions to achieve flexibility (one exception is [10]) in con-
trast to anytime algorithms [4, 18, 25]. We have found the
lack of restriction on the properties of primitive actions to
be an important feature for application in large numbers of
domains. Another major difference is that in DTC we not
only propagate uncertainty [26], but we can work to reduce
it when important to the client. DTC differs from its pre-
decessor, Design-to-Time[8], in many ways. From a client

perspective, however, the main differences are in its use of
uncertainty, its ability to retarget processing at any trade-off
function, and its ability to cope with both “scheduling” and
“planning” side combinatorics.

Design-to-Criteria is not without its limitations; when
adapting the DTC technology for use in potentially time crit-
ical domains, such as the CEROS anti-submarine warfare in-
formation gathering task, shown in Figure 5, we encountered
an interesting problem. The satisficing focusing methodol-
ogy used in Design-to-Criteria leads to poor solutions when
combined with hard deadlines and certain classes of very
large task structures. Without delving into exhaustive de-
tail, the problem is that in order to cope with the high-order
combinatorics in these particular situations, the scheduling
algorithm must prune schedule approximations, or alterna-
tives, and develop only a subset of these. Herein lies the
problem.

Alternatives are constructed bottom-up from the leaves of
the task hierarchy to the top-level task node, i.e., the alter-
natives of a task are combinations of the alternatives for its
sub-tasks. Figure 6 shows the alternative set generation pro-
cess for a small task structure. Alternatives are generated
for the interior tasks and , and these alternatives are
combined to produce the alternative set for the root task, .
The complexity of the alternative generation process is pro-
nounced. A task structure with actions leads to
possible alternatives at the root level. We control this com-
binatorial complexity by focusing alternative generation and
propagation on alternatives that are most likely to result in
schedules that “best” satisfice to meet the client’s goal crite-
ria; alternatives that are less good at addressing the criteria
are pruned from intermediate level alternative sets. For ex-
ample, a criteria set denoting that certainty about quality is
an important issue will result in the pruning of alternatives
that have a relatively low degree of quality certainty. After
the alternative set for the high-level task is constructed, a
subset of the alternatives are selected for scheduling.

For situations in which there is no overall hard deadline,
or in which shorter durations are also preferred, the focusing
mechanism works as advertised. However, in the CEROS
project, we are also interested in meeting real-time deadlines
and other hard resource constraints (in contrast to those that
are relaxable), and often these preferences are not accompa-
nied by a general preference for low duration or low cost.
In these cases, the problem lies in making a local decision
about which alternatives to propagate (at an interior node)
when the decision has implications to the local decisions
made at other nodes – the local decision processes are in-
terdependent and they interact over a shared resource, e.g.,
time or money. Casting the discussion in terms of Figure 6:
assume has an overall deadline of 5 minutes and ’s al-
ternatives require anywhere from 2 minutes to 20 minutes to
complete, and ’s alternatives are similarly characterized.
Assume that quality is highly correlated with duration, thus
the more time spent problem solving, the better the result.
If the criteria specifies maximum quality within the dead-
line, the alternatives propagated from to will be those
that achieve maximum quality (and also have high duration).
Likewise with the alternatives propagated from . The re-

!"#$%&

'()*

+,(-.")/01+

2(34.4#(#")/01+

56-#()*/7".(#4%,)$48

!"#$%&''&()$"*++(,- 7"8%9#

:"#/5$4884,;
<",)4#=

:(#$"9
>4)#%943(./<(#(

:"#/<"8#$:"#/>?1
29"@6",3=

A%##%B/1%))
C.())4D43(#4%,)

>4)#%943(./<A/EF

>4)#%943(./<A/EG

>4)#%943(./<A/EH

I4,&/58""&
I4,&/<49"3#4%,

5"(/5#(#"

I(J"/>"4;$#

:(#$"9/!%9"
<=,(B43/<(#(

K9"3484#(#4%,

<"#"9B4,"/<"#"3#4%,
<4)#(,3")

+)#4B(#"/54;,(./1%))
<6"/#%/5%,%-6%=

I()$%J"9

K9%3"))/L,D%9B(#4%,
C%B86#"/<(#(

7")%.6#4%,
:"#/:"%)8(#4(.

C%%9&4,(#")

M-#(4,/!4))4%,/K(9(B"#"9)

:(#$"9/L,D%9B(#4%,

)"@N)6BOP

)6BN(..OP

)6BOP

)6BOP

)"@N)6BOP

)6BOP

D(34.4#(#")D(34.4#(#")

D(34.4#(#")

",(-.")

",(-.")

",(-.")

III

0LK70+'

5LK70+'

q (20% 0)(80% 8)
c (100% 0)
d (100% 1min)

q (100% 10)
c (100% 0)
d (50% 1min)(50% 2min)

q (100% 6)
c (100% 0)
d (100% 30sec)

max()

Figure 5: Partial TÆMS Task Structure for Gathering and Processing ASW Mission Information

T ST = {ST1
x ST2

} T = task
M = method
S = alternative set for taskq_min()

q_exactly_one()

T2 ST2
 = { }{M2,1}{M2,2}{M2,3}

M2,1 M2,2 M2

T1

M1,1 M1,2 M1,3

ST1
 = { }{M1,1,M1,3} {M1,2,M1,3}

{M1,1}{M1,2}{M1,3}{M1,1,M1,2}
q_sum()

Figure 6: Alternative Sets Lead to Cumbersome Combinatorics

sulting set of alternatives, at node will contain mem-
bers characterized by high quality, but also high duration,
and the scheduler will be unable to construct a schedule that
meets the hard deadline. The optimal solution to this prob-
lem is computationally infeasible (and) as it
amounts to the general scheduling problem because of task
interactions and other constraints.

Two approximate solutions are possible. One approach
is to preprocess the task structure, producing small alterna-
tive sets at each node that characterize the larger alterna-
tive population for that node. Then examining the ranges
of alternatives at each node and heuristically deciding on an
allocation or apportionment of the overall deadline or cost
limitation to each of the interior nodes. This local-view of
the overall constraint could then be used to focus alterna-
tive production on those that will lead to a root-level set
that meets the overall constraint. The other approach, which
we have employed, is to detect when the local-view of the
decision process is problematic and in those cases sample
from the population of alternatives, producing a subset that
exhibits similar statistical properties, and propagating these
alternatives. This leads to a less-focused set of root level al-
ternatives than the prior approach, but it saves on the added

polynomial level expense of the first approach.

Conclusion, Future Work, and Limitations
We have discussed a class of issues in DTC that pertain to
modeling and scheduling for hard and soft temporal con-
straints, resource constraints, and task interactions. Space
precludes a full enumeration of the different aspects of DTC
that relate to addressing resource limitations – the issue is
ubiquitous to the design of the DTC algorithm, the TÆMS
modeling framework, and the decisions made by the DTC
scheduler. From a very high level, possibly the most im-
portant features that relate to resource boundedness is the
detailed quantified view of actions, and task interactions,
afforded by the TÆMS modeling framework. This, com-
bined with the element of choice present in TÆMS families
of plans, sets the foundation for DTC’s reasoning about the
implications of failures, failing to acquire resources, and vi-
olating hard constraints.

In terms of limitations, DTC’s approximate solution ap-
proach is clearly not optimal in many circumstances. As
discussed, this is particularly true when the alternative sets
must be severely pruned (focused) to produce solutions. Ad-
ditionally, in some applications, in which only very specific

subsets of the features afforded by TÆMS are employed,
custom schedulers may do a better job of balancing the dif-
ferent concerns and finding good solutions. In terms of opti-
mality, it is difficult to compare the performance of DTC to
optimal as found via exhaustive generation simply because it
is not feasible to generate all possible schedules for realistic
task structures. Members of our group are currently working
on an MDP-based TÆMS scheduling tool [17, 23] and we
plan to measure DTC’s performance on smaller applications
through this tool.

It is important to note that though DTC takes great pains
to produce schedules quickly, the scheduler is not hard real
time itself. We cannot make performance guarantees [15]
for a given problem instance, though it would be possible
to produce such guarantees by classifying similar task struc-
tures and measuring scheduling performance offline. At is-
sue is the constraints present in an arbitrary TÆMS task
structure. For certain classes of task structures, guarantees
without an in-depth preclassification are possible. In prac-
tice, the scheduler (implemented in 50,000 lines of C++)
is fast and capable of scheduling task structures with 20-40
primitive actions in under 7 seconds on a 600mhz Pentium
III machine running Redhat Linux 6.0. A sampling of appli-
cations and runtimes are shown in Table 1.

In the table, the first column identifies the problem in-
stance, the second column identifies the number of primitive
actions in the task structure, the third column (UB # R-Alts)
indicates the upper bound on the number of root-level alter-
natives, the fourth column identifies the upper bound on the
number of schedules possible for the task structure (“N/C”
indicates that the value is too large for the variable used to
compute it). The fifth column (# Alts R / Total) identifies the
number of alternatives actually produced during the schedul-
ing run – the first number is the number of alternatives pro-
duced at the root note and the second number is the total
number of alternatives produced during scheduling. The first
number is comparable to the upper-bounds expressed in col-
umn three. The sixth column shows the number of schedules
actually produced. The column labeled # D Combines indi-
cates the number of distribution combination operations per-
formed during scheduling – this is particularly informative
because nearly all aspects of the scheduling process involve
probability distributions rather than expected values. The
last three columns pertain to the time spent (in whole sec-
onds) doing different activities, namely producing the set of
root-level alternatives, creating schedules from the alterna-
tives, and the total scheduler runtime (which includes some
final sorting and other output-related operations). Due in
part to the scheduler’s use of a particular set of clock func-
tions, which are integer based, there is no variance when
the experiments are repeated because the variance pertains
to less than whole seconds.

Most of the task structures produced 15 schedules – this
is the system default. When fewer schedules are produced it
indicates that there are not sufficient alternatives at the root
level to produce more schedules. When more than 15 sched-
ules are produced, it indicates that the scheduler’s termina-
tion criteria was not met – generally caused by a large per-
centage of zero quality schedules or by there being alterna-

tives that appear better than any schedules generated thus far
per the design criteria. The scheduler will work beyond its
preset number under these conditions but only to some mul-
tiple of the preset. The JIL translated structure, for example,
contains some modeling problems that produce a very large
number of zero quality schedules and DTC scheduled up to
4*15 and then halted with a small set of viable schedules.

With respect to scheduler computation overhead and on-
line performance, the time required to schedule these task
structures is reasonable given that the grainsize of the struc-
tures themselves is much larger than the seconds required to
perform the scheduling operation (generally, scheduler over-
head is at most 1% of the total runtime of the agent’s ap-
plication). That being said, however, being “appropriately
fast” is not necessarily the long term objective and perfor-
mance guarantees and performance estimates are important
research avenues for the future.

One promising area of DTC related research is an offline
contingency analysis tool [17, 23] that uses DTC to explore
an approximation of the schedule space for a given TÆMS
task structure. The use of DTC as an oracle enables the
contingency analysis tool to cope with the combinatorics
of the general scheduling problem. The contingency anal-
ysis methodology determines the criticality of failures with-
in a schedule and for critical points, evaluates the statistical
characteristics of the available recovery options. The analy-
sis, while expensive, is appropriate for mission-critical hard
deadline situations in which a solution must be guaranteed
by a particular time. With DTC’s approach, it is possible
to start down a solution path (that is appealing even with
the possibility of failure) for which there is no mid-stream
recovery option that will enable the agent to still produce
some result by the hard deadline. DTC will always recover
and find whatever options are available, but, because it does
not plan for contingency and recovery a priori, in hard dead-
line situations in which solutions must be guaranteed, there
is some possibility of unrecoverable failure.

DTC has many different parameter settings not discussed
here and it can be made to avoid failure if possible. However,
while this covers a certain class of the functionalities offered
by the contingency analysis tool, the two are not equivalen-
t. Whereas the best DTC can do is avoid failure if possible,
or work to minimize failure, it can only do this for a sin-
gle line of control. Using the contingency analysis tool, the
agent can select a high risk plan of action that also has some
potential of a high pay off, but, it can also reason a priori
about the ability to recover from a failure of the plan. While
DTC can be extremely conservative, it cannot plan for both
high-risk and recovery concurrently. The choice between
DTC and the contingency analysis approach is dependent on
the application. For online, responsive control to unplanned
events, DTC is most appropriate. For mission-critical situ-
ations combined with time for a priori offline planning, the
contingency approach is most appropriate.

Acknowledgments
We would like to acknowledge the Design-to-Time work of
Professor Alan Garvey; said work made this and other de-
velopments in TÆMS scheduling possible. We would al-

Task # UB # # UB # Alts # Sched. # D T Prod. T Prod. T
Structure Methods R-Alts Schedules R / Total Prod. Combines Alts Sched. Total

Simple Plan Trip 10 1,023 9,864,100 53 / 91 15 8,686 0 1 1
HotWaterHeater1.0 6 63 1,956 45 / 108 19 7,831 0 1 2

DishWasher1.0 14 16,383 N/C 100 / 1018 15 47,136 0 1 2
IHomeRobot 186 2,147,483,647 N/C 50 / 665 15 46,140 0 2 3
Transport v0 9 511 986,409 48 / 167 15 13,032 0 1 1

BIG v1.2 26 67,108,863 N/C 50 / 4540 15 273,283 2 3 6
JIL translated 25 33,554,431 N/C 139 / 3526 60 334,393 2 3 7

Table 1: Scheduler Performance on an Assortment of Different Applications

so like to thank Garvey for his assistance in understanding
the details of Design-to-Time when implementing the first
stages of Design-to-Criteria. The deadline over-run tech-
nique discussed in this paper, where over-run is reflected in a
method’s quality, is similar to a technique developed and de-
ployed by Garvey in Design-to-Time. The technique was in-
dependently developed and deployed in Design-to-Criteria.

Anita Raja also deserves credit for pushing on the issue of
recovery in mission critical environments. Her work in con-
tingency analysis via Design-to-Criteria encouraged a clear
distinction between situations in which a deeper analysis is
worthwhile or required and situations in which online re-
sponsiveness is appropriate.

References
[1] Ella M. Atkins, Edmund H. Durfee, and Kang G. Shin.

Detecting and Reacting to Unplanned-for World S-
tates. In Proc. of the 14th Natl. Conf. on AI, July 1997.

[2] Mark Boddy and Thomas Dean. Solving time-
dependent planning problems. In Proc. of the 11th
Intl. Joint Conf. on AI, pages 979–984, Detroit, August
1989.

[3] Ceros-related information gathering project – in
progress. Organization url is http://www.ceros.org.

[4] T. Dean and M. Boddy. An analysis of time-dependent
planning. In Proc. of the Seventh Natl. Conf. on AI,
pages 49–54, August 1988.

[5] Keith Decker and Jinjiang Li. Coordinated hospital
patient scheduling. In Proc. of the 3rd Intl. Conf. on
Multi-Agent Systems, pages 104–111, 1998.

[6] Keith S. Decker. Environment Centered Analysis and
Design of CoordinationMechanisms. PhD thesis, Uni-
versity of Massachusetts, 1995.

[7] E. H. Durfee. A cooperative approach to planning for
real-time control. In Proc. of the Wrkshp. on Innova-
tive Approaches to Planning, Scheduling and Control,
pages 277–283, November 1990.

[8] Alan Garvey and Victor Lesser. Design-to-time real-
time scheduling. IEEE Trans. on Systems, Man and
Cybernetics, 23(6):1491–1502, 1993.

[9] Eric Horvitz, Gregory Cooper, and David Heckerman.
Reflection and action under scarce resources: Theoret-
ical principles and empirical study. In Proc. of the 11th
Intl. Joint Conf. on AI, August 1989.

[10] Eric Horvitz and Jed Lengyel. Flexible Rendering of
3D Graphics Under Varying Resources: Issues and Di-

rections. In Proc. of the AAAI Sympos. on Flexible
Computation in Intelligent Systems, November 1996.

[11] David Jensen et al, Learning Quantitative Knowledge
for Multiagent Coordination. Proc. of AAAI-99, 1999.
Also as UMASS CS Technical Report TR-99-04.

[12] David Jensen et al, Coordinating agent activities in
knowledge discovery processes. In Proc. of Work Ac-
tivities Coordination and Collaboration Conf., 1999.
Also available as UMASS Tech Report UM-CS-1998-
033.

[13] Victor Lesser, Michael Atighetchi, Bryan Horling,
Brett Benyo, Anita Raja, Regis Vincent, Thomas Wag-
ner, Ping Xuan, and Shelley XQ. Zhang. A Multi-
Agent System for Intelligent Environment Control. In
Proc. of the 3rd Intl. Conf. on Autonomous Agents,
1999.

[14] Victor Lesser, Bryan Horling, Frank Klassner, Anita
Raja, Thomas Wagner, and Shelley XQ. Zhang. BIG:
An agent for resource-bounded information gathering
and decision making. To appear in the AIJ, 2000.

[15] David J. Musliner, Edmund H. Durfee, and Kang G.
Shin. CIRCA: A cooperative intelligent real-time con-
trol architecture. IEEE Trans. on Systems, Man and
Cybernetics, 23(6), 1993.

[16] David J. Musliner, James A. Hendler, Ashok K. A-
grawala, Edmund H. Durfee, Jay K. Strosnider, and
C. J. Paul. The Challenge of Real-Time AI. Computer,
28(1):58–66, January 1995.

[17] Anita Raja, Thomas Wagner, and Victor Lesser.
Reasoning anout Uncertainty in Design-to-Criteria
Scheduling. Computer Science Technical Report TR-
99-27, University of Massachusetts at Amherst, March
2000. To appear in the 2000 AAAI Spring Sympos. on
Real-Time Systems.

[18] Stuart J. Russell and Shlomo Zilberstein. Composing
real-time systems. In Proc. of the 12th Intl. Joint Con-
f. on AI, pages 212–217, Sydney, Australia, August
1991.

[19] Wolfgang Slany. Scheduling as a fuzzy multiple cri-
teria optimization problem. Fuzzy Sets and Systems,
78:197–222, March 1996. Issue 2. Special Issue on
Fuzzy Multiple Criteria Decision Making; URL: ft-
p://ftp.dbai.tuwien.ac.at/pub/papers/slany/fss96.ps.gz.

[20] Regis Vincent, Bryan Horling, Thomas Wagner, and
Victor Lesser. Survivability simulator for multi-agent
adaptive coordination. In Proc. of the 1st Intl. Conf. on
Web-Based Modeling and Simulation, 1998.

[21] Thomas Wagner, Alan Garvey, and Victor Lesser.
Complex Goal Criteria and Its Application in Design-
to-Criteria Scheduling. In Proc. of the 14th Natl. Conf.
on AI, pages 294–301, July 1997. Also as UMASS CS
TR-1997-10.

[22] Thomas Wagner, Alan Garvey, and Victor Lesser.
Criteria-Directed Heuristic Task Scheduling. Intl.
Journal of Approximate Reasoning, Special Issue on
Scheduling, 19(1-2):91–118, 1998. Also as UMASS
CS TR-97-59.

[23] Thomas Wagner, Anita Raja, and Victor Lesser. Mod-
eling Uncertainty and its Implications to Design-to-
Criteria Scheduling, Under review Special issue of the
AI Journal, Also as UMASS CS TR-98-51

[24] Ping Xuan and Victor R. Lesser. Incorporating uncer-
tainty in agent commitments. In N.R. Jennings and
Y. Lespérance, editors, Intelligent Agents VI — Proc.
of ATAL-99, Lecture Notes in AI. Springer-Verlag,
Berlin, 2000.

[25] S. Zilberstein and S. J. Russell. Optimal composition
of real-time systems. AI, 82(1):181–214, December
1996.

[26] Shlomo Zilberstein. Using anytime algorithms in in-
telligent systems. AI Magazine, 17(3):73–83, 1996.

[27] M. Zweben, B. Daun, E. Davis, and M. Deale.
Scheduling and rescheduling with iterative repair. In
M. Zweben and M. Fox, editors, Intelligent Schedul-
ing, Chapter 8. Morgan Kaufmann, 1994.

