
Using Self-Diagnosis to Adapt Organizational
Structures

Bryan Horling, Brett Benyo, and Victor Lesser
University of Massachusetts

Department of Computer Science
Amherst, MA 01003

bhorling, bbenyo, lesser @cs.umass.edu

Abstract

The specific organization used by a multi-agent system is crucial for its
effectiveness and efficiency. In dynamic environments, or when the objec-
tives of the system shift, the organization must therefore be able to change as
well. In this paper we propose using a general diagnosis engine to drive this
process of adaptation, using the TÆMS modeling language as the primary
representation of organizational information. Results from experiments em-
ploying such a system in the Producer-Consumer-Transporter domain are
also presented.

Keywords: Organization and social structure, organization self-design.

The effort represented in this paper has been sponsored by the Defense Advanced Research
Projects Agency (DARPA) and Air Force Research Laboratory, Air Force Materiel Command,
USAF, under agreement numbers F30602-99-2-0525 and F30602-97-1-0249, and by the Depart-
ment of the Navy, Office of the Chief of Naval Research, under Grant No. N00014-97-1-0591.
The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of
the Defense Advanced Research Projects Agency (DARPA), Air Force Research Laboratory, or
the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation thereon.



1 Overview
As the sizes of multi-agent systems grow in the number of their participants, the
organization of those agents will be increasingly important. In such an environ-
ment, an organization is used to limit the range of control decisions agents must
make, which is a necessary component of scalable systems. Are agent agents ar-
ranged in clusters, a hierarchy, a graph, or some other type of organization? Are
the agents‘ activities or behaviors driven solely by local concerns, or do exter-
nal peers or managers have direct influence as well? Is communication between
agents active, via messaging of some sort, or passive, using observations or en-
gineered assumptions? These and other characteristics define the organizational
structure of a multi-agent system - the rules which define the roles agents play
and the manners in which they interact with other agents in the system.

Clearly the characteristics described above will have an impact on the efficien-
cy and responsiveness of both large and small multi-agent systems. It should also
be intuitively clear that the effectiveness of the organization is dependent on the a-
gents, environment, and goals involved in the system. The problem then, is how to
derive such a structure given a particular situation. The simplest option is to stat-
ically define the organization when the system is developed. This has the benefit
of being a simple and direct solution, but can become impractical when the sets of
agents and goals are large and diverse. Static solutions also suffer when elements
of the multi-agent system are dynamic, since characteristics of an environment
may change such that the initial organization becomes inefficient. Members of
the agent pool may become deactivated or compromised in some way, making it
impossible for the system to function correctly, or other agents may not be used
effectively when they are added. In this sense, the organization is a set of as-
sumptions that the system works by. As these assumptions become invalid, the
organization must be able to adapt to keep the system viable.

The term Organizational Self-Design (OSD) has been used previously [2] to
describe the general technique of employing the members of a multi-agent system
to generate or adapt their own organizational structures at runtime. Earlier work
in this area tended to focus on adapting specific qualities of the organization, such
as task allocation [7] or load balancing [5, 8]. Organizational structure genera-
tion has also been proposed as arising from local [5], global [2], and hybrid [10]
perspectives. Each of these systems demonstrated specific techniques that worked
well and efficiently in their respective environments, but they were not general
solutions to the problem. In this paper we propose a more general approach, using
diagnosis, to detect deficiencies in the organizational model and assist in the cre-



F1 F2

F3F4

X

T2

Y

T1

X
T1

F1 F2

F3F4

X

T2

X

T1

Figure 1: The initial (L) and revised (R) transporter organizations.

ation of solutions to those deficiencies; the eventual goal being to create a reusable
organizational adaptation engine. We will show how a general diagnosis engine,
coupled with a powerful representation of that organization, can be used to effect
change in a wide range of characteristics from arbitrary perspectives.

To help make this notion of organizational adaptation more concrete, we will
look at an example from the Producer, Consumer, Transporter (PCT) domain [4].
In this domain, there are conceptually three types of agents: producers, which
generate resources; consumers, which use them; and transporters, which move
resources from one place to another. In general, a producer and consumer may ac-
tually be different faces of a factory, which consumes some quantity of resources
in order to produce others. There are several characteristics of this domain where
alternatives exist for the factories and transporters - the choices made at these
points by or for the PCT agents make up the organizational structure of the sys-
tem. Examples of such characteristics include the types and quantities of resources
a producer should generate, the set of potential sources a consumer should obtain
required resources from, and what paths a transporter may choose to follow as it
moves about.

In this example, consumers and , shown in Figure 1, require some amoun-
t of resource . In the initial organization, each is being supplied with by pro-
ducer . is then supplied to and by transporters and , respectively,
each of which operates at 50% capacity. Factory is initially idle, but at some
future point in time it obtains production request, which requires resource to be
satisfied. Fortunately, produces , but in the initial organization, no additional
transporters are available to deliver the needed goods. With a diagnostic sys-
tem in place, the transporters could determine that their initial organization, while
functional under the initial conditions, included under-loaded transporters and was
therefore potentially suboptimal. Instead of using two transporters running at 50%
capacity, just one at 100% capacity could satisfy the original requirements for
expressed by and , albeit at a slight time penalty because of the extra stop.
Thus, if instantiated, the revised organization would leave free to perform the



Scheduling Coordination

Negotiation Problem Solving

Reactions

Short/Long Term Diagnoses

Symptoms Models

Organizational Design
TÆMS / MQ

Figure 2: Role of organizational knowledge within an agent.

transportation required by . More quantitative results from this domain will also
be covered in section 4.

Figure 2 shows at a high level how we propose organizational design can be
situated and integrated in an agent. In this architecture, critical components within
the agent, such as those responsible for problem solving, negotiation and schedul-
ing, obtain the vast majority of their information from an organizational design
layer. This layer abstracts and filters elements of the operating environment in
a manner consistent with the agent’s role in the organization. The abstraction is
composed of one or more information sources, such as TÆMS structures or MQ
values [11], capable of encoding the various aspects of the organization. TÆMS a
task and interaction modeling language, will be discussed in detail in a later sec-
tion. MQ (motivational quantity) values, which give the agent a more powerful
way to reason about the utilities of its tasks, will not be covered in this paper.
To permit adaptation, the organizational design layer is maintained by a diag-
nostic subsystem, which attempts to repair faults and inefficiencies by adjusting
elements of the organizational structure. This diagnostics process can itself be
driven by a number of sources, including observations of the environment, con-
ditions monitored within the agent, and discourse with other agents. The direct
effects of these diagnoses typically take place within a relatively small group of
agents, so one can think of this technique as being a search process for the correct
organization through local adaptation.

Going back to the previous PCT example, we can see how this technique
would work in practice. The initial organizational structure would be encoded
in TÆMS structures in both the transporters and factories. They would indicate



such characteristics as what goals the factories and transporters should work to-
wards and how they could be accomplished. Initially, the organization would
be unconstrained, permitting the type of interactions seen in Figure 1L. Diagnosis
running on the transporters or factories would determine that while the transporter
loads were well balanced in the initial state, the arrangement was not necessarily
the most efficient use of their abilities. could use this information to add a
constraint to it’s local organizational representation, indicating that it should use

for its transportation needs. Later, when requests the use of a transporter,
will then be available.
In the next section we will give more details about our view of the actu-

al knowledge used by an agent to represent the organizational information that
makes up the abstraction layer shown in Figure 2. Following this, we will cover
our diagnostic system, shown in the middle of this same figure, and how it is inte-
grated into and used by our agents. In section 4 results from an experiment in the
PCT domain will be covered, and in section 5 we will present our conclusions.

2 Organizational Knowledge
As mentioned in the previous section, the range of information that comprises
an organizational structure can be quite broad. It is our opinion that there is no
single, comprehensive set of characteristics that might make up the definition of
an organizational structure. Instead, the set is dependent more on what alternatives
are possible within a particular multi-agent system and which of those alternatives
can have an impact on the system’s behavior and effectiveness. Given that, we
will present in this section our organizational representation, called TÆMS (Task
Analysis, Environmental Modeling, and Simulation), which is flexible enough to
model a wide range of organizational characteristics.

2.1 TÆMS
The primary representation of the organizational structure is done with the domain-
independent TÆMS task modeling language [3] (see Figure 3 for a simple exam-
ple). A TÆMS task structure is essentially a goal decomposition tree, where leaf
nodes represent executable primitive methods and internal task nodes provide a
hierarchical organization. Root level tasks (those with no supertasks) are known
as task groups, and conceptually represent high level goals that might be achieved.
Associated with each task is a quality-accumulation function (QAF), which indi-
cates how the quality of the task is calculated from that of its subtasks. Associated
with each method is a distribution-based description of its expected quality, cost



and duration measures. Together, the probabilistic method descriptions and QAF-
s allow a scheduler to effectively reason about the traits and tradeoffs of a wide
range of possible schedules. A third type of element, interrelationships, which
arise between internal tasks, methods and resources can be used to indicate a wide
range of interactions, such as enables, facilitates, hinders and consumes (e.g. per-
forming a task will enable the execution of another). Interrelationships may also
span task structures between agents, and tasks and methods performed by remote
agents may be represented locally. Combined, the capabilities give developers
using TÆMS the flexibility to model a wide range of traits, from low-level per-
formance characteristics of a single action to a high-level representation of the
system’s control hierarchy.

TÆMS task structures are typically used to encode the different mechanisms
for achieving a goal, and the constraints and tradeoffs associated with each poten-
tial plan. They are also used to describe both the potential capabilities of an agent
and the subset of those capabilities it should employ given its place in the orga-
nization. To do this, each agent will have two different versions, called views, of
its local task structure: subjective and conditioned. The subjective view contains
what the agent believes to be the complete model of its local execution alterna-
tives1. The conditioned view is a copy of the subjective which has gone through
a process of conditioning - it may contain task, method or interrelationship dele-
tions, modifications or insertions. The conditioned view is normally used for plan
construction, so these modifications indirectly allow the problem solver perform-
ing the conditioning process to focus the attention of the scheduling and coordina-
tion mechanisms. As we will see below, the conditioned view can also represent
the instantiation of the role assigned to it by the organizational structure.

2.2 Task and Goal Representation
Since the general purpose of TÆMS is to facilitate plan generation, it is well suited
for representing the different task alternatives available to an agent in an organi-
zation. In an agent’s subjective view we can represent (or dynamically generate)
structures describing each of the high level goals the agent can achieve. Each of
these structures would in turn describe the various alternate ways that a particular
goal might be achieved. The subjective view would then be, in this light, a com-
plete description of all the possible roles an agent might be assigned to, and how

1There is also an omniscient objective view, inaccessible to agents, which defines the real
execution alternatives. In simulation, one can engineer differences between the objective and
subjective views to create scenarios where the agent’s expectations are not met.



Figure 3: Subjective (left) and conditioned (right) views of ’s task structure.

the agent might act to satisfy that role.
Within a particular organizational structure, however, an agent will typically

(but not necessarily) be working toward just a single or limited set of goals. Thus,
in the conditioned view there will be a single task group representing that goal.
The subtree underneath that task group might be further pruned to reflect other
decisions within the organization. For example, in the subjective view there might
be two possible ways to complete a task, one local solution and another using a
remote contract, whereas an organizational constraint could remove the remote
option from the conditioned view. So, using this representation we can encode all
the tasks a particular agent might be working on, and also the specific task(s) they
have chosen or been assigned. These techniques are used in the experiment shown
in section 4 to control the path selection done by transporter agents.

2.3 Specifying Interactions
As mentioned above, TÆMS allows the agent to represent tasks and methods
that other agents may perform. This capability allows TÆMS to model poten-
tial interactions between agents very effectively. Consider the case where agent

requires resource as part of its manufacturing process, as seen in Figure 3.
Here, has a method Get-Materials, which consumes some amount of resource

. In the subjective view we can see that knows of three other agents that
can produce for it: , , and , each of which is represented by a shaded,
nonlocal method that has a produces interrelationship to . In the conditioned
view only is represented, which indicates that in this organization, should
obtain from . A less restrictive organization might allow to choose lo-
cally from either or , which could be represented by adding ’s produces
interrelationship to the conditioned view. In this new model, the local scheduler
would select from the two, based on the characteristics that differentiate the two
produces interrelationships.



Other interrelationship types might inform the agent that another agent’s ac-
tions could assist (facilitate) or prevent (hinder) local execution. Assuming the
agent needs to interact, explicitly or not, with those remote agents to exploit these
interrelationships, they then indicate a point of potential coordination. Thus, an
agent using this type of model can succinctly encode what sort of coordination is
needed (based on the interrelationship type), with what other agents it should take
place, and given a schedule of execution, when it should occur.

2.4 Other Organizational Details
Data concerning particular agents, existing commitments, and execution sched-
ules are also stored within TÆMS models. Inevitably, however, there are some
details particular to a given organization that do not directly fit into this represen-
tation. For these situations, all elements in a TÆMS model can be associated with
an arbitrary set of attributes, where one could specify such things as preferred
communication medium, optimal load measurements, or interaction history with
a particular agent. Also stored here are performance characteristics, such as result
thresholds and tolerances and expected frequency statistics, which the diagnosis
subsystem can use to help identify potential failures.

With this information, we can now return to the questions posed in the overview
section. The arrangement of agents can be expressed and derived locally by us-
ing the complete structure and owning agent tags of tasks and interrelationships.
Commitments can exhibit potential influences on agent activities, or by explic-
itly modeling the task of obtaining goals from remote agents. Interrelationships
can denote communication alternatives among agents, and their presence in the
conditioned view determines if they should be explicit or implied. This knowl-
edge representation thus serves as a reasonable representation of the organization-
al structure; the task now is to adapt that structure over time using diagnosis.

3 The Diagnostic Subsystem
Figure 4 shows the architecture of the diagnostics subsystem we currently em-
ploy. It uses a blackboard-based design, separating the process into three distinct
layers: symptoms, diagnoses, and reactions. This type of system offers several
advantages. It promotes a clear chain of reasoning, since the diagnoses support-
ing a given reaction can easily be identified, as can the symptoms that support a
particular diagnosis. Each layer is also subdivided by time, so a history of activ-
ity on each level is readily accessible. The blackboard layers also clearly define
the separation of responsibilities. This modularity allows any of the layers to be



Reactions

Short/Long Term Diagnoses

Symptoms ModelsCausal
Model

Reaction
Generator

Observers Modelers

Inducer

Environment

TÆMS

Effect
Monitor

Figure 4: High-level architecture of the diagnostics subsystem.

accessed at any time, enabling arbitrary components or even remote agents to
asynchronously use and add to elements on the blackboard. The different layers
of the blackboard, and the components which make use of them (excepting the
effect monitor), will be discussed below. In our current systems, each agent uses
this subsystem to perform local diagnosis, although it is quite feasible that in oth-
er systems a specialized “diagnosis” agents would be responsible for monitoring
small groups of their peers.

The lowest level of the blackboard contains symptoms, elements that contain
observations about such things as the environment, agent activities and commit-
ments. Two classes of components currently generate symptoms: observers and
modelers. Observers work by simply monitoring different aspects of the agen-
t, and generating symptoms when appropriate. Modelers take a more proactive
approach by building or learning models, and then using these models as a ba-
sis for comparison, an approach similar to that used in conventional model-based
diagnosis. As models are updated, or predictions derived from the models fail,
appropriate symptoms describing these instances are noted on the blackboard. We
have experimented with modelers that learn interrelationships in TÆMS objects
[6] and others that predict environmental resource usage.

Diagnosis is a well-researched field, with many different methods and tech-
niques already available to the system designer. Our goal was to use a technique
that offered great flexibility in the information it could use and the diagnoses
it could generate, without sacrificing subject scope or domain independence. It
is not clear from the outset, however, that any single diagnostic technique (e.g.,
model-based, symptom-directed, collaborative) is suitable for the entire range of
faults exhibited by multi-agent systems. It was therefore desirable to use a system
or framework capable of incorporating different diagnostic techniques. In such an
architecture we can make use of a variety of different methods, given the types of



UnexpectedActionDuration

UnexpectedActionQuality

ActionAborted

PeriodicCoordination

IncorrectMethodQualDistribution

IncorrectMethodRsrcUsage

IncorrectMethodCostDistribution

IncorrectCoordinatedDurationEstimate

Triggerable Node

Normal Node

ResourceUnavailable

UnexpectedActionCost

IncorrectConsumesNLE

CompletionTimeDelayed StartTimeDelayed

PreviousTaskDelayed

EnablingTaskDelayed

IncorrectLimitsNLE

IncorrectProducesNLE

NoRsrcCoordination
IncorrectModelOfRsrcUsage

IncorrectNLEQualityPower

IncorrectNLECostPower

IncorrectNLEDurationPower

IncorrectNLEDelayPower

IncorrectMethodDurDistribution

Figure 5: Causal model for diagnosing action- and coordination-based faults.

failures they best address.
Expanding on work first researched in [9], we chose to organize our diagnostic

process using a causal model. The causal model is a directed, acyclic graph that
organizes a set of diagnosis nodes. Figure 5 shows an example of such a graph;
more examples of graphs addressing broader topics can be found in [1]. A more
applied model used in the PCT domain can also be seen in Figure 6. Each node
in the causal model corresponds to a particular diagnosis, with varying levels of
precision and complexity. As a node produces a diagnosis, the causal model can
determine what other, more detailed, diagnoses may further categorize the prob-
lem. Within the diagnosis system, the causal model then acts as a sort of road map,
allowing diagnosis to progress from easily detectable symptoms to more precise
diagnostic hypotheses as needed. A more advanced technique can also use the
same structure to help validate diagnoses, by using backward chaining through
the branches to determine the state of other potentially related diagnostic nodes.

It is worth mentioning that nodes in the causal model do not necessarily pro-
duce single-shot diagnoses. Some nodes, such as UnexpectedActionDuration,
simply produce a diagnosis and stop. Others, such as PeriodicCoordination, can
produce a diagnosis and monitor it over time to determine if conditions change or
more evidence is found. Thus, a node could pose an initial diagnostic hypothesis
when confronted with a particular situation. Since it only has limited evidence
(presumably one data point), the confidence on that diagnosis would be low. The
node can persist, however, and either passively watch for related evidence, or ac-
tively gather new information that either contradicts or corroborates the initial
diagnosis. Furthermore, since other diagnoses or reactions may be based on that



initial diagnosis, a change may also affect their confidence, causing a ripple effect
throughout the blackboard as the original diagnosis accumulates new information.

The reactions level contains descriptions of the potential solutions to diag-
noses found on the previous level. In some sense, then, these reactions are the
effectors of organizational change. As diagnoses are hypothesized, and their con-
fidence reaches a certain threshold, the reaction generator will pose solutions to
those diagnoses. For instance, if the causal model determines that insufficient re-
sources were available for a particular action because their usage was not coordi-
nated over, a potential reaction would modify the conditioned view of the agent’s
TÆMS model so that coordination would take place for that action in the future.
A different reaction for that problem might remove the offending method from
the view altogether. Similarly, if a diagnosis determined that an agent’s actions
were predictably periodic, a reaction could set up default commitments to reduce
the need for explicit communication during each of those cycles. Like diagnoses,
reactions can also be long-lived, providing incremental change in response to up-
dated diagnoses or to slowly test new organizational changes.

Organizational changes for higher level characteristics work the same way.
For instance, in Figure 3, a consumer’s choice of producers limited is by the orga-
nization. A reaction could implement this change by removing the methods and
interrelationships that describe those extra producers from the conditioned view.
In the initial PCT organizations seen in Figure 1, a reaction would modify the
conditioned view of to indicate it should use . When this change is made,
would be free to accept the transportation request from . Similar methods can
drive more large scale reorganizations. In these cases, local reactions can directly
implement sophisticated reorganization techniques like those seen in [5, 8, 10, 7],
or they can direct the local agent controller or problem solver to do so.

The task of selecting from among these potential reactions lies with the induc-
er. Our current inducer simply instantiates any reaction it sees on the blackboard.
In future versions this component would be more complex, able to differentiate
between reactions, analyze the potential benefits and drawbacks of each, and de-
termine the best reaction given the agent’s current context and prior history.

4 Experimental Results
A specific system using the architecture outlined in the previous sections has been
implemented and tested using scenarios from the PCT domain. In this section,
we will outline one of those experiments, examining the effects of organizational
changes in a small, eight member multi-agent system.



In this scenario, there are four factories and four transporters operating in the
environment shown in Figure 1. As shown in that figure, there are also four “door-
ways”, or potential points of contention along the lengthwise transporter routes.
These doorways only allow one transporter through at a time, which transporters
must be aware of as they select their routes. The objective for transporters is then
to deliver their cargo on time, given the potential vagaries of factory production
and the need to avoid collisions on travel pathways. Factories in the environment
have different production capabilities and resource requirements, summarized in
Table 1, and they must also select one or more transporters to deliver materials
to them. Each factory is capable of producing both a simple resource, one that
requires no external elements to build, and a complex resource, which requires
other resources to produce. can also produce an even more complex resource

, which is the combination of four other resources.

Factory Simple Complex
ø
ø
ø
ø

Table 1: Production rules for factories in PCT example.

In the initial phase of the scenario, the goal of each factory is to produce seven
of each type of complex resource by time 700. After time 700, the objective shifts
so that the system as a whole should produce as much as possible by time 1200.
To provide further context, the round trip duration from to is around forty
time units (barring path contention), and resource production can take five time
units. Two organizational characteristics have alternatives as part of this scenario
- the transporter selected for a particular transportation task, which is decided by
the consuming factory, and the path the transporter selects to perform that task.
Three runs were performed, the first employed an arbitrary static organization,
the second used diagnosis with only task allocation nodes from the causal model
shown in Figure 6, and the third used the entire causal model, which added path
selection diagnosis to the second trial. The objectives behind most of the nodes
in the model should be intuitive: DeadlineMissed fires when action’s deadline has
not been achieved, TransporterOverloaded is true when a transporter’s task load
is disproportionate to those of it’s peers, and OverCoordination determines when
explicit coordination may be unnecessary in certain cases.

Table 2 shows the results from the experiments; average delay is the average



TooManyConflicts

DeadlineMissed

AbnormalLoad

OverCoordination

ProducerOverloaded

TransporterOverloaded

TransporterUnderloaded

StatisticalAnomaly

SystemOverloaded

Figure 6: Causal model structure used in the PCT scenario.

amount of time from when a factory begins gathering materials for resource pro-
duction to when the resource is completed. As shown in the table, the results
from the static organization are quite poor, except those for resource , which
benefitted from using relatively underloaded transporters in the organization. The
delays during production of are particularly bad, being more than three times
those in other runs. Clearly this performance is dependent on the organization that
was initially chosen, but more important to this discussion is the fact that an ini-
tial poor organization was greatly improved with the addition of diagnostic-based
adaptation, as shown by the results from the second and third runs.

Average Delay
Adaptation

None 261.9 94.5 253.6 252.0 422.0
CM (Tasks) 97.8 88.4 90.3 98.4 118.9

CM (Full) 93.0 90.0 92.5 96.5 99.6
Table 2: Results from three trials in the PCT scenario.

In the results from the second run we see that the average production delay
for each resource was reduced by nearly two-thirds in most cases. These gains
were obtained by using load statistics, which can be generated from the trans-
porter’s conditional TÆMS view, to more efficiently allocate transporters to the
various tasks available. Reallocation was performed by adding or removing in-
terrelationships from a factory’s conditional view, which constrained the set of
transporters the factory could potentially use. Initially, the consumers chose from
all transporters available in the environment, which was quite inefficient because
transporters working on long-haul (diagonal) runs were selected as often as those
on shorter runs. Through incremental changes to their conditional views, react-
ing to transporter performance and load, consumers in the second trial settled into
an organization where more lightly-loaded transporters were selected more fre-
quently, producing a more efficient allocation. The allocation for the initial phase
settled around time 240, after four task reassignments. When the second phase



started, after time 700, additional task reallocations took place every 100 pulses
or so until the system completed.

With the introduction of path selection diagnosis in the third run the delays
dropped again, especially that of resource , which due to its larger component
set has the most potential for conflicting transporter routes. Diagnosis relevant
to path selection was performed by the TooManyConflicts and OverCoordination
nodes, which determined if a transporter encountered excessive conflicts when
coordinating with other transporters over route usage. In this trial, the transporter-
s’ options regarding path selection were improved by constraining them in such
a way to reduce the possibility of conflict. This was also implemented through
local incremental change, this time by the transporters themselves, as they exper-
imented with varying path probabilities (the chance that a particular route will be
chosen) until one was found which incurred few conflicts. By lowering the poten-
tial for conflicts, the path probabilities reduced the overhead spent on both control
decisions and coordination, which left more time for the actual act of transporting.
Interestingly, despite similar final results, the organizational changes with both
techniques available were very different than those of the previous trial. Periodic
task reallocations were done every 100 pulses or so until time 800. Additionally,
two to three path probability changes were made before time 200 for each of the
transporters, and one or two more after time 700.

5 Conclusion
Generating an effective organizational structure for a multi-agent system is a cru-
cial part of making them efficient, especially for large systems where global con-
trol is impractical. Adapting these organizations at runtime therefore becomes im-
portant when the environment, goals, or participants are liable to change. Several
specific techniques have been offered by previous work in this area; we propose
a more general solution to the problem by organizing such activity under the um-
brella of diagnosis. A general diagnostic engine such as that shown in this paper
is capable of detecting and diagnosing a variety of faults and inefficiencies, which
can be used to drive organizational change. The organization itself is represent-
ed using models, such as TÆMS structures, which abstract the relevant portions
of agents’ capabilities and interactions in a way that facilitates both its use by a-
gent control components and its adaptation by diagnosis. In this architecture, the
methods driving change, and the characteristics affected by adaptation, can then
be simplified to general techniques updating a domain independent representation,
which can be reused from one system to the next.



References
[1] Ana L.C. Bazzan, Victor Lesser, and Ping Xuan. Adapting an Organization Design

through Domain-Independent Diagnosis. Comp Sci Technical Report TR-98-014,
University of Massachusetts at Amherst, February 1998.

[2] Daniel D. Corkill and Victor R. Lesser. The use of meta-level control for coor-
dination in a distributed problem solving network. In Proceedings of the Eighth
International Joint Conference on Artificial Intelligence, pages 748–755, Karlsruhe,
Germany, August 1983.

[3] Keith S. Decker and Victor R. Lesser. Quantitative modeling of complex environ-
ments. International Journal of Intelligent Systems in Accounting, Finance, and
Management, 2(4):215–234, December 1993. Special issue on “Mathematical and
Computational Models of Organizations: Models and Characteristics of Agent Be-
havior”.

[4] Edmund H. Durfee and Thomas A. Montgomery. Coordination as distributed search
in a hierarchical behavior space. IEEE Transactions on Systems, Man, and Cyber-
netics, 21(6):1363–1378, 1991.

[5] Toru Ishida, Makoto Yokoo, and Les Gasser. An organizational approach to adaptive
production systems. In National Conference on Artificial Intelligence (AAAI-90),
pages 52–58, 1990.

[6] D. Jensen, M. Atighetchi, R. Vincent, and V. Lesser. Learning quantitative knowl-
edge for multiagent coordination. In Proceedings of the Sixteenth National Confer-
ence on Artificial Intelligence, Orlando, FL, July 1999. AAAI.

[7] Young pa So and Edmund H. Durfee. Modeling and designing computational or-
ganizations. In Working Notes of the AAAI Spring Symposium on Computational
Organization Design, 1994.

[8] Onn Shehory, Katia Sycara, Prasad Chalasani, and Somesh Jha. Agent cloning:
An approach to agent mobility and resource allocation. IEEE Communications,
36(7):58–67, July 1998.

[9] T. Sugawara and V. Lesser. Learning control rules for coordination. In Multi-Agent
and Cooperative Computation ’93, pages 121–136, 1993.

[10] Roy Turner and Elise Turner. Organization and reorganization of autonomous o-
ceanographic sampling networks. In Proceedings of the IEEE Interlational Confer-
ence on Robotics and Automation, 1998.

[11] Thomas Wagner and Victor Lesser. Relating quantified motivations for organiza-
tionally situated agents. In N.R. Jennings and Y. Lespérance, editors, Intelligent
Agents VI — Proceedings of the Sixth International Workshop on Agent Theories,
Architectures, and Languages (ATAL-99), Lecture Notes in Artificial Intelligence.
Springer-Verlag, Berlin, 2000.


