Logically Central, Physically Distributed Control in a Process
Runtime Environment

Aaron G. Cass

Barbara Staudt Lerner*

Eric K. McCall Leon J. Osterweil

Alexander Wise

Department of Computer Science
University of Massachusetts
Amberst, MA 01003-4610
+1413 545 2013

{acass, blerner, mccall, ljo, wise}@cs.umass.edu

ABSTRACT

An effective process definition language must be powerful,
yet clear. It must also have well defined semantics to support
powerful and definitive analysis. End users require that a
runtime interpreter for the language faithfully implement the
semantics used in analysis of process definitions, and that the
interpreter be efficient and scalable. In addition to all of the
above, the language, and its interpreter must also be readily
evolvable. In this paper, we describe the architecture of Juli-
ette, a process execution environment designed to address
all of these requirements. We outline the tensions posed
by these strong objectives and describe Juliette’s modular
approach and its novel distribution strategy, indicating how
they address the tensions set by our objectives. While we ex-
plain the Juliette architectural approach in the context of the
interpretation of Little-JIL, the approach applies to the inter-
pretation of a broad class of process definition languages.

Keywords
Process, Workflow, Distribution, Static Analysis, Dynamic
Execution

1 INTRODUCTION

Process technology can address important problems in such
diverse areas as software engineering, workflow, and elec-
tronic commerce. For process technology to become widely
accepted and applied, however, we believe that there are sev-
eral important goals that must be reached. First, process de-
scriptions must be precise, clear, and accurate descriptions of
the work to be accomplished. Second, it must be possible to
reason formally about the processes to ensure that they sat-
isfy the needs of the process users. Third, the runtime execu-

tion of a process must faithfully implement the semantics de-
fined in the process description. Fourth, the processes must
effectively and efficiently coordinate the activities of humans
and machines at runtime. We have addressed the first two
of these goals in the design of Little-JIL. In this paper, we
describe Juliette, a process execution environment for this
language. Juliette meets the latter two goals, namely faithful
semantic implementation and efficiency. Juliette does this by
providing a logically centralized, physically distributed con-
trol component.

Our approach is based upon the premise that processes are
profitably viewed as engineerable artifacts, and that their
development, evaluation, and evolution can benefit substan-
tially from borrowing approaches used in software engineer-
ing. Earlier explorations of this premise have focused on
modeling, coding, executing and improving processes. With
process improvement, the emphasis has been on dynamic
analysis approaches, such as measurement and the gather-
ing of data about the progress of process executions. We
note, however, that in software engineering, quality assess-
ment and improvement are more effectively pursued by a
combination of dynamic and static analysis. Dynamic test-
ing is a sampling technique, and while it can be quite useful
in discovering defects and studying actual runtime behav-
ior in specific contexts, it is useless in demonstrating the ab-
sence of defects. Static analysis complements the dynamic
approach by offering the possibility of demonstrating the ab-
sence of certain classes of errors for all possible executions,
and supporting reasoning about diverse sorts of properties.
We believe that applying these complementary analysis ap-
proaches is even more important for processes than for stan-
dard software, as it is usually not feasible to perform myr-
iad dynamic test runs using different test inputs and different
interleavings of the concurrent activities. Furthermore, the

* Currently at Department of Computer Science, Bronfman Science
Center, Williams College, Williamstown, MA 01267, +1 413 597 4215,
lerner@cs.williams.edu

concurrent interleavings are likely to be even more varied in
the process domain because the interleaving is determined
by the behaviors of agents, which are likely to vary from one
execution to another. It is therefore both less feasible to do
extensive testing and more difficult to make general claims
based on limited testing.

To be sure that static analysis assurances hold during execu-
tions of processes, however, it is necessary to be sure that
the semantic models used in the static analysis of process
definitions are also the semantic models used to support the
dynamic execution of these processes. There are important
and difficult tensions entailed in being able to achieve both
goals for comprehensive languages. Certainly more compre-
hensive languages are more difficult to analyze. But also,
semantics that are easy to reason about can sometimes pose
complications for execution engines. Moreover, languages
that are comprehensive and mechanically analyzable can of-
ten be incomprehensible to humans.

In other work [19] we have described the powerful semantics
that Little-JIL includes to support the definition of processes
and experiences that have indicated that Little-JIL is effec-
tive as a vehicle for specification of important process de-
tails. In still other work [3], we have succeeded in applying
static dataflow analysis technology to prove properties such
as dangerous race conditions and improper event sequenc-
ing. While this work demonstrates the possibility of apply-
ing powerful reasoning to process definitions, the results are
only binding on actual executions if we are confident that
Juliette correctly enforces Little-JIL’s semantics.

In addition to ensuring faithful execution of the language se-
mantics, we want Juliette to be acceptable to real users as
a platform for supporting actual process execution. Thus,
we have designed Juliette to support distributed process ex-
ecution to support scalability. This further complicates rea-
soning about Juliette’s accurate implementation of Little-JIL
semantics. While the Little-JIL language architecture has
clearly shaped Juliette, it is also true that the modular archi-
tecture of the system has had interesting impacts upon the se-
mantic model of the Little-JIL language. In particular, Little-
JIL adopts a modular approach to process definition, causing
it to be amenable to important types of language evolution.
But it also strongly suggests a model of distributed concur-
rent process execution by a heterogeneous collection of hu-
man and computer tool agents. Thus, the decomposition of
Juliette into components, and its distribution and intercom-
munication architecture became important issues. This paper
addresses particularly the decomposition structure, distribu-
tion strategy, and agent coordination approaches that we de-
veloped, and the interplay between the characteristics of Juli-
ette and the semantic model of Little-JIL.

2 RELATED WORK
As noted, a central challenge in work such as ours is to bal-
ance the stated desire for a powerful process definition lan-

guage that has precisely defined executable semantics with
the substantial demands this inevitably places on an execu-
tion platform that must be faithful to the defined language
semantics, while also being efficient and scalable.

Some researchers have opted to implement languages with
relatively weak semantics in order to simplify the task of pro-
viding such an execution platform. For example IDEFO [13]
supports the development of process definitions that are es-
sentially dataflow diagrams. The execution of such diagrams
entails assuring the delivery of input and output artifacts to
process steps and the proper sequencing of those steps. One
major drawback here is that more complex execution seman-
tics (for example, concurrency details and exception han-
dling) cannot be represented by IDEFO.

Similarly, STATEMATE [8] supports the development of an
integrated set of diagrams, which can be used to represent
different views of a process (e.g., dataflow, control flow, and
finite state machine). STATEMATE uses simulation to rea-
son about runtime behaviors and static analyzers to detect
dataflow inconsistencies, and certain types of inconsistencies
among the different diagrams. Here too, however, the seman-
tics of the STATEMATE diagram set are insufficient to rep-
resent clearly and precisely such important process features
as exception management, resource contention, and concur-
rency control.

There has been considerable interest in devising process and
workflow languages that are capable of representing broader
and more detailed execution semantics than those in systems
such as IDEFO and STATEMATE. Typically these languages
are decomposed into components each of which encapsu-
lates different semantic features of the language. This can
be seen, for example, in the Workflow Management Coali-
tion’s Workflow Reference Model [10], in which a workflow
engine can incorporate the notion of a Role Model so that
workflow process definitions need not specify details of how
roles are to be performed. This frees the execution engine
from having to implement the semantics required to define
those details.

Some recent process programming languages have carried
this idea still further, by demonstrating modular approaches
to incorporating broader semantics while reducing execution
platform complications [4, 19, 17]. In programs written in a
modular language, different types of language semantics are
addressed by different language modules, with the runtime
behavior of the process realized through the coordination
of separate components. For example, a process language
might modularize the description of resource allocation poli-
cies and data management approaches in components that
are separate from each other and from details of execution
sequencing and concurrency. It has been argued that this ap-
proach benefits users of the language because they can com-
prehend their processes more readily by being able to focus
their attention separately on different narrower aspects [17].

This approach has the additional advantage of allowing the
different semantic modules of the language to be defined in
different languages, each of which can presumably be se-
lected to be more appropriate for the particular semantic fea-
ture.

This modularization of the process description language can
be used to determine an appropriate modularization of the
process execution environment. Thus, for example, recent
versions of the APEL execution engine are implemented as
separate components, where each component is responsible
for a different aspect of process execution [5]. APEL uses
a ProcessWall [9], a blackboard-like system that captures
all runtime state about the process execution, for needed
communication among components. When one component
puts an item on the ProcessWall, the others can be notified
through an event mechanism. Components register interest
in the parts of the ProcessWall in which they are interested.
This approach provides for easy component composability
and directly supports the modularization of the process def-
inition language. The way in which the ProcessWall is used
for communication among components, however, has the un-
fortunate effect of reducing the power of the reasoning that
can be applied to process definitions. In APEL, any com-
ponent can view and respond to any part of the ProcessWall
in whatever way it chooses. Thus, the range of possible se-
quences of executions of steps in an APEL process is ex-
tremely broad. This implies that execution models of APEL
processes must encompass very wide classes of possible ex-
ecutions, which tends to reduce the possibility of obtaining
conclusive analytic results and thus reduces the set of prop-
erties for which assurances can safely be assumed to hold at
runtime.

APEL allows an optional control component to help ad-
dress this problem [5]. APEL’s control component can in-
hibit messages from the ProcessWall so that other compo-
nents cannot act on them. This capability could be used to
more directly route particular events to certain components
of the system. However, since any component can generate
events, this control component would have to know about
many events and would therefore be difficult to maintain and
evolve.

Endeavors [2] uses a similar approach to providing an open
infrastructure for the development of process execution sys-
tems. The Endeavors architecture is based on a layered ob-
ject model with well defined APIs and an event mechanism
to notify the other layers of state changes within a layer. This
layered architecture supports the separation and distribution
of different process language modules. For example, it is
possible to separate the process and artifact state servers [11].
Like APEL, Endeavors uses a blackboard-like structure (like
ProcessWall), called the Foundation layer. Semantic services
such as the interpreter, located in the System layer, regis-
ter to receive state change messages from the objects in the
Foundation. As with APEL, this approach provides for easy

composability but distributes responsibility for the semantic
correctness of a process execution among the services in the
system layer. As with APEL this allows broad diversity in
the possible execution orderings, and therefore reduces the
possibility of obtaining conclusive results from static analy-
ses performed on process definitions. An approach that com-
bines the composability of APEL and Endeavors with the
ability to also specify important details of control flow would
offer the advantages of flexibility as well as the benefits of
analyzability. Juliette offers this combination by providing
a level of composability that is comparable to that offered
by APEL and Endeavors, but Juliette also provides a logi-
cally centralized facility for interpreting Little-JIL’s diverse
and powerful control flow semantics to facilitate reasoning.

However, one problem with centralized control flow inter-
pretation is that the interpreter might then become an exe-
cution bottleneck. Such a bottleneck would prevent the run-
time system from being suitably efficient, and from scaling
up to large, industrial-sized processes. A finer-grained distri-
bution that allows the control component itself to be physi-
cally distributed would promise to be more scalable. But this
needs to be done very carefully to maintain correctness. One
finer-grained approach, with good prospects for efficiency
and scalability, is to allow each task in the process defini-
tion to be represented by a different object at runtime, and to
allow those objects to be distributed across different execu-
tion platforms, with the distribution determined at design or
installation time.

The RainMan [15] system takes this approach by defining
a process to be a system of tasks, where each task is de-
fined by an object that implements a PerformerAgent
interface, and this object can perform the task in what-
ever way, including calling other Per formerAgents. Be-
cause the different PerformerAgents are invoked by
using a Remote Method Invocation (RMI) protocol, the
PerformerAgents can reside on different execution plat-
forms. Clearly, responsibility for controlling flow of execu-
tion is distributed in this case. Unfortunately, here again we
note that the possible sequences of task execution are quite
broad, as much of the responsibility for determining them is
left to the separate tasks. Thus, the possibilities for conclu-
sive static analysis of such process descriptions is limited.
This approach is also taken by the ORBWork [16] system, in
which each task is handled by a potentially distributed Task
Scheduler that is implemented as a CORBA [14] object.

This approach takes advantage of the process language’s fa-
cilities for specifying a process in terms of well defined units
of work, thus defining a natural level of distribution gran-
ularity at runtime. However, with fine-grained distribution,
it becomes particularly important to determine an appropri-
ate distribution topology. Since the execution agents in the
process represent an existing topology, it seems natural to
use this topology to determine the distribution of the exe-
cution components. However, in situations where the agent

locations are not known until runtime, or where the agents
move, it seems unlikely that a statically-defined distribution
topology of the execution objects will match the distribution
topology of the agents.

In the case of such mismatches, the agents and execution ob-
jects are not co-located and therefore agents that need to in-
teract with these objects will have to rely on potentially slow
network communications. These mismatches also make it
difficult to deal with agent mobility and detachment. Even
when an agent is temporarily detached from the network, ei-
ther by actively disconnecting or by establishing a low reli-
ability connection like a wireless link, it is clearly desirable
that the agent still be able to get work done. If the execution
object with which the agent must communicate is co-located
with the agent, its execution can continue without the need to
reconnect to the rest of the process execution engine. Note
also that co-locating a step execution agent with its inter-
preter seems to be inherently more equitable in that the in-
terpreter for the step is using that step’s computing resources,
and does not need to borrow resources from elsewhere.

The RainMan and ORBWork approach makes it difficult to
ensure that agents are co-located with their execution ob-
jects, thus losing the performance, mobility, and equitabil-
ity benefits mentioned above. This is particularly true in the
absence of an a priori specification of the agent distribution
topology. In contrast, Juliette accomplishes fine-grained dis-
tribution and provides a mechanism for keeping the process
execution topology and the agent topology congruent, while
also supporting the language modularization that was previ-
ously described.

3 OUR APPROACH

While the Juliette runtime environment was designed for the
execution of Little-JIL, we believe that the approach can be
used for a variety of languages. It will simplify later dis-
cussions to give a quick introduction to Little-JIL, and thus
also describe the characteristics of languages for which this
approach seems appropriate.

A Quick Introduction to Little-JIL and Its Execution
Little-JIL is a process definition language intended to be used
to describe the coordination between human, software, and
hardware participants to accomplish a task. The various par-
ticipants in a Little-JIL process are called agents, and they
are assumed to be autonomous.

Little-JIL process descriptions are steps, representing tasks
to be completed, hierarchically decomposed into substeps
with data and control passing from step to step as the pro-
cess executes. In order to more fully describe the coordi-
nation of agents to accomplish a task, a process description
specifies the data and control dependencies between steps,
but also the resource requirements of the steps that make up
a process and the types of data that flow between steps.

In order to support language evolution and ease the develop-

ment of a language execution engine, Little-JIL is defined as
a modular language in that the semantics of a process defi-
nition is composed of different sets of semantics defined in
different language modules. Therefore, in addition to the
control and data flow expressed directly in the Little-JIL co-
ordination model, a process definition must also incorporate
the following definition components:

e A resource model describing the types and instances
of resources the process uses, including the agents that
will carry out the work,

e An artifact model providing type definitions for the data
flowing through the process, and

e A set of agents to assume responsibility for the execu-
tion of the steps.

In Juliette, the Little-JIL coordination model is implemented
directly by a logically centralized interpreter. Juliette also
requires the use of a resource manager that coordinates the
allocation of resources to the steps in the process. Juliette is
implemented in Java and thus the Java type model and run-
time system serve as Juliette’s artifact model. . Juliette pro-
vides a mechanism for communicating with the agents that
are otherwise external to Juliette and run as separate operat-
ing system processes, presumably on separate platforms.

The Little-JIL coordination model provides the glue that
binds these components together by implementing the se-
mantics of Little-JIL step execution, which includes specific
details of interaction with other components. The Little-JIL
step execution lifecycle is defined formally as a finite state
machine. A simplified, informal description of the key states
and transitions of the finite state machine, and how they are
executed by an interpreter, follow:

e Elaboration Phase

— The interpreter copies parameter values in from
the step’s parent based upon parameter bindings
declared in the Little-JIL process definition.

— The resource manager acquires an agent that
matches the specification present in the Little-JIL
process definition.

— The interpreter assigns the step to the agent.

o Starting Phase

— The agent chooses to start the step. When this is
done is entirely up to the agent.

— The resource manager acquires (any additional,
non-agent) resources that match the specifications
present in the Little-JIL process definition.

o Execution Phase
— Ifthe step is a leaf step, the agent to which the step
is assigned will perform the task for the step and

indicate when it is finished. Performance of the
task is entirely up to the agent.

IFor simplicity, a number of Little-JIL language features have been left
out of this discussion. See [19, 18] for details.

Juliette

et
Interpreter
Agent 2

‘ Resource Manager ‘

Figure 1: Logical Architecture of Juliette

— If it is a non-leaf step, the interpreter drives the
execution of each of the substeps using this same
step lifecycle.

o Finishing Phase

— The interpreter copies the values of the out param-
eters from the step to its parent as specified in the
Little-JIL process definition.

— The resource manager releases resources no
longer needed.

Note that in this lifecycle, we have defined specific points at
which the interpreter must interact with other components.
It is important to note that these interactions are through
well-defined APIs that restrict the types of information com-
municated. For example, the API for the resource manager
involves only the identification, acquisition, and release of
resources. The resource manager cannot affect the data or
control flow in the process because the interpreter only inter-
acts with the resource manager through an API that does not
expose these aspects of the language semantics. Similarly,
the API used by the interpreter to communicate with agents
is only concerned with the assignment of steps and notifica-
tions of when the steps are started and completed. Also, be-
cause the interaction between the interpreter and the agents
is asynchronous, the agents cannot “steal control” of the pro-
cess. So, even though the autonomous agent decides when
to start and stop the step, the interpreter handles all flow of
data and control into and out of the step. In this way, the in-
terpreter assures that the control and data flow semantics of
Little-JIL are enforced. In addition to enforcing the language
semantics, this frees the interpreter from having to take re-
sponsibility for any semantics other than those specified as
part of Little-JIL itself (i.e., agent coordination and data flow
semantics). For example, the interpreter need not know the
resource management policies or artifact type structure in or-
der to perform its duties.

As shown in Figure 1, the interpreter is central to the Juliette
architecture. It reads in a Little-JIL process definition and
executes the coordination and data flow semantics by assign-
ing work, and effecting data flows, to the other components
at appropriate points in the step lifecycle.

While Juliette has been implemented to execute Little-JIL
process definitions, the high-level architecture of Juliette

seems to us to be quite appropriate for a variety of modu-
lar, step-hierarchic process description languages with well-
defined step lifecycle semantics.

A Modular Execution Environment

As mentioned earlier, modularization of the language can be
used to determine an appropriate modularization of the exe-
cution environment. This is one way of controlling the com-
plexity of the execution environment, thus enabling complex
language semantics without adversely affecting our ability to
execute programs written in the language.

For example, in Juliette the responsibility for resource han-
dling semantics is assigned to a resource manager (see Figure
1). The interpreter communicates with the resource manager
at the appropriate points in the execution of a step. This is
similar to APEL [5] in that different parts of the common
model are in different modules. However, because the step
lifecycle executed by the interpreter defines when the differ-
ent execution components are used, the interpreter has con-
trol over the interactions between the components. Thus the
control flow semantics of the language are executed by the
interpreter. This assures that Juliette’s execution of a Little-
JIL process implements Little-JIL’s semantics, thus making
it easier to ensure that properties verified by static analysis
must always hold at runtime.

Clearly other language modules can also be implemented as
different components in an execution architecture and the in-
terpreter can interact with them also at the appropriate points
in the lifecycle. The power of this approach is that the in-
terpreter, while concerned with control and data flow seman-
tics, need not be concerned with the semantics of the other
language modules. Furthermore, this approach is not lim-
ited to Little-JIL, but should be effective as the architecture
of an execution environment for any language with separate
modules and a well-defined control and data flow module.

The Communication Mechanism

Recall that our goals include allowing for scalability and ef-
ficiently handling both expressed and implied parallelism in
process definitions. This suggests that it should be possi-
ble for the resource manager and the various agents to each
reside in a different address space and communicate with
the interpreter via some inter-process communication mech-
anism. However, this mechanism should also support ease of
composability and enforce the APIs on which the interpreter
depends. To satisfy these varying requirements, Juliette uses
an Agenda Management System (AMS) [12].

The AMS is implemented on top of a Distributed Object Sub-
strate (DOS) that provides on-demand caching of objects and
a cache coherence protocol to keep the objects consistent.
The DOS also supports object migration: when a method is
called on a distributed object, the object gets cached wher-
ever the method was called and a thread of control on that
node executes the method.

The AMS manages a collection of distributed agendas (lists
of tasks to be performed), one of which is allocated to each
agent and component in Juliette. The AMS provides a vehi-
cle for the passing of messages between the agents and com-
ponents that relieves senders of having to know about the
physical locations of recipients. Thus for example, during
the elaboration phase of a step’s lifecycle, the interpreter uses
the AMS to assign the step to an agent. Figure 2 shows the
interpreter’s postItem method used to assign an agenda
item, representing the step to execute, to an agent by posting
the item on the agent’s agenda. First, the interpreter deter-
mines which agent is responsible for the step. Next, it asks
the DOS for the agent’s agenda. Only the DOS knows where
this distributed object actually resides. It then sets the status
of the item to indicate that the item is newly posted and adds
the item to the agent’s agenda.

The AMS also provides an event-based notification mech-
anism implemented with the observer pattern [6, page
293]. Communicating agents and components can reg-
ister interest in agendas or agenda items by calling the
addPropertyChangeListener method on the item or
agenda, and when these objects change, all registered agents
and components, called listeners, will be notified by calling
their respective propertyChange methods?.

Figure 2 also shows an agent’s code for responding to an
item being placed on its agenda®. Since the agent has reg-
istered interest in its own agenda, its propertyChange
method is called when the item is added to the agenda. In
this method, it first checks to see if the reason it was called
was because a new item was added to its agenda. If so, it sets
the item’s status to Starting to notify the interpreter that
it wants to start the step. Before doing so, it adds itself as
a listener*so that it is informed when the interpreter gives it
the go-ahead to continue. It is only necessary to do this for
leaf steps because only leaf steps are actually executed by
agents (agents merely supervise the coordination of substeps
in non-leaf steps) .

When the status of the item is set, this causes a property
change notification to be fired, thus calling the interpreter’s
propertyChange method. As shown in Figure 2, this
method first checks to see if an agent is attempting to start a
step. If so, it acquires the resources for the step. The code
for acquiring resources is not shown. As shown in Figure 3,
the resource manager also has an agenda. The code for ac-
quiring resources communicates with the resource manager
by placing requests on the resource manager’s agenda and
listening for an event indicating that the resource manager
completed that request. Also note that we have omitted the

2This is the same API as is used by JavaBeans [7], but the implementa-
tion is customized to provide distributed event notification.

3For human agents, an agenda viewer allows the human user to interact
with the system by modifying its agenda items.

“The agent uses addTransientChangeListener which is implemented so
that the agent is not migrated when it receives update notifications.

Methods from the interpreter class:

postItem (Item theItem)

{

}

String agentName = theItem.getAgentName();
Agenda theAgenda = Directory.getAgenda (agentName);

theItem.addPropertyChangeListener(this);
theItem.setStatus ("Posted");
theAgenda.addItem (theItem);

propertyChange (PropertyChangeEvent e)

{

}

if (e.getSource() instanceof Item
&& e.getPropertyName.equals("setStatus")
&& e.getNewValue().equals("Starting")) {
// An agent wants to start a step

Item theItem = (Item) e.getSource();

// ... code to acquire resources

// Tell the agent that it is ok to continue.
theItem.setStatus ("Started");
}

An agent’s propertyChange method:

propertyChange (PropertyChangeEvent e)

{

if (e.getSource() instanceof Agenda
&& e.getPropertyName.equals("addItem")) {
// a new item was added to my agenda

Item theItem = (Item) e.getNewValue();
if (theItem instanceof LeafItem) {
// Listen to the new agenda item,
// need to react when the interpreter
// says ok to execute step.
theItem.addTransientChangeListener (this);

}

// Tell the interpreter I want to start the step
theAgendaltem.setStatus ("Starting");
}
else if (e.getSource() instance of LeafItem
&& e.getPropertyName.equals("setStatus")
&& e.getNewValue().equals("Started") {
// Interpreter says OK to execute the step
LeafItem theItem = (Item) e.getSource();
// Do the step-specific activity
executeStep (theltem);

// Tell Interpreter I'm done with the step
theltem.setStatus ("Completing");

Figure 2: Assigning work to an agent

L]
Agenda 1

|
: Resource Manager
] * Agenda
Agendi item la
T

¢ Rsrc mgritem y

! 3 N
AMS : /// ¢ Rsrc mgr 1ter? z)

| 7 A [/

! s T J 7

! s | | N

1 1 1

Interpreter ‘ ‘Resource Manager ‘

Juliette

Figure 3: Agenda management view of Juliette

error handling that would occur if the resource request could
not be satisfied. Once resources are acquired, the interpreter
sets the status of the item to Started to indicate that the
step can proceed. In the case of a leaf step, the agent will be
notified, thus having its propertyChange method called
again. Returning to the agent’s propertyChange method
shown in Figure 2, we see that the agent reacts by performing
the step. Exactly what is involved here depends on the spe-
cific step, of course. Finally, the agent communicates back
to the interpreter that it is done by setting the item’s status to
Completing.’

By registering interest in, and updating, distributed agendas
and agenda items, we can easily run the agents and resource
manager in processes separate from the interpreter. This also
gives us great flexibility in the distribution of these processes
across a network of machines. The interpreter remains in
charge of orderly execution of steps since it is an interme-
diary in all communication and carefully steps through the
state machine defined by the semantics of Little-JIL.

Distribution of the Interpreter

Even though the AMS allows the resource manager and the
agents to each reside on different platforms, the interpreter
component still represents a potential bottleneck. All work
requests originate from the interpreter and many of the events
generated by the AMS are handled by the interpreter. Be-
cause processes are inherently distributed and parallel, this
bottleneck can quickly become unacceptable.

Our approach is to decompose the interpreter into compo-
nents that can be distributed around the network. As we’ve
seen, RainMan [15] and ORBWork [16] establish a fine-
grained granularity by assigning a distributable runtime ob-

SFrom this example, it might appear that there is a great deal of code
that one must write to turn a piece of software into a software agent suitable
for integration into a Little-JIL process. In fact, the code shown above is
defined in an abstract Agent class and can be inherited by real agents.
Only the executeStep method must really be defined by the individual
agents.

ject to each task in the workflow, thus enabling a scalable
architecture. This approach is possible because the language
semantics define a task as a well-defined unit of work. Our
similar approach is to use the language semantics to help de-
termine the distribution granularity.

The step semantics of Little-JIL represent a good unit of dis-
tribution granularity for at least two reasons:

o A step represents a well-defined unit of work. The step
concept bundles together resource acquisitions, param-
eter assignments, and a task description so that each
step can be executed independent of the step’s parents
or siblings.

e A step’s completion is determined only by the comple-
tion of its substeps, if there are any, or by agent actions
if there are no substeps. This minimizes the amount of
information a step needs about the global state of the
process.

As mentioned above, agents in a process get work requests
in the form of steps that appear as items on their agendas.
When an agent completes a step, it must notify the inter-
preter. At the same time, other steps may be executing and
need to communicate with the interpreter. In order to take
advantage of this inherent parallelism in process execution,
our approach has been to associate a simple step interpreter
with each step instead of using a complex central interpreter
for the whole process definition.

In Juliette, during the elaboration phase of a step’s lifecycle,
the parent step’s interpreter creates a step interpreter for the
step®. This step interpreter immediately registers interest in
receiving update notifications from the agenda item repre-
senting the step. Therefore, when the agent starts the step,
this step interpreter is already listening for updates and can
respond appropriately.

We also take advantage of the hierarchical structure of Little-
JIL process definitions to keep each step interpreter simple.
Because the completion of a step in Little-JIL is determined
only by the completion of that step’s substeps, if it has any,
we’ve designed the step interpreter such that it responds to
events only of its own step and substeps. This minimizes
the amount of global knowledge that each step interpreter
requires.

Even though each step’s agent needs to communicate with
“the interpreter,” it does this by communicating with its own
step interpreter and, eventually, with the step interpreter of
its parent. Since there is exactly one step interpreter for each
step, we can unambiguously control how the process pro-
ceeds.

Effecting the Desired Distribution Topology
Now that we have an appropriate unit of distribution gran-

SThe root step is a special case because it has no parent. A special
ProcessStarter object creates the root’s step interpreter.

Agenda Agenda
\
\
Interpreter Interpreter
Node 1 Node 2 Node 1

Interpreter

Node 2 Node 1 Node 2

(a)

(b)

©

Figure 4: Migration of the interpreter

ularity, we must address the question of how those units
should be distributed. In other words, we need to determine
an appropriate distribution topology for the interpreter. We
already have one topology inherent in the problem: the topol-
ogy of the agents. Recall that agents communicate with step
interpreters by setting the status of the agenda items repre-
senting steps. To reduce communication overhead, it there-
fore seems sensible to co-locate the step interpreter with the
agenda item it is observing and therefore also with the agent
executing that agenda item. However, a process designer
should not have to know where the agents will be at runtime
and furthermore, the agents might move during the process
execution. Since agents may be mobile, we therefore want
to allow agenda items and step interpreters to be mobile as
well. In Juliette, agents, their agenda items, and their step in-
terpreters are co-located without an a priori specification of
the agent locations. This is accomplished by taking further
advantage of the Distributed Object Substrate on which the
AMS is built.

The communication between agenda items and step inter-
preters is facilitated by setting up appropriate observer or lis-
tener relationships and by allowing the agenda items and step
interpreters to migrate from node to node as needed. Thus,
when methods are called on the agenda items or step inter-
preters, they migrate to the node from which the method call
originated.

Figure 4 shows this migration in action. First, an interpreter
creates an agenda item to correspond to a step being elabo-
rated and also creates a step interpreter for that agenda item.
The new step interpreter is a listener to the new agenda item.
The agenda item is placed on the appropriate agent’s agenda
by calling addItem on the agenda. This causes the agenda
to migrate to the node where the new agenda item was cre-
ated. Figure 4a shows the state at this point. The agenda and
the new agenda item and step interpreter are all on one node.
The agent on the other node is a listener of its own agenda,
which is now on the first node.

Because the agent is observing the agenda it is notified that a
new item exists. The agent can then choose to start the step
represented by the item by changing the item’s status. This is
a call to the setStatus method on the agenda item, which
causes the agenda item to first migrate, as seen in Figure 4b,
before setStatus is called locally. Note that the agenda
does not migrate to Node 2 since the agenda is not modified
by the agent’s actions. Instead, the agenda on node 1 now
references a cached copy of the new agenda item. Node 2
has a cached copy of the agenda.

After the call to setStatus, the status change results
in an update notification to the step interpreter. Since
the update notification is accomplished via a call to the
propertyChange method, the interpreter migrates to the
agent’s node (see Figure 4c). Now, future communication
between the step interpreter and the agenda item is local.
When the step interpreter creates substeps, they will origi-
nate on this node. If these substeps are assigned to the same
agent, as we expect to happen frequently, the interaction with
the agent for those substeps will also be local. Thus, migra-
tion only occurs when a step and one of its substeps uses a
different agent running on a different node.

Using this approach, we have been able to achieve fine gran-
ularity distribution and at the same time keep the step in-
terpreters co-located with the agents with which they must
communicate.

4 EVALUATION

The implementation of Juliette had two major goals: First,
it needed to support the faithful execution of the language
semantics used as the basis for static analysis, and second it
needed to be scalable and efficient.

Faithful Execution of Semantics

As discussed earlier, Juliette adopts a modular approach
in which the resource and artifact models are implemented
as separate modules and are separated from the interpreter,
which is responsible for implementing the coordination
model semantics. The semantics of the coordination model

are expressed in terms of a finite state machine, whose be-
haviors are rather straightforwardly implemented. This ap-
proach has proven effective in simplifying the execution of
the semantics of the coordination model.

It has had another very desirable effect in that it has also
facilitated evolution. Because we have implemented the sep-
arate Little-JIL semantic features, such as artifact and re-
source management, as separate components, not only can
we change their implementations, but we can also change
their syntax or semantics by providing a new manager that
implements the new syntax or semantics.

In fact, we have made numerous changes to the semantics of
the coordination model, usually primarily by modifying the
finite state machine model. In addition, we are currently in
the process of implementing a new resource model and re-
source manager that is expected to seamlessly integrate into
the existing Juliette architecture.

Efficient Interpretion

Because we have distributed the interpreter, and co-located
the step interpreters with the agent with which they interact,
the interpreter does not represent the bottleneck about which
we had been most concerned. We can still view the inter-
preter as logically centralized even though it is not physically
centralized. Thus, an agent that is communicating with the
interpreter does not have to contend with other agents also
needing to communicate with the interpreter.

Also, as noted before, an approach that co-locates the inter-
preter and the agent gives a measure of interpretation equi-
tability. When an agent is performing part of a Little-JIL
process in the Juliette runtime environment, the interpreter is
using the agent’s computing resources, not those of another
agent.

5 FUTURE WORK

In addition to supporting efficient interpretation, we expect
our distribution approach to give additional advantages. We
plan in the future to demonstrate the effectiveness of distri-
bution toward other goals, including robustness, mobilility,
and scalability.

Robustness

If the process execution engine had a physically centralized
interpreter, then the entire system would have a key single
point of failure. However, in a decentralized approach such
as Juliette, there is the hope that the parts of the process that
are not being interpreted on that platform can continue. Our
approach is designed to allow this by distributing the step
interpreters around the network and thus eliminating the sin-
gle point of failure. However, the current cache coherence
protocol used by the DOS does not deal with failure of net-
work nodes or data transport. We are currently experiment-
ing with checkpointing of process executions as an approach
to reduce the impact of a failure, but future work is needed
to improve the caching protocols.

Mobile computing

In a centralized interpreter model, if one of the agents in a
process has disconnected from the network, or is on a lower
reliability connection like a wireless link, then there will be
times when the mobile agent is unable to contact the inter-
preter’s node. However, having the interpreters with which
the agent must interact co-located with the agent, as in the
Juliette approach, makes it possible to allow temporary dis-
connection. However, advanced planning is required, for ex-
ample to make sure that resources will be available to sub-
steps if they are needed while the agent is disconnected. We
have developed a framework of mobility issues [1], and plan
to continue research in that direction. Also note that a solu-
tion to the mobile computing problem requires first a solution
to the robustness problems mentioned above.

Scalability

We have briefly experimented with comparing a centralized
approach to the distributed approach we present here. With
all objects, including agenda items, agendas, and step inter-
preters, created on one node and not migrated during execu-
tion, the system is noticeably slower to respond to agent re-
quests. We have also begun to experimentally compare our
approach to one in which the agendas and their items migrate
but the step interpreters are centralized.

While our approach is promising and our implementation is
efficient, there is still more work to be done to achieve high
performance and scalability. As previously mentioned, ob-
jects implemented using the DOS migrate for every call to
a method that might change the state of the object. Some
method calls, however, need not cause a migration. For ex-
ample, in the current implementation, when a parent step’s
interpreter is notified that a substep has changed, the parent
step’s interpreter migrates because its propertyChange
method is called. In the case of steps with many substeps
that execute in parallel, this parent migration can cause per-
formance degradation. We are beginning to look at changing
the migration policy.

6 CONCLUSIONS

In this paper, we have described an architecture that we have
implemented for a process runtime environment. There were
two main goals of this work: to faithfully implement the pro-
cess language semantics and to efficiently execute those se-
mantics.

As processes become more and more distributed, involve
more and more parallelism, and involve more and more au-
tonomous and heterogeneous agents, the complexity of pro-
cess understanding will surely rise. In order to control this
complexity and ensure that processes behave is ways we
wish them to, some sort of analysis is required. In the pro-
cess domain, it is usually not feasible to perform myriad dy-
namic test runs, and it will become less and less feasible for
more complex processes. This suggests that static analysis
is therefore quite important. And as static analysis results

become available, we will need to ensure that those results
are binding on all executions. By taking advantage of the
modules of the process definition and giving the coordina-
tion model a logically central role in the architecture, the
approach we describe allows us to ensure that static analy-
sis results based on the control and data flow semantics of a
process description are true at runtime.

Yet, even if the process provably behaves according to prop-
erties of interest, if the process execution engine is ineffi-
cient, it will not be adopted. This is particularly true because
processes are inherently parallel and therefore, numerous
autonomous agents will need execution services simultane-
ously. By taking advantage of the well-defined unit of work
of the process definition language, our approach achieves a
fine-grained parallelism for process execution. By using a
novel communication mechanism, our approach also enables
agents and the process execution fragments with which they
must communicate to be co-located without an a priori spec-
ification of agent locations. In addition to efficiency, this ap-
proach was designed to support robustness, agent mobility,
and scalability.

While this approach has been implemented to execute Little-
JIL semantics, the high-level architecture of Juliette is appro-
priate for a variety of modular, step-hierarchic process de-
scription languages with well-defined step lifecycle seman-
tics.

ACKNOWLEDGEMENTS
We would like to thank Rodion Podorozhny for his efforts in
developing the resource management component of Juliette.

We also acknowledge the support of the Defense Advanced
Research Projects Agency, and Rome Laboratories under
grants F30602-94-C-0137 and F30602-97-2-0032.

REFERENCES

[1] S. Bhattacharyya and L. J. Osterweil. A framework for
relocation in mobile process-centered software devel-
opment environments. Technical report, Univ. of Mas-
sachusetts at Amherst, Aug. 1996.

[2] G. A. Bolcer and R. N. Taylor. Endeavors: A process
system integration infrastructure. In Proc. of the Fourth

Intl. Conf. on Software Process, Dec. 1996.

J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil. Ver-
ifying properties of process definitions. Technical Re-
port 99-63, Univ. of Massachusetts at Amherst, Nov.
1999. Submitted to ICSE 2000.

S. Dami, J. Estublier, and M. Amiour. APEL: A graph-
ical yet executable formalism for process modelling.
Automated Software Enginnering, Mar. 1997.

J. Estublier, M. Amiour, and S. Dami. Building a feder-
ation of process support systems. In Proc. of Int’l Joint
Conf. on Work Activities Coordination and Collabora-
tion, Feb. 1999. San Francisco, CA.

10

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[7] G. Hamilton, editor. JavaBeans API Specification Ver-
sion 1.01. Sun Microsystems, July 1997.

[8] D. Harel, H. Lachover, A. Naamad, A. Pnueli,

M. Politi, R. Sherman, A. Shtull-Trauring, and

M. Trakhtenbrot. STATEMATE: A working environ-

ment for the development of complex reactive systems.

IEEE Trans. on Software Engineering, 16(4):403 - 414,

Apr. 1990.

D. Heimbigner. The ProcessWall: A process state

server approach to process programming. In Proc. of

the Fifth SIGSOFT Symp. on Software Development

Environments, pages 159—168, Dec. 1992.

D. Hollingsworth. The Workflow Reference Model.

Document Number TC00-1003, Issue 1.1, Workflow

Management Coalition, Jan. 1995.

P. J. Kammer, G. A. Bolcer, R. N. Taylor, and A. S.

Hitomi. Supporting distributed workflow using HTTP.

In Proc. of the Fifth Intl. Conf. on Software Process,

June 1998.

E. K. McCall, L. A. Clarke, and L. J. Osterweil. An

Adaptable Generation Approach to Agenda Manage-

ment. In Proc. of the 20th Intl. Conference on Software

Engineering, pages 282-291, Apr. 1998.

National Institute of Standards and Technology (NIST).

Integration Definition For Function Modeling (IDEFO),

1993. Federal Information Processing Standards

(FIPS) 183.

Object Management Group. Common Object Request

Broker Architecture, July 1995.

S. Paul, E. Park, and J. Chaar. RainMan: A workflow

system for the Internet. In Proc. of the Usenix Symp.

on Internet Technologies and Systems, 1997.

A. Sheth and K. J. Kochut. Workflow applications to

research agenda: Scalable and dynamic work coordina-

tion and collaboration systems. In NATO ASI on Work-
flow Management Systems and Interoperability, Aug.

1997. Istanbul, Turkey.

S. M. Sutton, Jr. and L. J. Osterweil. The design of a

next-generation process language. In Proc. of the Joint

6th European Software Engineering Conf. and the 5th

ACM SIGSOFT Symp. on the Foundations of Software

Engineering, pages 142—158. Springer-Verlag, 1997.

Zurich, Switzerland.

A. Wise. Little-JIL 1.0 Language Report. Technical

Report 98-24, Univ. of Massachusetts at Amherst, Apr.

1998.

A. Wise, B. S. Lerner, E. K. McCall, L. J. Osterweil,

and S. M. Sutton Jr. Specifying coordination in pro-

cesses using Little-JIL. Technical report, Univ. of Mas-
sachusetts at Amherst, Nov. 1999. Submitted to ICSE

2000.

(9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

