Detecting Shared Congestion of Flows Via End-to-end
Measurement *

Dan Rubenstein, Jim Kurose, and Don Towsley

Technical Report 99-66

Department of Computer Science
November, 1999

Abstract

Current Internet congestion control protocols operate independently on a per-flow basis. Recent work has demon-
strated that cooperative congestion control strategies between flows can improve performance for a variety of appli-
cations, ranging from aggregated TCP transmissions to multiple-sender multicast applications. However, in order for
this cooperation to be effective, one must first identify the flows that are congested at the same set of resources. In
this paper, we present techniques based on loss or delay observations at end-hosts to infer whether or not two flows
experiencing congestion are congested at the same network resources. We validate these techniques via queueing

analysis, simulation, and experimentation within the Internet.

1 Introduction

The recent success of the Internet arguably stems from the philosophy that complexity should be relegated to the
endpoints of the network. In the Internet, data is transmitted using only best-effort service, with reliability and con-
gestion control being implemented only within the Internet’s end-systems. Current approaches to congestion control,
such as those incorporated into TCP and those proposed for multicast congestion control, have a sender regulate its
transmission rate independently from other senders, based on feedback (typically loss indications) received from its
receiver(s).

Recent work has demonstrated that cooperative congestion control strategies among different sessions or among
different senders in a single session (in the case of multicast) can improve performance for a variety of applications,
ranging from aggregated TCP transmissions to multiple-sender multicast applications:

o The benefits of performing congestion control over flow aggregates are explored in [1, 2]. Here, an aggregate consists
of a set of flows that are treated as a single, virtual flow for the purposes of congestion control. For example, in the
presence of contention,a WWW session with multiple on-going (TCP and/or continuous media) streams that interfere
with each other over a common bottleneck might choose to optimize session utility by more drastically reducing the
rate of one session in the face of congestion, while only slightly decreasing the rate of another. The server’s aggregate
session rate remains the same as if each session was treated as an isolated TCP session, but the rate of the individual

sessions within the aggregate can vary (from what would be achieved under vanilla TCP) according to server policy.

*This material was supported in part by the National Science Foundation under Grant No. ANI-9805185, CDA-9502639, by DARPA under
Grant No. N66001-97-C-8513, and by a gift from Sprint. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the National Science Foundation.

¢ In many-to-one or many-to-many applications, a receiver within a single “session” may receive data from multiple
senders. When a receiver detects congestion, the specific actions taken by the senders to reduce their transmission
rate should depend upon whether or not the senders share a common resource bottleneck on the path to that receiver.
Distributed gaming [3], teleconferencing, and accessing data in parallel from multiple mirror sites simultaneously [4]

are examples of such applications.

A key technical issue underlying both of these scenarios is the ability to detect whether two “flows” (whether individual
unicast sessions, or different senders within a single multicast session) share a common resource bottleneck.

In this paper, we address the fundamental issue of detecting shared points of congestion among flows. Informally,
the point of congestion (or POC for short) for two flows is the same when the same set of resources (e.g., routers) are
dropping or excessively delaying packets from both flows due to backup and/or overflowing of queues. We present
two techniques that operate on an end-to-end basis and use only end-system observations to detect whether or not a
pair of flows experiences a common POC. One technique uses observations of packet losses to identify whether or
not packets are being dropped at the same POC. A second uses observations of end-to-end delays to identify whether
or not packets are experiencing significant delays at the same POC. These techniques assume that the flows share a
common end-point, i.e., it is either the case that flow sources are co-located, or that flow receivers are co-located.

The key idea underlying the approaches investigated in this paper is the fact that adjacent packets in the same
flow experience some amount of correlation in loss and delay as they necessarily share any POCs. It follows that if
two flows have the same POC, then adjacent packets in the two flows should similarly experience some amount of
correlation. However, values of standard quantitative measures of correlation, such as correlation coefficients, depend
on several factors, such as the rate of the flows, the amount of background (cross) traffic that passes through the flows’
POCs, and the POCs’ processing capabilities. Hence, the standard measures of correlation exhibited both within a
flow and between flows that have the same POC can vary under different network conditions. This makes it difficult to
use these values directly to determine whether or not two flows share a common POC. Our novel insight is to construct
a measure of correlation between flows and a measure of correlation within a flow with the following property: the
measure between flows is greater than the measure within a flow if and only if the flows share the same POC. We call
this method of identifying whether or not two flows share a POC a comparison test, and demonstrate how measures
similar to those used within our comparison tests can also be used to estimate the “level” of sharing between two flows
in cases where flows can have multiple POCs, some of which are shared, and some of which are not.

We first use traditional queueing models to prove that, in theory, our comparison tests can identify whether or
not a POC is shared. Next, we use simulation to examine the performance of the comparison tests in more practical
settings, where background traffic in the network consists of TCP and exponential on-off sources. We show that over
time, (as the number of packet samples increases), the comparison tests almost always correctly identify whether or
not the POC is shared, and that the techniques based on delay converge an order of magnitude faster than those based
on loss. Last, we demonstrate the capabilities of the tests in practice using actual network traces over simple topology
configurations.

To our knowledge, there is no published work that presents techniques for detecting flows that are congested at
the same point. In [5], the authors identify potential benefits of having separate end-systems share locally observed
statistics, such as available bandwidth and loss rate. While [1] and [2] demonstrate the value of performing congestion
control over flow aggregates, [2] considers the detection of shared POCs to be future work, while the aggregated flows
in [1] are limited to those having identical source-to-destination network paths: this significantly restricts the set of
flows that can be aggregated. At a recent workshop, Padmanabhan demonstrated that only flows sharing a point of
congestion exhibit high correlation in packet delay, and hypothesized that this correlation could be used to make such
a detection [6]. A recent project report by Katabi et al [7] presents a clever entropy-based technique to partition a
set of unicast receivers at the same end-system into clusters that share a common bottleneck. Their technique is very

efficient in the number of packets needed to accurately perform the clustering, and is robust when the bandwidth to
the end-host constitutes at least 20% of the bandwidth at the bottleneck (i.e., light background traffic). In comparison,
our techniques require more packet transmissions and as of yet do not easily scale to large receiver sets. However, our
techniques remain robust under heavier background traffic traffic loads, and can also detect shared POCs among flows
in which the senders, and not the receivers are co-located.

Our work differs significantly from previous work that, using multicast loss traces, infers network characteristics,
such as multicast tree topology and the loss rates on individual links within the network. The work by Ratnasamy et al
[8] and that of the MINC project [9] require transmission of multicast probes. Their approaches identify a shared POC
among receivers receiving from a single source, relying on the fact that a multicast router forwards a packet on either
all or none of the downstream links that are requesting the multicast transmission. These approaches are not designed
for the case when flow senders are not co-located. Furthermore, because the end-to-end multicast route between a
source and receiver can differ substantially from the unicast route between the same end-points, results pertaining to
shared POCs based on the multicast route need not apply to unicast traffic.

There are several practical issues that we identify in this paper as open areas of research and do not solve; these
require further consideration before our techniques can or should be applied within an operational network for the
purposes of congestion control. Our goal in this paper is to make a fundamental first step in solving the problem of
congestion control for aggregated streams.

The remainder of the paper proceeds as follows. Section 2 overviews the two testing techniques for performing
the detection of a shared POC, and provides a high-level intuition as to why the techniques work. Section 3 presents
queuing analyses that demonstrate the effectiveness of the tests using theoretical models of the POCs. Section 4
presents simulation results that demonstrate the performance of the techniques behave under more realistic traffic
conditions. Section 5 addresses practical issues, such as computing confidence levels of results when a small set of
samples is taken, and also addresses extensions to the techniques for quantifying the “level” to which a pair of flows
share POCs. Section 6 presents results of experiments conducted over the Internet. Section 7 briefly discusses some
open issues. Last, Section 8 concludes the paper.

2 Technique Description

In this section, we present two techniques, the loss-corr technique and the delay-corr technique, that respectively use
loss and delay measurements at receivers to determine whether or not a pair of sessions (a.k.a. flows) have the same
POC. The POC for a flow is the set of locations (routers) at which the flow’s packets are lost or experience excessive
queueing delay. We say we are testing two flows when we are trying to identify whether or not they have the same
POC. For conciseness, we say that two flows share congestion if their POCs are identical, and that flows do not share
congestion if the intersection of their POCs is empty. In this section, we assume that the flows” POCs are either
identical or mutually exclusive, which means that the question, “Do flow A and flow B share congestion?” can be
answered with a simple “yes” or “no”. Later in the paper we address how to handle cases where two flows’ POCs can
partially overlap.

Our findings are that the delay-corr technique converges in much less time to the correct hypothesis than the loss-
corr technique. However, there are two reasons why an application might prefer to use a technique that generates

estimates using only loss statistics:

e The delay-corr technique requires timestamping of packets. We have noticed in our experimental results that per-
forming the timestamping at the user-level is sufficient, but becomes less reliable if the hosts are heavily loaded. Thus,

the delay-corr technique requires more resources than the loss-corr technique.

e Heavy delay congestion is likely to manifest itself in routers with larger queues, whereas heavy loss congestion is
likely to manifest itself in routers with smaller queues. While we suspect that the POC is often the same for both forms
of congestion, this need not be the case. Thus, the best way to determine that the POC that causes loss is shared is
to apply the loss-corr technique (and wait the extra time). Similarly, the best way to ensure that the POC that causes
delay is shared is to apply the delay-corr technique (and use the additional resources).

G 5 ®
&) *® oD

(a) Inverted-Y topology (b) Y topology

Figure 1: Virtual topologies

We consider only topologies in which either the pair of senders or the pair of receivers of both flows are co-located
at the same host. This assumption does restrict the set of pairs that can be considered. However, as compared to a
randomly chosen pair of flows for which neither the senders nor the receivers are co-located, flows that have at least
one set of of co-located hosts i) are more easily identified from network endpoints (i.e., they can easily be identified at
the point of co-location), ii) are more likely to share congestion, since a portion of their paths are guaranteed to overlap,
and iii) require less communication overhead (i.e., they can communicate over a LAN) to perform aggregation.

Figure 1 gives a pictorial representation of sample topologies formed from the paths of the two flows with co-
located hosts. S; and S, are the senders of the two flows, R; and R are the two receivers, and the little black balls
are routers at the intermediate hops. In the Inverted-Y topology (Figure 1(a)), the senders are co-located. Packets
transmitted by the senders traverse a set of common links up to some point in the network, after which the flows travel
along separate paths. In the Y topology (Figure 1(b)), the receivers are co-located. Packets transmitted by the senders
initially traverse a separate set of links. At some point along each flow’s data-path, the flows meet and the remaining
path to the receivers is identical.

A shared POC exists if congestion occurs along the top portion of the inverted-Y topology, or along the bottom
portion of the Y topology. We assume that in the Y (Inverted-Y) topology, after the flows’ paths are joined (deviate),
they do not deviate (re-join). Otherwise, the order of packet arrivals (departures) could differ substantially from what
is observed at a shared POC. Note that if a pair of flows can be mapped onto either of these two topologies, then
(barring reordering) we can observe, from the point of co-location, the order in which packets pass through the shared
POC, if it exists. This allows us to infer whether or not the flows share congestion using only information that can
easily be monitored at the three participating hosts (single sender and two receivers, or two senders and a single
receiver). Hence, the techniques do not require any information pertaining to router processing rates, link speeds, or
traffic patterns of any background traffic.

Let us now formalize the notation that will be used throughout the paper to refer to the packet flows. Let f; and
fo represent the two flows that we are testing. We refer to each of these flows as a foreground flow, and refer to the
packets within the flows as foreground transmissions. Any other traffic/packet in the network that does not belong to
either of these flows is referred to as background traffic. Let p, ; represent the ith packet transmitted by f1, and ps ;
represent the ith packet transmitted by f. We write the jth foreground packet transmitted (counting packets in both
flows) as p;, i.e., for each p;, there is some ¢ where either p; = py ;, or p; = a2 ;.

Last, we define a function that allows us to identify the adjacency of two packets in the foreground. For any two

packets, p, and pj, from either flow, f; or f», we define the function adj(p.,ps) = 1 if b = a + 1, and 0 otherwise.
adj (pa, pp) indicates whether or not two foreground packets are adjacent with respect to the other foreground packets.
In other words, adj(p1,i, p2,;) = 1 implies that there is some & for which p1 ; = pr and p2 j = Pg41.

2.1 Comparison Tests

Input: Trace information from the two flows

Step 1: Compute the cross-measure, M, between pairs of packets in both flows, spaced apart by time ¢.
Step 2: Compute the auto-measure, M, from packets within a flow, spaced apart by time T > t.

Step 3: If My > M,, then the flows a POC.

Step 4: Else, the flows do not share a POC.

Figure 2: A comparison test.

Our techniques for detecting whether or not a pair of flows share are based on two fundamental observations of
Internet congestion:

e Losses or delays experienced by two packets passing through the same POC exhibit some degree of correlation (i.e.,
a loss or excessive delay observed by a packet increases the likelihood that a later packet will be lost or experience a

large delay). However, the degree of correlation decreases as the time between the packets’ transmissions is increased.

e The losses or delays experienced by two packets that do not experience the same POC will exhibit little or no

correlation.

Our idea is to collect samples in such a way that we ensure that, on average, the time between arrivals at the POC
for a sample pair of packets within a single flow is larger than that for a sample that contains two packets, one from
each flow. We then simply compare the levels of correlation between packets within each pair. If we find that on
average, the correlation is higher in the pair of packets drawn from the two flows (that are closer together in time than
packets drawn from separate flows), we conclude that this is due to the packets in the two-flow pairs passing through
a common POC in shorter time intervals than do the pairs of a single flow, and hence the POC is shared. Otherwise,
we conclude that the lower correlation between pairs of packets sent closer together in time is due to the packets being
congested at different, independent POCs, hence the flows do not share. We refer to this simple method of making
this determination as a comparison test. The basic steps are reiterated in Figure 2. We refer to M ,, the measure
of correlation between the flows, as the cross-measure (as in cross-correlation), and M ,, the measure of correlation
within a flow, as the auto-measure (as in auto-correlation).

The benefit of using a comparative test is that it gives a definitive answer as to whether or not the flows share,
regardless of what the specific values of the cross- and auto-measures are. Alternatively, one could construct measures
that indicate congestion when taking on certain values (e.g., a correlation coefficient that is larger than some fixed
value, av). Often, the value for o depends on several factors, including the service rate of the queues in the network,
and the rate of the probe probe traffic, making it difficult to determine the right value for a.

2.2 Poisson Probes

We have noted that we need a method to generate packet samples in such a way that the average time of arrival at a
shared POC (if it exists) between a sample pair from separate flows is less than that between a sample pair of packets
from the same flow. To simplify presentation, we consider a single method for transmitting probes that is robust over
both the Inverted-Y and Y topologies. The method we use, commonly referred to as a Poisson probe, is a flow whose
inter-packet departure times are described by a Poisson process. We represent the rate of f1’s process by A;, and the

rate of f’s process by A;. We assume in our analysis that the transmission and queueing delays between the source
and the POC do not significantly change the inter-packet spacing, and thus the arrival process at the POC can be
modeled as Poisson with respective arrival rates of A; and A>. We note that the aggregate arrival process formed by
combining these two Poisson processes is itself a Poisson process with rate A1 + A;. The length of time between the
arrival at the POC of two adjacent packets, p; and p;1, from this aggregate process of rate A7 + A2 is on average
smaller than the time interval between two successive packets from a single flow (e.g., p2,; and p j41) transmitted
atrate Ay < A1 + Ao.! Furthermore, because the aggregate process is Poisson, the distribution of the time interval
between the adjacent packets is independent of the packets’ flow origins (i.e., whether they came from f; or f3). It
follows that the average time interval between the arrival two adjacent packets from different flows is less than that
between two successive packets within a single flow.

In the remainder of this section, we describe how to compute measures of M ,, and M, using loss and delay mea-
surements obtained from using Poisson probes. We conjecture that these measures work for other probe distributions,
and thus in many cases, the measures can be applied in-band, i.e., the probes can be incorporated into the underlying
data stream. However, the techniques are clearly not robust for all possible distributions of traffic. One such example
is when each flow transmits packets in groups (i.e., bursty traffic), that places packets within a single flow very close
together. In such cases, these techniques can still be applied by transmitting a Poisson probe out-of-band, alongside
each of the two data flows. Results presented later in this paper demonstrate that the detection of a shared POC can be
done efficiently using a probing bandwidth as little as half a kilobyte per second each.

2.3 The loss-corr technique

The loss-corr technique is based on the intuitive notion that if two packets proceed through the same bottleneck, and
the first packet is dropped, then the likelihood of the second packet being dropped is high, and increases as the time
between the packets’ arrivals to the bottleneck is decreased. Define L ; to be O if p; is dropped prior to reaching the
destination host to which it was sent, and 1 if it is received at its destination. Define L ; ; similarly, to indicate whether
or not packet p; ; reaches the receiving host of f;, where j =1, 2.

For the Inverted-Y topology, the loss-corr cross-measure and auto-measure are the following conditional probabil-
ities:

M,

Pr(L2; = 0] L1,; = 0,adj(p1,j,p2,i) = 1))]

M,

Pr(Ls; =0|Lai_1 =0))

The cross-measure we use for the Inverted-Y topology is the conditional probability that a packet from f 5 is lost,
given that the preceding foreground packet was from f; and was lost. The auto-measure is the conditional probability
that a packet from f» is lost given that the previous packet from f5 is lost.

In the Inverted-Y topology, we have utilized the fact that, barring reordering within the network, the order in which
packets are transmitted from the co-located senders is the order in which they arrive at the POC. In the Y-topology,
on the other hand, it would be difficult in practice to sequence the order of arrivals of packets over both foreground
flows based on the departure times from the senders, since propagation times to the POC from the two senders can
differ and need not be known. Receivers can determine the sequence of arrivals of foreground packets that were not
lost at the POC with respect to one another, but they cannot precisely place the order in which packets that were lost at
a POC initially arrived at the POC. For instance, a received sequence of p1,j, P2,i, P2,i+2, P1,j+2 implies that packets

p1,j+1 and po ;11 were lost. However, one cannot determine from these measurements whether p; ;11 preceded

!Note that a pair of successive packets within a flow need not be adjacent, e.g., packets from f may arrive between arrivals of successive packets
p2,j and p2,jy1.

D2,i+1 (or whether p; ;41 preceded ps ;, etc.)> Tt follows that co-located receiving hosts cannot determine whether
or not adj(p1,j,p2,;) = 1 when both p; ; and p»; are lost. As a consequence, we cannot compute the cross- and
auto-measures defined by (1) and (2).

Instead, we define separate cross- and auto-measures for use in the Y-topology. We define adj r(p;, p;) = 1if and
onlyifi < j,L; = 1,L; = 1,and L, = Oforalli < k < j, and let adjr(p;, ;) = 0 otherwise. In other words,
adjr(pi,p;j) is 1 if and only if p; and p; are adjacently received packets (i.e., py is lost for any i < k < j). The
cross-measure and auto-measure for the Y topology are the following conditional probabilities:

M,

Pr(L2;-1=0]| L2 =1,L1,j-1 = 0, L1,; = 1,adjr(p1,j,p2,i) = 1) 3)

Ma = PI’(Lzﬂ' = 0) (4)

M, is the conditional probability that for any ¢, a packet, ps ;_1, from f5 is lost, given that i) the subsequent packet
from fo, pa ;, is received, ii) the nearest foreground packet that is subsequently received after p 5 ; is from fi (p; ; for
some j7), and iii) that the preceding packet from f1, p1 j_1, is lost. The reader should note that the sequence of events
used in equation (3) can be identified at the co-located receivers in the Y-topology: the sequence “pivots” on a pair of
received packets to detect a pair of lost packets that are likely to be adjacent. M, is the loss rate experienced by fs.
We note that this version of M|, is itself not a measure of correlation, but we find that its value is larger than that of (3)
only when the POCs are shared.

2.4 The delay-corr technique

The delay-corr technique applies the correlation coefficient to the delays experienced by receivers. For a set of pairs
of real valued numbers, S = {(z;,v:)}, zi, yi € R, the correlation coefficient of the set is defined as:

os) = Blziyi] — Elzi|Ely:])

V(Elz:?] - B2ai)(Bly:®] — E2[y:])

where Ela;] =) g ai/|S|. Define D; to be the observed delay incurred by packet i. the observed delay of a packet,

pi, is measured by timestamping the packet with d;, the sender’s current clock time at the time of its departure from
the sending host, timestamping the packet with a;, the receiver’s clock time at the time of its arrival at the receiving
host, and taking the difference, i.e., D; = a; — d;. Note that because of unsynchronized clocks and/or clock drift,
the observed delay we compute need not equal the true time elapsed between departure from the sender and arrival
at the receiver. The lack of time synchronization between clocks will have little impact on the correlation coefficient:
the correlation coefficient of two random variables, X and Y, is the same as that between X + cand Y when c is a
constant. A large skew in the clock rates can alter the effectiveness of using the correlation coefficient of delay over
long traces. However, efficient algorithms for removing clock skew from long traces are known [10, 11]. Henceforth,
we simply refer to the observed delay as the delay.

We similarly define D ; to be the respective delays of p; ;, 7 = 1, 2. For both the inverted-Y and Y topologies, we
use the following for M, and M,:

M, = C({(D1,,Ds,;): adj(p1,i,p2,;) =1}) (6)

M. = C{(Da,D2,i+1)}) @)

21t may be possible to predict the more likely case by looking at inter-packet spacing within a flow. However, packets can experience unpre-
dictable delays (jitter) that would make such estimation less reliable.

M, is the correlation coefficient computed from the delays of pairs of packets that are adjacent with respect to the
foreground flow. The previously arriving (transmitted) packet must be from f, and the subsequent packet must be
from fs. M, is the correlation coefficient computed from the delays between adjacent arrivals (transmissions) within
fa.

3 Queuing Analysis

In this section, we demonstrate the correctness of the comparison tests described in Section 2 in the context of various
queueing models. We assume that the time between transmissions for each of the foreground flows, f1 and fs, are
described by Poisson processes with rates of A and \s, respectively.

x O
N B

/v_

A2 A2

(a) Shared (b) Separate

Figure 3: Queuing models for shared and separate POCs.

Figure 3 depicts our models of (a) a shared POC for flows f; and f, and (b) separate POCs for the flows. A POC
is represented by a queue. A shared POC (Figure 3(a)) is represented by a single queue; packets from both of the
foreground flows enter this queue at respective rates, A1, and A2. Additionally, background traffic enters the queue
at a rate of A\, (Note that unless otherwise stated, the background traffic need not be Poisson). The queue services
packets at a rate of u. Separate POCs (Figure 3(b)) are represented by two queues. Packets from f; enter one queue
whose background traffic arrival rate is Aj, and whose service rate is p;,72 = 1, 2. Unless otherwise stated, there are
no restrictions on these rates, or the distributions between arrivals / service completions. Each packet that proceeds
through the queueing system is serviced by only one of the two queues (e.g., packets from f; do not previously or
subsequently proceed through the queue servicing packets from fo.

In the next subsection, we prove that, given the queues are all M/M/1/K queues (where the buffer size, K, can
differ among the various queues as well), the loss-corr technique correctly identifies whether or not the foreground
flows share in the inverted-Y topology. We do not have a proof that the loss-corr technique correctly identifies whether
or not two flows share in the Y topology. However, we have formulated a set of recursive equations that allow us to
compute the steady-state values of Equations (3) and (4) as functions of A 1, A2, Ay, and K, when the POC is shared and
behaves as an M/M/1/K queue. We then compared the values of these equations for a variety of values of A 1, A2, Ap,
and K, and found equation (3) to always be larger than (4) (the desired result). These results are presented in Appendix
B.

In the subsequent subsection, we demonstrate that, given all queues are M+G/G/1/00 queues (foreground traffic
remains Poisson, background traffic and service times are i.i.d. using any general distribution), the delay-corr tech-
nique successfully distinguishes between shared and separate POCs for both the Y and Inverted-Y topologies. Since
the queue’s capacities are unbounded, the proof requires the additional assumption that the aggregate rate of traffic
into any of the queues is less than the processing rate for that queue.

3.1 The loss-corr technique, Inverted-Y topology

We write g;,¢ = 1, 2 to represent two M/M/1/K queues. We define w to be a sequence of insert and remove events,
w = (e1,e2, -+, en), and let Q;(w, 7) be the number of packets in g; after the jth event in w is applied to the queue.
We write Q;(w, 0) to be the number of packets in the queue prior to application of w. We assume that the system has
been in operation for some time when w is applied to the queue so that it need not be the case that @ ;(w,0) = 0. An
insert event increases the queue length by one unless already full, and a remove event decreases the queue length by
one unless it is already empty.

Lemma 1 Consider two queues, q1 and gz, of identical buffer capacities, K. If @1 (w,0) < Q2(w, 0), then Q1 (w,j) <
Q2(w, j) forall j > 0 as well.

Lemma 1 can be proven trivially by induction over the length of the sequence, w. The proof is omitted.

Lemma 2 Consider a queue, q1 of capacity K where Q1(w,0) = K (the queue is full). Let w' be a suffix sequence of
w, i.e, W' = (fi, f2,-++, fmr) where for somei > 1,m' = m —i+ land f; = eji—1 where 1 < j < m' for some
i > 1. Then Q1(w',j) > Q1(w,j +1).

Proof: Consider the application of w to the queue. After applying the (possibly empty) prefix (e 1,---,e;—1) to the
queue, it must be the case that Q1 (w,7— 1) < K. The result then follows from Lemma 1, since the remaining sequence
of w to be applied is w’, hence @1 (w,i — 1+ j) < Q1(w',j)for0 < j<m—i+ 1. |

Theorem 1 In an M/M/1/K in which both foreground flows enter into the same queue, Pr(Lo; = 0| (L1,; =
0),adj(p1,i,p2.5)) > Pr(Lajy1 = 0| Lz ; =0) (i.e, My > M,).

Proof: Let w = (e, -+, €,) be a finite-length sequence of events, each e; € {1,2,b, s}, where e; = 1 means that
the ith event is an arrival from f1, e; = 2 means that the ith event is an arrival from f», e; = b means that the ith event
is a background arrival, and e; = s means that the ith event is a service completion (this event has no effect on the
queue if the queue is already empty).

Let S = {w} be the set of all possible finite-length sequences. Let g, map any w to its longest prefix whose final
eventisal. ie., gp(w) = (e1,--+,e,) wheree,, = L and e; # 1 forn < i < m,,. If w contains no e; = 1, then g, (w)
is the empty sequence. Let g;(w) be the longest suffix of w that contains no e; = 1. ie., gs(w) = (€nt1, -, €m,)
wheren = Qorelsee, = 1,¢e; # 1 forn < i < m,. Note that each sequence w has a unique decomposition as
w = gp(w) - gs(w), where - is the concatenation operation.

Define P to be the probability measure over S.* This is well defined since all events are generated from a Poisson
process, so the measure of a sequence is independent of any previous history (previous arrivals, state of the queue).
Furthermore, it follows from the Poisson assumption that the measures of prefixes and suffixes are independent and
satisfy P(w) = P(gp(w)) P(gs(w)).

Define X to be a random variable on S where X (w) = 1if e,,_, the last event in w, is the first (and only) arrival
from f, in w and O otherwise. Define X, to be a random variable on S where X ,(w) = 1 if w contains no event
e; = 2, and 0 otherwise. Define X ; to be a random variable on S where X ;(w) = 1 if w contains no event e; = 1, and
only the last event, e, is an arrival from fo. Note that Yw € S, X (w) = X,(gp(w))Xs(gs(w)). Also note that for
any w € S where X (w) = 1, there is a unique pair, w1, ws € S, where w = w1 - wa and X, (w1)X;s(w2) = 1. Namely,
w1 = gp(w) and wy = g5(w).

Define Lk to be random variable on S where for w € S, L g (w) = 1 if the last event of w is a packet arrival, and

applying w to a queue of capacity K whose buffer is initially full causes this last arrival to be dropped (i.e., the queue

3We emphasize that P is a probability measure [12] and not a probability distribution. Note also that S is a countable set, so that the measure of

aset S’ C S that contains a set of sequences, where no sequence in S is a subsequence of another w € S, is simply Zw cs’ P(w).

is full upon its arrival). It follows from Lemma 2 that L g (w) = 1 = Lk (gs(w)) = 1, in other words, Yw,,w, € S
we have L (wp - ws) < Li(wp - ws). Defining 7; to be the steady-state probability that the queue length is ¢, we have

Pr(Lz,1 = 0,Ls,; =0) = Y mPW)X(w)lx(w) = m Y Pw)X(w)lx(w) ®)
weS weS

Pr(La; =0) =Y mPW)X(w) = m» Pw)X(w))
weS wES

We can rewrite the conditional probability, Pr(Ls j+1 = 0| Lo ; = 0), as

o o Zwes P(w)X(w)Lk(w) _ pres Zwses P(wp)P(ws)Xp(wp) Xs (ws) Lx (wp - ws)
Pr(Lsj41 =0]| L2 j =0) = Soes PW)X(w) Y, cs Lwses Plwp) Pws) Xp(wp) Xa(ws)

pres Zwses P(wp) P(ws) Xp(wp) Xs(ws) Li (ws)
pres Zwses P(wp)P(ws) Xp(wp) Xs(ws)

< (10)

(Zupes PEnXo(en) (S, es P@OX@lr@)) T | Lic(w) X (ws) Plos)

(pres p(wp)Xp(wp)) (3, cs Plws) Xa(ws)) Yw.es Pws)Xs(ws)

ws€ES

Z esTl'kP(].'ws)LK(ws)Xs(ws)
- ws =Pr(L2; =0| (L1, =0),adj(p1,i,p2,5) =1
S P X () (L2, | (L1,), adj(p1,i,p2,;) = 1)

where we use Lk (wp - ws) < Lk (w;) to establish the inequality in (10). This inequality is strict since there exists
at least one w = wy, - ws where X (w) L (w) < Xp(wp)Xs(ws) Lk (ws). |

Theorem 2 [n two M/M/1/K queues in which the foreground flows enter separate queues, it is the case that Pr(L o j =
0| (L1, = 0),adj(p1,i, p2.,5)) < Pr(Lejt1 =0]|Lz; =0) (ie, My < Ma).

Proof: Because all arrivals and departures from the queues are Poisson, arrivals and departures into the first queue
have no impact on the second queue, and can be ignored when considering the status of the second queue. Hence, by
PASTA [13], Pr(Ls,; = 0| (L1,; = 0),adj(p1,i,p2,j)) = Pr(L2,; = 0) for any packet in fo. Thus, we need only
prove that Pr(Ls ; = 0) < Pr(La j4+1 =0 Le,; = 0).

We prove this by a sample path argument. Similar to Theorem 1, we define S = {w} to be the set of all possible
finite-length sequences through the queue. Since packets from f; pass through a separate queue, each event, e; of
w = (e1, ez, -,em,) is chosen from {2, b, s}. Define P to be the probability measure over .S (again this is well
defined due to the memoryless nature of the Poisson distribution).

Define X to be a random variable on .S as in Theorem 1: X (w) = 1 when the first and only arrival from f o is the
last event, e,,,,, in the sequence, and O otherwise. Define Y; to be a random variable on S where Y;(w) = 1 if the
queue length is # < K when the capacity is K, then applying the sequence w = (e1,- - -, e,) causes the last event,
em,, to result in a packet drop, and O otherwise.

We can rewrite our probabilities for which we need to prove the inequality as follows:

Pr(Lz; =0) = Y Y mPw)X(w)Yi(w) (11)
weS =0
7 P(w) X (w)Yk (w
Pr(Lzjt1=0|Ly; =0) = Zweszk (;kp((w)) ©)_ D P(w) X (w)Yi(w) (12)
weS

weS

10

We note that for any w where X (w) = 1 and any 4, j such that 0 < j < i < K, it follows from Lemma 1 that
Y;(w) < Y;j(w). In particular, there is some w for which X (w) = 1 where for some 7, Y;(w) = 0 while Y (w) = 1.
Also since Y1 m; = 1, we get:

DD mPWX(Yilw) < YD mPW)X(w)Yi(w) =Y Pw)X (w)Yi(w)

wES =0 wES =0 wES

which completes the proof. |

3.2 The delay-corr technique: Inverted-Y and Y topologies

We now demonstrate that the delay-corr technique will correctly infer whether or not the two flows share in a queuing
system where the background traffic arrives according to an arbitrary, ergodic and stationary process, and the service
times are characterized by an arbitrary distribution. We do require that the random variables that represent the back-
ground traffic and service times be I.I.D. The analysis also assumes that the system has entered into the stationary
regime, i.e., the system is initially in the steady-state.

Our arguments rely on the following technical lemma that is established in Appendix A:

Lemma 3 Let G be a non-decreasing function over [0,00), where lim,_,oo G(z) > G(0) > 0, and let f and g
be functions such that [~ f(z) dz = [~ g(z) dz, [~ G(z)f(z) dz < oo, [~ G(z)g(z) dz < oo, and
there is some ~ such that for x < v, f(z) > g(z), and for z > =, f(z) < g(z). Then [G(z)f(z) dz <
[.2,G(z)g(z) dx. Similarly, if G is non-increasing with 0 < lim, . G(z) < G(0), then [° G(z)f(z) dz >

Ji2o G(2)g(2) da

We define A; to be the time of arrival of p; at the queue. The following Lemma implies that correlations between
two foreground packets decreases as the time between their arrivals increases. Its proof appears in Appendix A.

Lemma 4 Consider an M+G/G/1 server (infinite capacity queue) where background traffic arrives with an aggregate
arrival rate of \y, foreground traffic arrives according to a Poisson process with rate \ ¢, and packets are served at an
average rate of it > Xy + A¢. Then E[D; D1 1] > E[D;D;,,] forn > 1.

Armed with this Lemma, we can now prove the result that M, > M, when the POC for both flows is the same
M+G/G/1 queue.

Theorem 3 Consider the same M+G/G/1 queue as in Lemma 4, where the foreground flow consists of packets from
flows f1 and fy whose arrivals to the queue are each described by Poisson processes with rates A1 and Ay respectively,
Al +)\2 = A‘f Then Mz > Ma.

Proof: We start by noting that Vi, j,k,m = 1,2, E[D:;] = E[D1 ;] = E[D2y] = E[D2,]. In other words,
each packet has the same expected delay. Similarly, Vi, j, k,m = 1,2mE[(D1,)?] = E[(D1,4)?] = E[(D2)?] =
E[(Ds,m)?]. Hence, to prove the theorem, we need only show that E[D ; D» ;|(adj(p1,i, p2,;) = 1)] > E[D2;Ds i11].

A Poisson process of rate A; has the same distribution as a Poisson process with rate A1 + A, that has been thinned
with probability A2 /(A1 + A2). As defined in (6), M, computes the correlation coefficient between adjacent packets
in the aggregate foreground flow. Hence, E[D1 ;D> ;|(adj(p1,:, p2,;) = 1)] = E[D;D;11]. Alternatively, as defined
in (7), M, is the correlation coefficient between packets from f, that are adjacent with respect to f; (i.e., packets ps ;
and ps j11). Let A1 (Z,7 + n) be a random variable that equals 1 if p; is from f; fori < j < i + n and 0 otherwise.
Let A2(7,7 + n) be a random variable that equals 1 if p; and p;,,, are from f5, and O otherwise. Using the fact that
packet delays are independent of their marking (E[D ; D |A1(4,% + n), A2(i,i + n)] = E[D;D;4,)]), then

11

E[D2;Dsji1] = Y E[DiDisn|Ai(iyi+n) =1,A2(i,i +n) = 1] Pr(As(isi +n) = 1| As(iyi+1n) =1)

n=1
< Y E[DiDia] Pr(As(i,i+n) = 1| As(i,i +n) = 1) = B[D; Dis1] (13)
n=1
where Lemma 4 yields the above inequality. |
Thus far, we have shown that M, > M, when the flows share. We now prove that M, < M, when the flows do
not share.

Lemma 5 E[D; ;1|D2,; =] is an increasing function of x.

This Lemma is also intuitive. It says that the expected delay of p2 ;11 is an increasing function of the delay of p» ;.

delay increases, we would expect to see a higher delay for p ;11 as well. A detailed proof is given in Appendix A.

Theorem 4 Let f1 and fo have separate queues as bottlenecks, and let f2’s queue be an M+G/G/1 queue as in
Theorem 3 (except that f1 does not pass through the queue). Then M, < M,.

Proof: First, note that M, = 0, since the delays experienced across packets in the two foreground flows are inde-
pendent. The denominator of a correlation coefficient is always larger than 0. Hence, we need only show that the

numerator in the correlation coefficient of M, is larger than 0:

E[D3,i+1D2,i] — E[D2,i+1]E[D2,;]

(oo}

= / xPr(DQ,i = x)E[D27,‘+1|D27,‘ = 93] dx — / xPr(Dz,,- = a:)E[Dg,,-Jrl] dx (14)

=0 =0

By Lemma 5, E[D5 ;41|D2; =] is an increasing function of z. Applying Lemma 3, with G(z) = z, f(z) =
PI‘(DQJ' = ZE)E[D27Z'+1], and g(x) = PI’(DQJ' = ZE)E[D27Z'+1 |D2,i = CB], we get that the right hand side of (14) is
larger than 0, which completes the proof. |

4 Performance in Simulation

Figure 4: Topology used in simulation experiments.
In this section, we use simulation to examine scenarios where POCs are either shared by both flows, or are not

shared by both flows. Figure 4 demonstrates the topology on which we run our simulations using the ns-2 simulator

[14]. For the Y topology, probe receivers are connected to the left-most node, the sender for f; is connected to the

12

bottom-right node, the sender for fo to the top-right. For the Inverted-Y topology, we simply swap the locations of
each flow’s sender with its receiver. We limit the potential POCs by assigning links that we want congested to process
at a rate of 1.5Mbs, and links that we do not want congested process at a rate of 1000Mbs. The links that are assigned
the 1.5Mbs capacity are either the set of links numbered 1 through 3 or else are the set of links numbered 4 through 8.
All background data traffic flows in the same direction as that of the foreground flows, and traverses a subset of links
that are assigned the 1.5Mbs capacity (i.e., there is no background traffic on the high bandwidth links). 10 through 20
background flows are placed on the path of each probe, each background flow uses the TCP protocol with probability
of .75. Otherwise, it is a CBR flow with on-off service times. The CBR rate is uniformly chosen between 10 and 20
Kbs, and the average on time and off time is chosen independently between 0.2 and 3.0 seconds.

For each of the four configurations (Y topology or Inverted-Y topology, shared or independent POCs), we run
1000 experiments, starting the background traffic at time ¢ = —10, and then starting the probes at time { = 0, and
ending the experiment at time ¢ = 120.

100 gy S HHONR RGN 100 SRR K KA ————————)
2 A %

80% 80

70

70

60 correct (loss-corr) —+—-+ 60 correct (loss-corr) —+—
] correct (delay-corr) - { correct (delay-corr) -
50] no response (loss-corr) 50 i no response (loss-corr) -
E) ;)

percent
percent

no response (delay-corr; no response (delay-corr) -

40 0%

30 30

20 [20 |,

0.1 1 10 100 1000 0.1 1 10 100 1000

time time
(a) Independent congestion (b) Shared congestion

Figure 5: Inverted-Y topology

Figure 5 plots the percentage of experiments run over the Inverted-Y topology that correctly infer whether or not
the flows share as a function of time using the loss-corr and delay-corr techniques. In Figure 5(a), the flows do not
share the POC in any of the 1000 experiments, whereas in Figure 5(b), the flows share the same POC in all 1000
experiments. In each experiment, both probe flows send 20 byte packets at an average rate of 25 per second. The clock
time varies exponentially on the z-axis, where a time of zero indicates the time that the first probe packet arrived at
either receiver. The y-axis indicates the percentage of the experiments that satisfy the property being plotted. Curves
labeled “no response” plot the percentage of tests that cannot form a hypothesis by the time indicated on the z-axis (the
test must have at one sample before it forms a hypothesis). Curves labeled “correct” plot the percentage of tests whose
hypothesis is correct at the time indicated on the z-axis. 95% level confidence intervals are generated by averaging
over twenty samples at a time, such that the distribution of the average of the samples is approximately normal.

We can make several observations from these graphs. First, the delay-corr technique is able to correctly assess
whether or not a POC is shared by an order of magnitude faster than the loss-corr technique. For instance, for 90% of
the experiments to draw a correct conclusion, the delay-corr technique obtains a sufficient number of samples within
a second, whereas the loss-corr technique must proceed for between 10 and 50 seconds over the various experiments.
This is not surprising, given the fact that the delay-corr technique is able to use almost every packet to compute its
measures, whereas the loss-corr technique only uses samples that contain certain sequences of packet losses. We also
note a trend that for the case loss-corr technique, the percentage of hypotheses that are correct initially decreases with

13

time. This is likely due to the fact that with low loss rates, both measures are initially estimated to be 0, and in a tie,
the hypothesis is that the POCs are independent.

60 | correct (loss-corr) —+— - 60 q
s [] B correct (delay-corr) - € '
3] no response (loss-corr) 8 A correct (loss-corr) ——
‘g,_ no response (delay-corr) ?g_

)

correct (delay-corr) -=-¥--
no response (loss-corr) -

no response (delay-corr) -

]
20 - -.‘ g 20
0l Oeomp-0-0-000emm-o Unmmmm——) 0 :
0.1 1 10 100 1000 0.1 1 10 100 1000
time time
(a) Independent congestion (b) Shared congestion

Figure 6: Y topology

Figure 6 plots similar results for a Y-topology as those in Figure 5. There is little difference in the results of the
delay-corr technique between the two topologies. This is not surprising, since the difference in topology does not
affect the way the delay-corr experiment is executed. On the other hand, the loss-corr technique for the Y-topology
converges at a slightly slower rate than the loss-corr technique for the Inverted-Y topology. This is because in most
cases, the value of M, computed using (3) is not significantly different from the value of M, computed using (4)
so more samples are necessary to correctly assess with a given level of confidence which one is larger. Furthermore,
the conditioning within (3) is stricter than that for (1), such that on average it takes longer to get the same number of
samples.

We also examined the applicability of the comparison tests when the routers initiated Random Early Detection,
and found no significant impact on our reported results for the delay-corr technique. However, we observed that the
loss-corr technique failed to identify shared POCs in more than half the cases. This is not surprising: first, RED will
randomly drop probes as the queue fills: this by itself introduces noise into the test statistic. Second, RED is designed
to encourage TCP sessions to “back off” prior to overflowing its bottleneck queue. This reduces the likelihood that

the queue will be full and that probe loss will become bursty.

S Detecting sharing in a practical setting

This paper focuses on demonstrating that from end-hosts, we can distinguish between two flows that are congested by
the same set of resources from two flows that are congested by a mutually exclusive set of resources. However, the true
nature of congestion in the Internet is still not well understood. If we assume that a flow can experience congestion at
several POCs within a short period of time, then the POCs for two flows need not be identical or mutually exclusive,
but may partially overlap. If such is the case, then a simple yes/no answer is not always sufficient.

We now introduce one possible way of measuring the level of sharing, L1 2, a metric that quantifies the degree to
which the POCs of f; overlap. To compute this metric, we require that the two probe rates be equal (i.e., A1 = Ap).
We define a new adjacency function, adjz(p1,;, p2,;) which equals 1 iff any foreground packets arriving at the POC

14

between packets p; ; and po ; are from f1.4

We define the share-measure, M gpqr Similarly to the definitions of the cross-measure, M, except we replace
adj (p1,j, p2,:) with adja(p1,j, p2,;). For instance, in the case of delay, Mpqre = C({(D1,i, D2,;) : adja(p1,s,p2,5) =
1}). Because we are using Poisson probes, the conditioning on adj2(p1 4, p2,;) = 1, combined with the memoryless
nature of the Poisson distribution ensures that the distribution of times between pairs used for samples in both M , and
M hare are the same. We also define an independence measure, M ;,, 4, which estimates M, o if the flows share no
bottleneck. For instance, for the loss-corr technique, M ;,q = Pr(Lg,i = 0), and for the delay-corr technique, it is 0.
The level of sharing is then £1 2 = (Mspare — Ming)/ (Mg — Ming).

L1 2 measures the “level of information” that a loss (delay) observation on a packet from f; yields about the loss
(delay) experienced by the next packet from f». Assuming flows cannot be negatively correlated, a value of zero
indicates that observations of packets from f; give no useful information pertaining to f2. A positive value less than
one indicates that it yields some information, but less than what can be obtained by using loss and delay measurements
from previous transmissions in fa. A value equal to one means that the levels of information are the same, and a
value larger than one means that observations on packets from f; yield more information than observing the previous
transmissions from f5. This last case can only occur due to statistical error in estimating the measures used to construct
Ly 2, or when f5’s POC covers multiple routers, and f; utilizes those routers that are most heavily congested. The
measure increases as the POCs for f; increase in the severity to which they cause congestion for f. They do not,

however, indicate the extent to which f; causes the congestion at the POC.

6 Actual Traces

C Columbia (New York) M; UMass-1 | M, UMass-2 U UCL (London)

S AT&T-San Jose (California) | M3 UMass-3 | A ACIRI (California)

Table 1: Site name abbreviations

We have demonstrated the robustness of our comparison tests through queueing analysis and simulation. Now, we
give evidence that these tests work in practice. We apply the tests over the Internet, choosing end-system locations such
that we can be reasonably sure as to whether or not the flows share. We then examine the results of our comparison
tests. The set of end-systems used in the experiments consists of machines located at ACIRI (California), UCL
(London, UK), Columbia (New York City), AT&T-San Jose (California), and three of our own machines, labeled
“UMass-1” through “UMass-3”. Table 1 presents a shorthand notation for these sites that is used in the subsequent
figures and tables.

Our first set of experiments involve four of these sites: UMass-1, UMass-2, Columbia, and UCL, three of which
are located in the U.S., and one in Europe. UMass-1 and UMass-2 are in fact located on the same LAN (Figure 7(a)),
such that the paths from (to) UMass-1 and UMass-2 to (from) UCL shared all links in common except for the initial
(final) hop (this was verified using traceroute). We expect that in this configuration, the two flows will share.
We believe that at the time of our experiments, the path from (to) UMass-1 to (from) UCL and the path from (to)
Columbia to (from) UCL were disjoint along the trans-Atlantic links, as well as all links in the U.S. (Figure 7(b)).
‘We came to this conclusion via an examination of traceroute statistics (a more detailed discussion of our use of
traceroute is presented later in the paper). We expect that in this configuration, the flows will not share.

“Note that for a given j, there can be several 4 that satisfy adp (p1,5,P2,i) = 1, whereas there is a unique % that satisfies adj(p1,;,p2,;) = 1.
We emphasize this to point out that the lack of uniqueness is not a problem, but does increase the correlation between successive samples.

15

Hz HZ
O U U
C C

(a) Shared topology (b) Independent topology

Figure 7: Experimental topologies

1 " = 25 ‘
FioF
08 - FA S , 2r]
e
* 15 4

06 1

B aettans

04 -

magnitude
X
.
.
magnitude

05 -
02

0 A 05 - i,"]
M_x-M_a —— n M_x-M_a ==&
02] __confidence ---u---- - _|_share -~

1 10 100 1000 0.1 1 10 100 1000
time (sec) time (sec)
(a) loss-corr (b) delay-corr

Figure 8: Europe to US, Inverted-Y, correlated

Figure 8 presents the results for the Inverted-Y topology where the U.S. end-systems reside in the same LAN.
Figure 8(a) plots the results of the loss-corr test with time, measured in seconds, plotted via a log-scale along the -
axis. The bottom curve is the difference, M, — M,, between the two measures of the comparison test. After the 15th
second, the value remains positive, which means that the test hypothesizes that the POCs for the flows are shared. The
top curve is the level of confidence, computed using a permutation test [15], that does not require that the distribution
is normal. A value of 1 means that we have 100% confidence that the hypothesis is correct. Figure 8(b) plots the
results of the delay-corr test, with time plotted via a log-scale along the z-axis. The bottom curve again indicates the
difference, M, — M,, between the measures. Since the value is positive, the test also hypothesizes that the flows
share a POC. The top curve is a computation of £ ». The fact that £, » converges to one indicates that the level of
correlation between packets across flows f; and fs is similar to the correlation seen between packets in f5, which
matches our assumption that these two flows observe almost identical POCs.

Figure 9 presents results for the Inverted-Y topology where different paths are taken across trans-Atlantic links
to reach the two end-systems in the U.S. In Figure 9(a), the bottom curve, which plots, M , — M, for the loss-corr
technique, is negative. Hence, the test hypothesizes that the POCs for the two flows are not shared. The top curve,
which shows the level of confidence as computed via the permutation test, shows that the confidence in this hypothesis
is close to 100% after only 10 seconds. The bottom curve in Figure 9(b) plots M , — M, for the delay-corr technique.
Because the value is negative, the test hypothesizes that the flows do not share. The top curve in the Figure plots £ 1 »
as it varies with time. Its value remains close to zero, which indicates that observing the delays of packets from f;

16

0.5

magnitude
o

-0.5

M_x-M_a ——
confidence -=-----

100
time (sec)

(a) loss-corr

1000

magnitude

n
10 100

time (sec)

(b) delay-corr

Figure 9: Europe to US, Inverted-Y, uncorrelated

1000

will give no information about the delays observed by packets in fo. These results are consistent with our evaluation

of the topologies: the POCs for these two flows are separate.

6.1 Results Summary

Date | Topology Hosts shared / non-shared loss rates loss-corr stable since | delay-corr stable since
hop ratio (msec) (%) result (sec) result (sec)
1173 Y (M1,M> — U) (1,1 — 440) 1.42,1.29: 1.36 Shared 154 Shared 0.5
1173 Y (M1,M2 — A) (1,1 = 91) 0.07,0.01 : 0.04 | Not shared 184 Shared 2
11/3 Inv-Y (A — My, Ms) 98 - ~0,~0) 0.04, 0.07 : 0.06 INSUF Not shared 552
1171 Inv-Y (A — M>, M3) 91 - ~0,~0) 0.03,0.03:0.03 INSUF Shared 562
11/1 Inv-Y U — My, M2) | (150 = ~0,~0) 5.33,6.10: 5.72 Shared 23 Shared 0.8
11/3 Inv-Y (M1 — U, A) (6 — 82,322) 0.75,0.17 : 0.46 INSUF Not shared 23
11/1 Inv-Y (M, - U, A) (0 — 102, 447) 2.08,0.24 : 1.25 | Not shared 337 Not shared 4
11/1 Inv-Y (U — M, A) (3 —313, 141 6.08,0.26 : 3.05 | Not shared 411 Not shared 8.2
11/1 Inv-Y U — M;,0) 47 — 110, 75) 12.12,0.07 : 6.12 | Not shared 6 Not shared 6.2
11/1 Inv-Y U — My,S) (75 — 233,75) 8.55,0.01:4.26 | Not shared 249 Not shared 4
1171 Inv-Y U = M, A) (30 — 264, 193) 1.95,0.10: 1.03 | Not shared 109 Not shared 48
11/3 Y U,A — M) (32391 - ~0) 7.73,0.09 : 3.90 Shared 543 Not shared 7
1173 Inv-Y (A—=C, M) (4 — 65,87) 0.05, 0.06 : 0.06 INSUF Not shared 328
11/1 Inv-Y (A—U, M) (4 — 189,91) 0.15,3.51: 1.82 | Not shared 560 Not shared 3
11/3 Y (C,M; — A) (64,87 — 4) 0.00, 0.03 : 0.02 INSUF Shared 30
1173 Y (C,M1 = U) (88,340 — 130) 1.51,2.32:1.92 Shared 61 Shared 0.5

Table 2: Trace results

Table 2 summarizes the results of the other experiments performed during the middle of the day on November

1 and November 3, 1999 using the hosts listed in Table 1. Each experiment ran for 600 seconds, with each source

sending 20 byte UDP Poisson probes (not counting bytes in the IP header) at a rate of 25 per second . Each packet

17

contained a sequence number and a timestamp whose time was computed at the source immediately prior to the socket
call that transmitted the packet. Packet arrival times at the receiver were recorded at the receiver immediately after the
socket call was performed to retrieve the packet data.

The first column in the table indicates the date on which the experiment was performed. The second column
indicates whether the topology was a Y or Inverted-Y topology. The third column indicates the hosts that participated
in the experiment, using the abbreviations for the host names supplied in Table 1. For the Y topology, the labeling,
(A,B — (), indicating that senders at host A and host B are transmit probes to receivers co-located at host C. For the
Inverted-Y topology, the labeling is of the form (A — B, C), indicating that the co-located senders at host A transmit
probes to receivers at hosts B and C.

The fourth column provides a rough approximation of the average delay experienced over the shared path of the
two flows, as well as the average delay over the respective portions of the paths that are not shared. These values
were obtained through two calls to traceroute that were executed during the experiment, one for each source-
destination pair (the call to traceroute was always initiated by the probe sender(s)). We consider the shared links
to be the longest sequence of links, starting from the point of the co-located hosts, that contain the same sequence of
IP addresses. The remaining links are considered unshared. The delay for a sequence of links is the average of the
delays as reported by traceroute at one endpoint of the sequence minus the average of the delays as reported by
traceroute at the otherend.” If a value is returned that is less than zero, we assume that the delay on this sequence
of links is negligible, and write the delay as ~ 0.

For the Y topology, the entry, (z,y — 2), z,y,z € R that is associated with the labelling, (A,B — C), indicates
that the unshared portion of the path from host A to host C has an average delay of x ms, the unshared portion of the
path from host B to host C has an average delay of y ms, and the shared portion of these paths has an average delay
of z ms. For the inverted-Y topology, the entry (z — y, 2) that is associated with the labelling, (A — B, C), indicates
that it takes on average x ms to traverse the shared portion of the paths, and on average, y and z ms to traverse the
unshared portions of the paths to B and C, respectively.

We use the relative values of these path delays to estimate whether or not the POCs are shared. If the delay over
the shared portion is small with respect to the non-shared portions, we assume that the POC is not shared. Otherwise,
we assume it is. A line is drawn in the middle of the table separating the experiments whose flows we assume traverse
a shared POC (above the line) from those whose flows we assume traverse separate POCs (below the line). We wish
to point out that these assumptions are only a “best guess” that we are able to make given our limited access to routing
information.

The next column presents the loss rates. An entry, a, b : ¢, associated with the labelling, (A,B — C), or the
labelling, (C — A, B), indicates that the loss rate of the flow involving host A is a, the loss rate of the flow involving
host B is b, and the average loss rate over both of the flows is c. We emphasize that the loss rates are given as percents,
so values less than one indicate that fewer than one out of every one hundred packets were lost.

The last four columns present the results of the experiments. The column labeled “loss-corr result” presents the
hypothesis returned by the loss-corr technique after 600 seconds; to its right is the time of the experiment when the
hypothesis was last changed. A hypothesis of “INSUF” indicates that the technique was unable to form a hypothesis
due to a lack of samples. The last two columns present similar results for the delay-corr technique.

We find that five of the sixteen experiments that applied the loss-corr technique were unable to construct a hy-
pothesis. We note that in all but one of these tests in which no hypothesis was constructed, the host at ACIRI was
the point of co-location. The loss rates in these traces were so low, that no samples were produced that could be used
to estimate the the cross-measure, M,. Of the remaining eleven experiments, only three of eleven fail to match the
assumed correct hypothesis. Except for the last experiment listed, all experiments that returned the wrong hypothesis

5No more than three are reported per hop, but in all our calls, at least one was reported where necessary, allowing us to compute an average.

18

were conducted using flows with very low loss rates, which suggests that these flows did not experience significant
levels of congestion.

In more than 80% of our experiments, the delay-corr test returned the hypothesis that matched our assumption
about whether or not the POCs were shared. Two of the three tests that failed consisted of sessions with very low loss
rates. We hypothesize that the low loss rates are an indication that the links were in use far below their capacity, such

that the level of delay congestion was insignificant.

7 Open Issues

There are several issues that remain open with regard to detecting shared congestion that we have not considered. We
touch briefly on those that we feel are the most critical to solve. First, in the Inverted-Y topology, the information
necessary to compute the cross-measures is distributed at the receiving hosts. In this paper, our processing of the
information is done off-line, at a centralized point to which we transmit all data. One direction for future work is
to design protocols that, accounting for the fact that the information may be distributed, can efficiently construct a
hypothesis. A second direction is to scale the tests such that they can detect POCs efficiently among several flows.
Katabi’s technique [7] is one possibility, but this technique is currently limited to the Y-topology, where the ratio of
bandwidth utilized at the POC by the background traffic in relation to the foreground traffic is small. In practice, we
expect POCs exist at points where many flows are being aggregated, and expect that this ratio can be quite large. A
solution that scales easily to many flows over a variety of traffic conditions remains an open problem.

8 Conclusion

We have demonstrated two techniques that, via end-to-end measurement, are able to accurately detect whether or
not two flows share the same points of congestion within the network. One of our key insights is the construction
of a comparison test: rather than trying to figure out the level of correlation that indicates that two flows share a
common point of congestion, we compare the correlation across flows to the correlation within a single flow to make
the determination. Another insight is that the detection can be performed by transmitting probes, each of which have
intra-transmission times that are described by Poisson processes. These techniques can be applied to flow topologies
where the senders are co-located but the receivers are not, as well as the case where the receivers are co-located but
the senders are not. We demonstrated the performance of these techniques through a mix of proofs using traditional
queueing models, simulation over a wide range of controlled scenarios, and results using actual Internet traces.

A Proofs of Delay Lemmas

Proof of Lemma 3:
Proof: If G(z) is non-decreasing, we have that 0 < [G(z)(f(z) — g(z)) dz < G(y) [_, (f(z) — g(z)) d=.

z=0
Also, 0 < G(7) f;iy (9(z) — f(z)) dz < f;i,y G(z)(g(z) — f(z)) dz, or equivalently (multiplying by —1),
Joo, G@)(f(z) —g(z)) dz < G(7) [;2, (f(z) = g(z)) dz < 0. Hence, [[Z G (z)(f(z)—g(z)) dz =

1o G@)(f(z) —g(2)) dz + [Z G()(f(z) —g(z)) dz < G [, (f(z) —g(z)) dz +
G [,=, (F(2) = g(2)) dz = G(y) [,Z, (f(z) — g(2)) dz = 0. Thus, [[Z, G(z)(f(z) — g(z)) dz < 0, which

z=y
gives f;io G(z)f(z) dz < f;io G(z)g(z) dz. The case where G(z) is non-increasing is proven similarly. |

Proof of Lemma 4:

19

Proof: D;,,, = F;+, — A;ji,, where E;,,, is the time in which p;,, exits (i.e. completes being serviced by) the
queue. p;4y,’s service is not completed until after i) p;’s service is completed, and then ii) all background packets that
arrive between p; and p;, are and all foreground packets p;i1,- -, pitn are serviced. Thus, F; 1, = A; + D; +
Z;V:(f iAitn) s; + Z?:l Sj + v(A;, Aitr), where N (z,y) is the number of (background) arrivals admitted into the
queue during the time interval [z,y), s; is the time it takes to process the jth of the these arrivals, S; is the time it
takes the server to process p;;, and y(z, y) is the time the processor is idle (no jobs in queue) during the time interval
[z,).

Substituting in for E;, 1, we obtain Dy, = D; — t, + Z;-V:(f"’A“r") sj + Z?:l S; +v(A;, Aity), where t, =
A;1n — A;. We make several observations that will help in proving the lemma. First, note that ¢ ,, is independent of D;:
The time spent by p; in the queue is independent of the time it takes p;,, to arrive after p;’s arrival. Second, the service
time, S, of p;4;, is independent of arrival times of foreground packets and the delay of p ;, and is therefore independent
of Ai4m, for all m and of D; as well. Similarly, the service time, s;, of any background packet that arrives after time
A; is independent of arrival times and of D;. Third, since the queue has infinite capacity, N (z,y) is independent of
the queueing system during the time interval of length [z, y). Thus, N(z,y) and D ; are independent, and E[N (z, y)],
the expected number of background packets that arrives in the interval [z,y), is simply A,(y —). It follows that
E[ij(fy) sj] = E[N(z,y)]E[s;]. where j can be arbitrary (because service times are i.i.d.). The rate at which
packets can be processed at the queue is u = 1/E[s;] = 1/E[S;].® Last, note that N(z,z) = N(z,y) + N(y, 2)
and y(z, z) = v(z,y) + v(y, 2) whenever z <y < z. Letting t,, = A;4,, — A;41 (the time between the 1st and nth
arrivals of Poisson process with rate A ¢), we have that E[t,] = 1/A¢.

We now prove the result by showing that forn > 1, E[D;D;y,] — E[D;D;y1] = E[D;(Djyn — Diy1)] < 0.
We have that Dy, — D1 = —t,, + Z;-V:(fi“’A“") §j + 2 i—y Sj +v(Ait1, Aitn). Applying our observations of
independence, we get

E[Di(Ditn — Dit1)] = E[Di](=E[tn] + E[N(Ait1, Aitn)]E[s] + (n — 1)E[s]) + E[Diy(Ait1, Aitn)]

= E[Di(Eltn](=1 4 Xo/p) + (n = 1)/p) + E[Diy(Ait1, Aitn)] (15)

Note that starting from time A;1, the queue cannot be empty at least until after p;11 exits the queue. A sim-
ple sample-path argument can be used to demonstrate that increasing D ; decreases the likelihood that the queue
is idle between arrivals of p; and p;;, for longer than any aggregate length of time, . More formally, for any
z, Pr((v(Ait1, Aitrn) > z)|(D; = d)) is a monotonically decreasing function of d. It follows that E[D ;y(Ait1, Aitn)] <
E[D;|E[y(Ait+1, Aitn)] (apply Lemma 3 with G(z) = z, f(z) = Pr(D; = z)E[y(Ait1, Airn)|Di = z], and
g(z) = Pr(D; = z)E[y(Ait1, Aitn)]). Furthermore, we can show that E[y(A;11, Aiyn)] < Eltn](n— X — Af) /1
(the expected time times the idle rate of the system) as follows: If packet p ;1 took O seconds to process, because it and
Pitn are Poisson arrivals, we can use the PASTA property to obtain that E[y(A j+1, Aitn)] = Etn](k — Xo — Af) /.
However, again via a sample-path argument, the fact that p,;;; has a non-negative service time can only reduce the
expected idle time.

Applying this result into Equation (15), and substituting E[t,] = (n — 1)/A¢, we get

=) (m=Dh (n=1) (=D =)

) =0

Proof of Lemma 5:

SWe assume for simplicity that the processing of all packets (foreground, background) have the same expected processing time. However, this
is not necessary.

20

Proof: The proof is via sample-path analysis. We construct a sample path , w, that starts at the arrival of p ;, and
ends with the completion of service of ps ;41 at the server. We represent w = (N, {t1, -+, tn},{s1,--,sn}, S),
where NN is the number of packets that arrive during the interval covered by w, ¢ ; is the arrival time of the 7 arrival
in the time interval covered by w, s is the processing time of this packet within the queue, and S is the processing
time for p2 ;+1. Let X be a random variable on W = {w} where X (w) = 1 if and only if the events at the queue in
the range of time covered by w are correctly described by w. Note that X is independent of D , ;. Hence, Vz1,z2 >
0,Pr(X(w) =1|D2; = #1) = Pr(X (w) = 1|Ds; = z2) = Pr(X (w) = 1). Note that given the delay of ps ; and w,
one can compute the delay experienced by ps ;1. Let D(Ds ;, w) be this delay.

For a given w, as D» ; is increased, then the packet that arrived at time ¢; cannot begin being processed until a
later time, and hence its time to finish processing increases. Inductively, it can be shown that the time by which the
packet that arrived at time ¢ ;y completes being processed can only increase due to an increase in D 5 ;. Thus, the same
holds true for the completion time of the processing for p» ;1. This makes D(D5 ;, w) an increasing function of Do ;.

Given 21 < 22,

S uew D(@1,w) Pr(X(w) = 1Ds; = 1)

E[D3z,i+1|D2,i = =
[2, +1| 2, 931] Zwew PI'(X(LL)) — 1|D2,i — xl)

_ Yuew D(@1,w) Pr(X(w) = 1Dz = @2) < Ywew D(@2,w) Pr(X(w) = 1|Ds,s = 22)
Dwew PrX(@) =1|Dsi = 22) Y wew Pr(X(w) = 1|Da;; = x2)

= E[Ds,i41|D2; = z2].

The strict inequality above is due to the fact that there is a set W' C W with non-zero measure where w € W' —
D(z1,w) < D(z2,w). |

B Analysis of the loss-corr technique, Y-topology

In this section, we derive closed-form recursive solutions that give separate solutions for M , and M, when the bottle-
neck is shared, and when the bottlenecks are separate, all for the Y topology. We assume that the POC for each flow
is an M/M/1/K queue (the same queue when the POC is shared).

B.1 Y Topology, Shared Bottleneck: 1/,

Let f; represent the aggregate flow consisting of all background traffic that passes through the shared POC. Define
p1(7) to be the probability that the next event in the system is the arrival of a packet from [, conditioned on the event
that the queue length is j. Define p2(j) and py () similarly for the events corresponding to packet arrivals from f and
f», and ps(7) to be the probability that the next event is a service completion conditioned on the event that the queue
length is j. Since the flow arrivals and the completion time are all exponentially distributed (i.e., memoryless), we
have:

p1(3) = M /v, p20d) = Ao/, po(d) = Mo/ (16)
, 0 j=0
Ps(J) = . (17
w/vi >0
where

21

AL+ A+ 7=0
Vi = (18)
AMtA+Xp+p 7>0

v; differs at j = 0 since there are no service completions when j = 0. To simplify notation, we write p in place
of p1(4) when it is implied that § > 0. We do this similarly for p2, p, and p;.

We now compute My = Pr(Ls ;-1 =0| La; =1,L1 j_1 = 0,L1 ; = 1,adjr(p1,j, p2,;) = 1). The value of M,
depends on the success or failure of receiving and order of receipt of four packets in particular: p 1 ;_1,P1,5,D2,i—1,
and p2 ;. To do this, we derive four regular expressions that represent the sequence of foreground arrival events at the
bottlneck queue. Three of these regular expressions are mutually disjoint (i.e., no two regular expressions contains
an identical sequence of arrival events). Furthermore, the union of the set of sequences generated by all three regular
expressions is the set of sequences that satisfy both of the following:

Ly; 1=0 (19)
Lyi=1,L1;-1=0,L; =1,adjr(p1,j,p2,) =1 (20)

The fourth regular expression is a superset of this union, and the set of sequences that it generates is the set of
sequences that satisfy (20) (and need not satisfy (19)).

Let T'% be the event that p; ; is admitted into the bottleneck queue. Let A~ be the event that p; ;_; is dropped at
the bottleneck queue. Similarly, define Fg and Aé_l to be the respective events that ps ; is accepted into the queue, and
that packet ps ;1 is dropped from the POC. Based on our packet ordering assumptions, since the co-located receivers
receive p; ; prior to packet pj ;, the two packets arrived in this same order at the POC. Furthermore, since packet
ordering is maintained within a flow, p1 ;_; must have arrived at the POC prior to p; j, and packet p3 ;1 must have
arrived prior to packet p» ;. Hence, the following three orderings of arrivals at the receiver are the only orderings that
satisfy both (19) and (20):

o AITIALTITNTY
. AN
o A 'AT'TITY

The set of sequences that contain the following ordering of A ’i_l, I'?, and F% is the set of sequences that satisfy

(20) (and may or may not satisfy (19):
o AITIDITY

We now produce the regular expressions, each one represents the set of all sequences of foreground events that
produce one of the subsequences of events given above. Each regular expression starts with the first event in this
subsequence, and ends with the last event in the subsequence. We write [; for a loss in f; of a packet other than p; ;
or p1,j—1, and write /5 as a loss of a packet in fo other than the ps ; or ps ;1. Write g; and g for receipt of these

packets in f1 and fs, respectively. The above subsequences belong to the following regular expressions:
o AT'A]ITID) = AT (g2 + 1)*A] 'THLCTY
o ATTTIAL TS = AT (9o +) T (0 + 1) A T
o ATTATITIN, < AL (g1 4+ L)AL T

o AIT'TITS — AT (go + 1) Ti(ly + 12)*T}

22

Because each regular expression’s first event is a packet loss, and because we have poisson arrivals which satisfy
the PASTA property, the probability of a given sequence occuring in any of the expressions is simply the probability
that the queue is full when the first packet in the sequence arrives at the queue, times the probability that the foreground
events occur in the order specified by that sequence. We will only be interested in values of ¢ and j after the system
has been running for a significant period of time, so that the probability of the system’s queue being full is simply the
steady-state probability that the system’s queue is full (contains & entries), 7.

We must also account for arrivals of background traffic and service completions. Note that the arrival of a packet
from f3 is possible at any point in time (i.e., between any two events in the regular expressions given above). A similar
criterion holds for service completions, though we must ensure that service completions do not occur when the queue
is empty.

We define several recursive functions that we use to compute useful conditional probabilities:

e ¢o(j) is the conditional probability that, given the queue has length j, a service completion occurs, and the

queue eventually returns to length j, in between there are no arrivals from f; or fs.

e ¢ 2(j) is the conditional probability that, given the queue has length j, a service completion occurs, and the
queue eventually returns to length 7, in between there are no arrivals from f; (but we allow arrivals from f5).

e ¢o,1(j) is the conditional probability that, given the queue has length j, a service completion occurs, and the
queue eventually returns to length 7, in between there are no arrivals from fo (but we allow arrivals from f1).

e ¢1(j) is the conditional probability that, given the queue has length j, a service completion occurs, and the
queue eventually returns to length j, in between there are no arrivals from f 5, and there is a single arrival from

1.

e () is the conditional probability that, given the queue has length 7, a service completion occurs, and prior to
returning to a length of j, a packet arrives from f prior to any packets arriving from f; (this packet from f> can
cause the queue to fill back to 7). Any arbitrary ordering of packets is permitted once the packet from f 5 arrives.

e 1 5(7) is the conditional probability that, given the queue has length j, a service completion occurs, and prior
to or returning to a length of 7, one packet arrives from f1, followed by a packet arrival from fo (this packet
from f> can cause the queue to fill back to length j). Any arbitrary ordering of packets is permitted once the
packet from f5 arrives (but prior to the arrival of the first packet from f5, only a single packet from f; arrives).

The solutions for these recursive functions follow:

pspy(0) ji=1
doli) = o @)
T=go(G=T) 71

ps(ps(0) +p2(0)) j=1

$o2(j) = s (D + P2) ‘ (22)
T 602G -1 77!
‘ ps(Po(0) +p1(0)) j=1
9010)) = Ps(pb + 1) (23)

e e > 1
1—¢o1(j—1) J

23

Forj > 1,01(j) = ps [Doneo(@0(G — 1)) (p1 + d1 (G — 1) [Xo oo (B0 (5 — 1))™] ps). Hence,

) " - 24)
V=) b (p s slG-Um)
1—£b—1>@r+1—%0—30 i1
For j > 1,45(5) = ps [n—o(#0(5 — 1))"] (p2 + ¥2(j — 1)). Hence,
psp2(0) j=1
Pa(j) = 25)
v { #(sj_l)(?z +a(j —1)) j>1 }

Forj > 2,¢12(7) = ps [Yopeo(@0(f — 1) (%125 — 1) + ¢1(5 — 1) [>o1=o(d0 (G — 1))"]¥2(j — 1)). Hence,

| 28 (s 4+ (1) i=2
Y12(j) = pe (1[1 G-1)+ $1(J — Dpa(j — 1)) §>2 0
T=60(f—1) \"** 1=60(i = 1)

Define Pr(Ai_lAgflI"iFg) to be the probability that a sequence of events occurs that produces the above subse-
quence of events, and similarly define Pr(A: T4 AL ""T%), Pr(A] " Ai'TiTY), and Pr(AI 'TiTY). We can now
compute these probabilities using our recursive function definitions, and our regular expressions that indicate the
permitted sequences of foreground events that complete the above subsequences:

Pr(A7TATITID)) =

. P1 D2 ¢1 (k)2 (k) >
"1 —pp —po — doa(k) 1—pp — po(k) (1/11,2(7?) i 1 — Py — do(k) @7

o
Pr(AI'TEAS ' TY) =

p1 1 (k) -

k 28

T ps — o — Goa(k) L— p1 — P2 — po — do(k) 1 — p1 — pp — ¢O(k)¢2() (28)
Pr(A}'ATIDITY) =

D2 D1 ¢1 (K)o (k) >
T 1 —po — Goa(k) 1—po — do(k) (¢1’2(k) i 1 — Py — do(k) 29

Pr(A7'Iir) =

hlbpa)) 0

b1
<¢l’2(k) * 1 —p1—p2—pp — do(k)

T
1= 12—y — do2(k)

We can then compute M :
Pr(A) 'AYIDIT)) + Pr(AVITEAL DY) + Pr(ALTATITD))

Mz: - S 31
Pr(AL'Ti1) Gh

24

B.2 Y Topology, Shared Bottleneck: 1/,

M, is simply the loss probability that, in the case of a shared bottleneck with the system in steady state, is

M, =m, = Pr(Li=0)=Pr(L]=0)

L—p 4
= 1o’ 32)

A1t+Ao+ XA

where p = m

B.3 Y Topology, Separate Bottlenecks:)/,

We begin by constructing variables similar to those used in the previous subsections, except that they account for the
fact that f; does not pass through the POC of interest. Let 7, equal the steady state probability that the queue through
which f passes is filled to height n, and let ko be the capacity of the queue.

Here, the two foreground flows are bottlenecked by separate queues, so that the random variable X ; = ((L%f1 =
0), (L4 = 1)) is independent of the random variable Y = (L™ = 0), (Li = 1), (R} < R} < Ri\]{)). For similar
reasons, the random variable X, = (L% = 1) is also independent of Y. Hence:

M. — Pr(X.,Y) Pr(X;)Pr(Y)
“ Pr(X,,Y) Pr(X;)Pr(Y)

= Pr(Ly'=0|L]=1) (33)

We now proceed to solve for equation (33):

Pr(Li=1|L" =0)

. . P Lj—l —
Pr(Ly " =0]| L} =1) r(zi;))

Pr(L} =1

ol — oLt — o] P =0)
[1 Pr(Li = 0| L} 0)] :

Pr(L] =1

Tho (34)

= [1 —Pr(Ii=0|L" = 0)]

1— 7,

Above, we have applied PASTA to get Pr(LI™! = 0) = Pr(L] = 0) = ,. We have 7, = %, where

p2 = %, (and note 7, = (k2 + 1)~! when p, = 1). Recall that), is the rate of the background flow into the
-~ k
queue, and 15 is the processing rate of the queue. Hence, —22— =1 /k2 when ps = 1, and % otherwise.

1—mg,

Let ps,(7) be the probability that the next event at the POC is an arrival from f», conditioned on the fact that
the queue is filled to height j at the time of the arrival. This probability is different than p(j) (in the case when the
flows share a POC), since here, packets from f; no longer proceed through the POC. Similarly, define p, (5) to be the
probability that the next event at the POC is an arrival from f}, and ps, (j) to be the probability that the next event at

. . . _ A _ A _ Ab _ Ab
the POC is a service completion. Then py, = m,pzz (0) = /\bzi/\l,pbz = /\b2+>\i+uz,pb2 (0) = Tﬁh’ and
Doy = m (as before we omit the parameter j when it is clear tha j > 0).
Pr(L} = 0| L3~' = 0) is identical to Pr(L{™" = 0| L] = 0), and its solution (where f; does not enter the POC)

is

25

D2,

_ j+1 _ Jj _ —
M, = Pr(L2 =0 | Ly = 0) = T —— (35)
Psy Db, (0) n=1
¢3 (n) = Dso Dby 1 (36)
T—¢s(n—-1) "~

B.4 Y Topology, Separate Bottleneck: 1/,

The loss rate of probability of flow f» for the separate bottleneck case is:

1—,02 ko

Ma = PI'(L% = 0) = Mgy = Wﬂz

B.5 Experiments

We now discuss how we demonstrate that the values of M, and M, presented in equations (3) and (4) are such that if
the POC(s) are M/M/1/K queues, then M, > M, if and only if the POC(s) for f; and f» are shared. The recursive
equations formulated in this section compute the values of M, and M, as functions of A1, A2, Ay, 4, and k in a system
in which the POC(s) are M/M/1/K queues. Thus, for any set of values, {1, A2, Ay, 4, k}, we compute the values for
M, and M, for the case where the POC is shared, and verify that M, > M,, as well as the case where the POCs are
separate, and verify that M, < M,. The recursive equations were coded in Mathematica v3.0, which allowed us to

easily sample a large suite of test values.

Suite # A1, A2 b I k
1 {0.1,5.0} 10.0 {5, A1 + A2 + Xp, A1 + A2 + Ay £0.1,20} | {5,10,30}
2 10.0 1.0 {5,20.9,21,21.1,40} {5,10, 30}
3 E.(0.01,10.0) | E.(0.01,25.0) E,.(0.01, 30) 10

Table 3: Suites of test sets used to verify the loss-corr technnique on the Y-topology where POCs are M/M/1/K queues.

Table 3 summarizes the sets chosen in the three suites of experiments. Each row gives the values used within that
particular suite. Each column gives the values used for a particular parameter. The first suite consists of 30 experi-
ments, consisting of all possible combinations where A; € {0.1,5.0}, Ay € {0.1,5.0}, A\, = 10.0,k € {5, 10,30},
and p is chosen as 5, 20, A1 + Ao + Ap, A + A2 + Ap + .1, or Ay + Ao + Ay — .1. The last three values cover the
cases where the service rate of a shared POC is equal to, slightly more than, and slightly less than the aggregate rate of
traffic into the POC. This first suite considers cases where the foreground flow rates are less than the background flow
rate, where the aggregate rate into the queue is significantly less, slightly less, equal, slightly more, and significantly
more than the aggregate service rate of the queue. The second suite consists of 15 additional sets of values, in which
values are chosen with similar characteristics, except that the rates of the foreground flows are higher than the rate of
the background traffic.

The final suite of traffic consists of 1,000 experiments with values for A1, A2, Ap, and u chosenrandomly. E,.(m, M)
is a random variable whose values range between m and M, and is heavily weighted toward the minimum. E ,.(m, M)
is computed by choosing a random value, z, uniformly distributed within the interval, (0, 1), and returning exp(z(In(M)—
In(m)) + In(m)) = m(M/m)*.

26

the

In all 1,045 experiments performed, the comparison test using the loss-corr technique for the Y-topology returned

correct hypothesis.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]
[13]
(14]
[15]

H. Balakrishnan, H. Rahul, and S. Seshan. An Integrated Congestion Management Architecture for Internet Hosts. In
Proceedings of SIGCOMM’99, Cambridge, MA, September 1999.

V. Padmanabhan. Coordinated Congestion Management and Bandwidth Sharing for Heterogeneous Data Streams. In Pro-
ceedings of NOSSDAV’99, Basking Ridge, NJ, June 1999.

L. Gautier, C. Diot, and J. Kurose. End-to-end Transmission Control Mechanisms for Multiparty Interactive Applications in
the Internet. In Proceedings of IEEE INFOCOM’99, New York, NY, March 1999.

J. Byers, M. Luby, and M. Mitzenmacher. Accessing Multiple Mirror Sites in Parallel: Using Tornado Codes to Speed Up
Downloads. In Proceedings of IEEE INFOCOM’99, New York, NY, March 1999.

S. Seshan, M. Stemm, and R. Katz. SPAND: Shared Passive Network Performance Discovery. In Proceedings of the
USITS 97, Monterey, CA, December 1997.

V. Padmanabhan. Optimizing Data Dissemination and Transport in the Internet, September 1999. slides presented at the
BU/NSF Workshop on Internet Measurement, Instrumentation and Characterization.

D. Katabi, 1. Bazzi, and X. Yang. An Information Theoretic Approach for Shared Bottleneck Inference Based on End-to-end
Measurements. Class project, MIT Laboratory for Computer Science, contact: dina@ai.mit.edu, 1999.

S. Ratnasamy and S. McCanne. Inference of Multicast Routing Trees and Bottleneck Bandwidths using End-to-end Measure-
ments. In Proceedings of IEEE INFOCOM’99, New York, NY, March 1999.

R. Caceres, N. Duffield, J. Horowitz, and D. Towsley. Multicast-Based Inference of Network-Internal Characteristics: Accu-
racy of Packet Loss Estimation. Transactions on Information Theory, November 1999.

S. Moon, P. Skelly, and D. Towsley. Estimation and Removal of Clock Skew from Network Delay Measurements. In
Proceedings of IEEE INFOCOM’99, New York, NY, March 1999.

V. Paxson. On Calibrating Measurements of Packet Transit Times. In Proceedings of ACM SIGMETRICS’98, Madison, WI,
June 1998.

G. Folland. Real Analysis: Modern Techniques and Their Applications. John Wiley and Sons, New York, NY, 1984.
S. Ross. Stochastic Processes. John Wiley and Sons, New York, NY, 1983.

S. McCanne and S. Floyd. ns-LBL Network Simulator, 1997. Obtain via http://www-nrg.ee.lbnl.gov/ns/.

B.W. Lindgren. Statistical Theory, 4th Ed. Chapman and Hall, New York, NY, 1993.

27

