
Learned Subproblem Selection Techniques for
Combinatorial Optimization

Robert Moll, Theodore J. Perkins, Andrew G. Barto
Department of Computer Science

University of Massachusetts, Amherst
Amherst, MA 01003

Computer Science Technical Report 99-67

November 30, 1999

Abstract

Subproblem generation, solution, and recombination is a standard so-
lution method for combinatorial optimization problems. In many settings
identifying suitable subproblems is itself a significant component of the
method. Such subproblems are often identified using a heuristic rule.
Here we show how to use machine learning to make this identification.
In particular we use a learned objective function to direct search in an
appropriate space of subproblem decompositions. We demonstrate the ef-
ficacy of our technique for problem decomposition on two examples: graph
coloring for geometric graphs, a deterministic optimization problem, and
the Multiple Uninhabited Air Vehicle Surveillance Control Problem, or
MUAV, a stochastic optimization problem that is related to vehicle rout-
ing problems in operations research.

1



1 Introduction

Divide and conquer — that is, subproblem generation, solution, and recombina-
tion — is a standard technique in combinatorial optimization. In many divide
and conquer settings the search for suitable subproblems is itself a significant
component of the technique, and overall results can depend critically on the
component subproblems that are actually considered. For example, in a classi-
cal vehicle routing problem in Operations Research, a fleet of vans, each with
a fixed carrying capacity and each starting from a common depot, is given the
job of making deliveries to a set of sites and then returning to the depot. The
deliveries assigned to any van must not exceed that van’s carrying capacity. The
problem objective is to assign deliveries to the vans so as to respect the capacity
constraints, and to route vans so as to minimize the total van travel distance.
Clearly, how sites are assigned to vans, i.e., which single van subproblems are
formed, is at least as important as the routing plan for each van.

How a problem is factored into subproblems, e.g., which sites are assigned to
which vans, is often done heuristically. Here we describe an alternative approach
to subproblem selection, one that uses machine learning to direct search in the
space of problem decompositions. While in principle we do not restrict the form
of this search, in both of the examples presented here we use local search over
suitably formulated spaces of subproblems.

Suppose an optimization problem P, such as the vehicle routing problem de-
scribed above, can be solved by first decomposing it into subproblems from
some class C, and then by solving those subproblems. In the example above
the class C consists of single van routing problems. Now suppose algorithm
A solves instances from C. Instead of factoring P into subproblems according
to some heuristic rule, as is common practice, we view the task of choosing a
decomposition as a search problem in the space of subproblem decompositions.
The effectiveness of this search depends on being able to estimate algorithm A’s
performance quickly on example decompositions. To accomplish this we first
identify a set of quickly computable features that capture, with some precision,
the expected behavior of A on any instance. Then, using supervised learning in
an off-line training procedure, we create Ã(·), an estimate of A’s performance.
This is done by running A on a large corpus of examples, and then using re-
gression to fit the feature values of the examples to A’s corresponding output
values. Once constructed, we use Ã — a fast, inexpensive substitute for A itself
— as a cost function for hillclimbing in the space of subproblem decompositions.
When we arrive at a local optimum in “subproblem decomposition” space, we
apply A to the subproblem or subproblems associated with the optimum, and
use the results obtained to form an overall problem solution.

A number of investigators have studied the use of a learned cost function to di-
rect local search. Zhang and Dietterich [5] consider instances of a NASA space

2



shuttle mission scheduling problem. Using reinforcement learning, they develop
a local search-like technique for removing constraint violations from infeasible
schedules. In [2], Boyan and Moore develop a technique for acquiring a hill-
climbing cost function on-line. They simultaneously learn this function and use
it to search for good initial solutions from which to begin conventional local
search. Their STAGE algorithm works on specific instances of deterministic
optimization problems. Our work in [6] shows how to use a learned value func-
tion directly as a generalized cost function within the framework of conventional
local search. That work is concerned with demonstrating a methodology for ac-
quiring and then using a learned cost function for standard local search across
all instances of a problem class.

All three studies cited above investigate the efficacy of learning a cost function
for searching spaces of feasible (or, in the case of [5], infeasible) solutions. Our
approach here operates at a different level. We employ local search over a
space of viable subproblems in an attempt to find subproblems that are most
promising with respect to the estimated behavior of a known algorithm.

We illustrate our technique with two examples, graph coloring for a class of
geometric graphs, a deterministic problem, and the Multiple Uninhabited Air
Vehicle Surveillance Problem, MUAV, a stochastic, traveling salesman-like prob-
lem.

2 Graph Coloring

Graph coloring is one of the most widely studied NP-complete combinatorial op-
timization problems, and has many important applications, including timetable
scheduling, register allocation in compilers, VLSI layout, and channel assign-
ment for mobile communications. We first illustrate our subproblem selec-
tion technique by examining graph coloring for a particular subclass of graphs,
namely geometric graphs.

A coloring of an undirected graph is an assignment of colors to vertices, with the
property that adjacent vertices (vertices connected by an edge) have different
colors. Thus a coloring partitions vertices into classes, such that members of
the same color class are not adjacent. An optimal graph coloring partitions the
vertices of a graph into the fewest possible color classes.

For the class of random geometric graphs we consider, vertices correspond to
uniformly randomly generated points in the unit square. Two vertices are adja-
cent in the graph if the distance between their corresponding points falls below
a certain threshold. UN,t denotes the class of geometric graphs on N points
with adjacency determined by distance threshold t. A widely studied threshold
is t =.5. Geometric graphs model the channel assignment problem for mobile

3



communications systems.

In the case of graph coloring for geometric graphs we proceed as follows. Let
C be a subclass of geometric graphs, determined, for example, by parameter t,
and let A be any coloring algorithm. We first construct estimator function Ã,
which can quickly estimate the behavior of A on a graph in C, i.e., the number
of colors A uses to color that graph. (We describe this construction shortly).

Once Ã has been constructed, we use it to augment our original algorithm A.
Let G be an arbitrary geometric graph. First we color G using A. Then we
identify a set of color classes where we believe the coloring has been inefficient.
Here we choose small classes, because it is more likely that by combining their
members and then recoloring, we will be able to reduce the number of colors
required. Thus we identify the recoloring of the members of some selected small
color classes as the subproblem we want to attack. However there may be other
subproblems, obtained by exchanging vertices in this set with other vertices,
that could be more promising for recoloring using A. The essence of our method
is to use Ã to search through these subproblems until we arrive at a (locally)
most promising one, and then apply A to it. More specifically, our method,
applied to (geometric) graph coloring, can be described as follows.

Given geometric graph G, first color G using A. Then:

1. Select a subset of color classes that are appropriate for reorganization into
fewer classes (e.g., some of the sparsely populated color classes). Collect
the vertices in these classes into a “recolor” set. The collection of vertex
sets that are the same size as this set constitutes the space of subproblems
to be considered.

2. Using standard first-improvement local search flow of control [1], hill-climb
in the space of recolor sets by repeatedly considering pairwise exchanges
between a member of the current recolor set and a member of some still-
intact color class S. Exchanges are accepted if the swap preserves the
integrity of S (here: the alteration of S should introduce no adjacencies to
S, i.e., no vertices in S should be linked by an edge), and if Ã’s estimate
of A’s performance on the recolor set is improved by the exchange.

3. When a local optimum is reached in 2), solve the subproblem by applying
A to the newly constituted recolor set.

4. Once this subproblem has been solved, combine its coloring scheme with
the other color classes (which may be slightly altered as a result of the
exchange process, but which are still legal classes) to get a complete,
optimized solution to the problem.

Notice that the above formulation — selecting a subproblem by hill-climbing in
subproblem space using a learned estimator for a known algorithm — does not

4



depend on the kind of graph under consideration, and indeed does not depend
on the objects being graphs at all. In fact our methodology applies to any
constrained partitioning problem and any algorithm A that does a poor job on
some of the partitions. For example, the transformation of this methodology
to classical one-dimensional bin-packing is quite direct. One-dimensional bin-
packing is the problem of packing items of size between 0 and 1 in as few unit-
sized bins as possible, such that the items assigned to any bin sum to a value ≤ 1.
To lift our graph coloring methodology, start with an approximation algorithm
A such as First-Fit-Decreasing [1], and build an estimator, Ã, for it. Apply A
to pack the bins. Collect some subset of poorly packed bins and empty their
contents, forming a repacking set. Now repeatedly exchange elements of this set
for items that still reside in bins. An exchange is accepted if it maintains the
integrity of the still intact bin (the sum of that bin’s contents remains ≤ 1 after
the exchange), and if Ã’s estimate of the repacking set improves as a result of
the exchange. When this process reaches a local optimum, apply A to this final
repacking set, and combine these bins with the previously packed bins to obtain
a complete solution. In section 4 we briefly consider a multi-knapsack packing
problem, which illustrates some complications that arise with our model.

2.1 Graph Coloring Results

We considered geometric graphs from the classes UN,t for N = 250, 500, and
750 vertices, and for threshold t = .5. We use the DSATUR algorithm as our
base graph coloring algorithm [8]. This algorithm is reported to be the best, or
at least competitive with the best algorithms known for geometric graphs [9].
It works as follows:

Begin with a random permutation of the graph’s vertices.
While vertices remain uncolored:
1. Choose the vertex adjacent to the highest number of distinct colors among
the already colored vertices. (Break ties by taking the lowest-indexed vertex.)
2. Assign the lowest-indexed legal color to that vertex.

For our estimation function Ã for DSATUR we use a linear function approxima-
tor. It is constructed using regression from normalized versions of two features
and their squares. These features are: the number of edges in the graph (E),
and the variance of the degrees of the vertices about the average graph degree
(V). Our function approximator is:

˜DSATUR(E, V ) = (−1.78 ∗ E) + (2.18 ∗ E2) + (−.36 ∗ V ) + (.47 ∗ V 2) + .77

Feature normalization is necessary to account for the size variation across prob-
lem instances in the class of recolor vertex sets that are to be searched. Here,
too, we used regression: we constructed several thousand example geometric

5



Algorithm / Problem Size N = 250 N = 500 N = 750
no swapping 14% 22% 23%
full optimization, RecolorClassCt = 10 56% 69% 75%
full optimization, RecolorClassCt = 15 57% 77% 80%

Figure 1: Frequency of Optimization Improvement over DSATUR

graphs of various sizes, and then did a least-squares fit to determine values for
α, β, and γ such that, for example in the case of the variance feature, V satisfies

V/(α + β ∗ N + γ ∗ N2) = .5

We then constructed ˜DSATUR by applying linear regression to DSATUR’s per-
formance on 10,000 example geometric graphs from sizes 10 to 80 (the approxi-
mate size range of recolor vertex sets). For each example graph G we calculated
the normalized feature values E, E2, V , and V 2. We also calculated a target
value, the result of applying DSATUR to the graph in question (number of col-
ors used), divided by the number of vertices in the graph. We then used linear
regression to fit the feature values to the target values.

The approximate size of the recolor set is controlled by a parameter called
the RecolorClassCt, which determines the number of sparse color classes that
participate in recolor set formation. Given this value, all singleton classes are
included in the recolor set, and as many doubleton classes are added as are
needed to achieve the intended size. (If there are too few singleton and doubleton
classes, then the algorithm just proceeds with a smaller recolor set).

Figure 1 gives our results on 100 randomly generated geometric graphs of 250,
500 and 750 vertices and for two settings of the RecolorClassCt parameter.
In each case we ran DSATUR and recorded the number of colors used. We
then formed the recolor set, optimized it according to ˜DSATUR, and reap-
plied DSATUR to the optimized recolor set. In this way, we improved on the
DSATUR results by at least one color on as many as 57%, 77%, and 80% of the
graphs at the three sizes.

For comparison purposes, we also report improvement percentages in the case
where we apply DSATUR directly to the recolor vertices, without optimizing
with ˜DSATUR to improve their potential for recoloring (the row labeled “no
swapping” in Figure 1).

Figure 2 shows the running time of the algorithm at various graph sizes and
different settings of RecolorClassCt. Results are given in terms of a base running
time of 1.0, at each size, for DSATUR.

We also compared the performance of our enhanced DSATUR algorithm against

6



Algorithm / Problem Size N = 250 N = 500 N = 750
full optimization, RecolorClassCt = 10 1.3 1.7 1.8
full optimization, RecolorClassCt = 15 2.6 3.6 7.1

Figure 2: Optimization Routine Running Times, DSATUR = 1.0

N = 250 N = 500 N = 750
full optimization, RecolorClassCt = 10 22% 47% 50%

Figure 3: Enhanced DSATUR improvement frequency over pure DSATUR,
equalized for time

pure DSATUR on a time-equalized basis. For this comparison we set Recolor-
ClassCt = 10 since our optimization scheme is much faster at this setting, while
performance is only slightly diminished. We compared these algorithms on 100
randomly generated examples at three sizes. For each example we ran DSATUR
from 10 random starting orders. We recorded the best coloring found among the
10, and we also recorded the running time for the 10 runs. We then allowed our
enhanced DSATUR algorithm to run for an equivalent amount of time. Figure
3 gives the percentage of example instances on which our optimized DSATUR
algorithm colored graphs using fewer colors.

While our results for UN,.5 are encouraging, especially in light of DSATUR’s ap-
parent success on this class compared with other algorithms, we should point out
that to be effective, the algorithm requires a certain amount of time-consuming
elaboration, which first involves choosing appropriate features, and then requires
solving several regression problems, namely feature normalization and learning
Ã off-line. Thus even a class as closely related to UN,.5 as UN,.9 would require
at least several additional hours in order to reestimate ˜DSATUR. On the other
hand, DSATUR’s status here is unremarkable: if the XRLF algorithm of [9]
proves to be the champion coloring algorithm on a particular class of graphs,
then we could just as easily apply our method with it as the base graph col-
oring algorithm. Furthermore there is no intrinsic reason for using the same
algorithm for the base coloring and for the enhancement phase. Indeed, with
RecolorClassCt set to 10 and perhaps even 15, the resulting subproblems are
small enough that an optimal coloring algorithm, O, and its estimation function,
Õ, could be used in the enhancement phase.

7



3 The Multiple Uninhabited Air Vehicle Surveil-
lance Problem (MUAV)

In this section we study a simplified air surveillance task, in which a fleet of
planes is dispatched and controlled to observe (fly over) target sites, subject
to uncertain weather conditions. We use linear regression to build a feature-
based estimator function that is intended to capture the behavior of a single
plane as it flies over a set of sites under the direction of a heuristic controller.
In a multiple-plane task, this learned prediction function and a local search
procedure are used to partition the set of target sites – each partition being
assigned to one plane. This produces single-plane surveillance subproblems,
which are then solved using the heuristic controller.

We also experimented with continually optimizing the site partitioning while the
planes are in flight and observing. The subproblem divisions are thus adapted
on-line to the stochastic progression of the system. This adaptation results in
significant performance gains compared to assigning each site to some plane at
the start and never changing assignments.

3.1 MUAV Problem Description

Figure 4 depicts an instance of the MUAV problem. The target sites for obser-
vation are points in the unit square. Each site has an associated reward — the
value for observing the site — and a local weather condition that varies with
time. The weather at each site can be cloudy or clear. Only if the weather is
clear will an overflying plane be able to observe the site and receive the obser-
vation reward. Once observed, there is no further reward if a plane flies over
the site again. The weather at a site toggles between cloudy and clear randomly
according to a Poisson waiting time distribution.

The fleet of planes departs from a home base at time zero. Control is centralized
and there is no hidden information. The central controller knows the location
and current headings of all the planes and the locations of, rewards for, and
current weather at each site. The goal of the problem is to accumulate as much
total observation reward as possible across the whole fleet of planes.

The planes carry limited fuel, which is expended at a unit rate per time. The
planes also travel at unit distance per time, and are required to return to base
before fuel runs out. The fuel limit can thus be thought of equivalently as a
total distance limit. We experiment with fuel allottments ranging from 1.0 (not
enough to reach some sites, let alone return) to 5.0 (enough to circumnavigative
the unit-area surveillance region with fuel to spare).

8



BASE
HOME

Plane 1

Plane 2

A Cloudy Site

A Clear Site

Figure 4: Depiction of an MUAV instance

9



3.2 The Partitioning Solution

We approach the MUAV task by splitting the sites among the planes, creating a
set of single-plane surveillance tasks. These single-plane subtasks are solved by
a simple heuristic controller, which we found to be the most effective of several
obvious contenders. If possible, a plane flies towards the nearest clear-weather
site in its partition. If all the sites are cloudy, the plane simply flies to the
nearest of those. And finally, when a plane has no assigned sites, it heads back
to base. We call this control rule “Nearest Site, Visible Preferred”, or just NVP
for short.

The question, then, is how to divide the sites in a multi-plane task among the
planes for solution by NVP . To do this, we first learn ÑVP, an estimate of the
performance of NVP on arbitrary, hypothesized single plane instances. A local
search procedure in the space of partitions, using performance estimator ÑVP
to evaluate components of a candidate partition, then identifies a promising
division of the MUAV instance into a collection of single-plane problems.

3.2.1 Estimating performance of NVP

To learn ÑVP, we generated 500 random, single-plane surveillance problem
instances, with 6-10 sites. The number of sites, their placement in the unit
square, and initial weather conditions were all chosen uniformly randomly. The
plane was given 3.0 fuel, and was allowed to reevaluate and possibly choose a
new heading every 0.025 time units. The home base for the plane was at the
origin, (0,0). The changes in weather at each site occurred at discrete times
according to Poisson process with parameter λ = 2.0.

On each instance, we simulated one run of NVP , recording at each decision
point 18 features and the total observation reward achieved from that point
forward in the run. We did a linear least-squares fit to predict the fraction of
remaining reward that will be achieved. Multiplying by the amount of remaining
reward thus predicts the total observation reward. It is this linear approxima-
tion that we use to estimate the performance of NVP on potential single-plane
subproblems resulting from the decomposition of an MUAV instance. See figure
5 for a description of features and the fitted weights.

3.2.2 Optimizing subproblem decomposition

To divide a MUAV task into single-plane subproblems, we begin by randomly
assigning each site to some plane. From this initial partitioning, we run a best-
improvement local search procedure. For any partitioning, the “neighboring”

10



Feature Description Weight
1 Sum of site distances to centroid of unobserved sites 0.1896
2 Mean of site distances to centroid of unobserved sites -0.2791
3 Plane distance to centroid of unobserved sites -0.0373
4 Home base distance to centroid of unobserved sites -0.2721

5-8 Like 1-4 but base included in computation of centroid -0.2145
0.2528
0.0137
0.3088

9 Plane distance to nearest clear site -0.0507
10 Indicator (0/1) of no clear sites -0.0382
11 Plane distance to nearest site, cloudy or clear 0.0184
12 Indicator (0/1) of no unobserved sites at all 0.0
13 NNTSP: Reward if plane were to visit sites in closest- 0.2997

first order until fuel is low, assuming weather always clear
(as a percentage of total unobserved reward remaining)

14 Like 13 (NNTSP) but visitation reward weighted by probability 0.6651
of clear weather when plane gets there.

15 Like 14, but only first site is so weighted -0.2836
16 Fuel left after NNTSP tour 0.0619
17 Fuel left now 0.0820
18 Total unobserved reward out there -0.0001
19 Bias (+1.0) 0.1034

Figure 5: Features and linear weights for predicting NVP performance.

11



BASE
HOME

Plane 1

Plane 2

A Cloudy Site

A Clear Site

Figure 6: Result of a single local search step.

partitionings are those obtained by reassigning a single site to a different plane.
Figure 6 gives an example of a search step. Compared with figure 4, one of the
sites has been moved to the partition of plane 1, and that plane is now heading
toward the site in accordance with the NVP rule.

The local search examines the neighboring partitionings, finding the one with
best estimated value — just the sum of the NVP estimates for each partition.
If the best neighbor has better estimated value than the “current” partitioning,
that neighbor becomes current and search proceeds from there. When arriving
at a local optimum of estimated value in this space of partitionings, search
terminates. Each plane is then controlled by NVP as if the sites in its partitions
are the only ones that exist.

We also experimented with repeated, or “continual” optimization of the par-
titions. Under this scheme, each time the controller considered new headings
for the planes the partitioning was also reoptimized. We used the same local
search procedure, starting from the current partitioning. This allowed the con-
troller of the fleet of planes to react to variable performance caused by weather.
For example, if one plane had made little progress because of cloudy weather
at its sites while another had made much progress in its partition, then sites
might be reassigned to balance current loads among planes. The continual opti-

12



Fuel NVP estimate NVP estimate Compactness Compactness
Allotted continuously optimized. No continuously optimized. No

optimized repartitioning optimzed repartitioning
after trial after trial

starts starts
1.0 12.5% 11.7% 9.5% 9.6 %
2.0 42.5% 39.7% 37.5% 38.8%
3.0 74.2% 69.6% 70.7% 69.5%
4.0 91.0% 89.9% 90.8% 87.9%
5.0 97.6% 97.1% 98.3% 96.6%

Figure 7: Total observation reward achieved by different partitioning schemes
at different fuel levels, as percentage of reward available.

mization even allows the system to respond to changes not modelled as part of
the dynamics of the system. For instance, if we were to remove or add planes,
or change the sites, the system would seamlessly redivide the problem for the
individual planes.

3.3 Results

We compared four different partitioning schemes on 100 random 24-site, 3-plane
MUAV instances, with different amounts of fuel. We tried partitioning based on
the linear NVP performance estimates and also partitioning based on compact-
ness – feature 1 in figure 5. Partitioning based exclusively on compactness means
that we accepted a single move site reassignment when by doing so we improved
(reduced) the sum of the compactness measures for the three groups of sites.
Compactness-based partition was the best heuristic method we tested, outper-
forming sector-based partitioning, a standard approach in multiple-vehicle rout-
ing problems. For both, we ran trials in which the initial partitioning was held
fixed throughout the run, and trials in which the partitioning was continually
optimized.

Figure 7 summarizes the results. Within each row, the boldface numbers are
statistically significantly larger than the other numbers, by a t-test at p=0.05.
Through much of the fuel range studied, optimizing ÑVP led to better parti-
tioning than did compactness-based partitioning. At the highest levels of fuel,
compactness performs a little better. In the single-plane trials that provided the
data for the NVP estimate, the plane always started with 3.0 fuel. It is possible
that adjusting this would change the range where partitioning based on ÑVP
performs best.

Note also that the continual optimization of partitions yielded significant im-
provements over sticking with initial partitionings. In this domain, redividing

13



the full problem into different subproblems is easy to do: there is little cost in
moving a site to another plane’s partition. In other stochastic systems where
subproblem divisions may be revised with little cost, such an approach may
prove more effective than algorithms that commit to decisions once made. For
example, multiprocessor scheduling algorithms usually maintain a queue for
each processor, and when a program is submitted, that program is placed on
a particular processor queue. In the case where processes have unpredictable
running times, our approach suggests a way in which computational loads might
might be balanced more effectively.

4 Discussion

We have demonstrated a general learning-based method for subproblem explo-
ration which, we believe, holds great promise for algorithm development for
both deterministic and stochastic combinatorial optimization. For example, the
subproblem conditioning technique used for geometric graphs should be applica-
ble to a wide variety of scheduling, packing, and layout problems, where regions
that are poorly scheduled, packed, or layed-out play the role of the recolor set
in our graph study. As our MUAV example shows, our method can also be ef-
fective for developing stochastic optimization algorithms. A general weakness of
the method is the degree to which the nature of the particular problem class can
be captured using rapidly computable features. Thus, we showed good results
for graphs in the class UN,.5, but the method’s effectiveness for other classes of
graphs, which might require completely different features, is unproven.

Our MUAV example illustrates two other novel aspects of the method. First,
our estimator is fast enough (and the time demands of the problem are suf-
ficently undemanding) that it is feasible to reoptimize repeatedly on a very
fine time scale. This process not only yields an apparently superior algorithm,
but also demonstrates a way in which our method can be used to simplify the
construction of an effective algorithm for a complex stochastic problem. That
is, the factorization style we employed meant that we needed to construct an
estimator function via simulations for the single plane case only. The overall
stochastic characteristics of the full MUAV are handled by the resulting single
plane estimator, combined with a nonstochastic parititioning algorithm, applied
repeatedly to respond to uncertainites as they arise in the simulated world. We
believe this methodology holds promise for other, similarly factorable stochastic
optimization problems, e.g., elevator scheduling and multiprocessor scheduling.

Next we identify an issue that will greatly affect the breadth of application of
the method. Imagine a multiple knapsack packing problem: given a collection
of N identical knapsacks, and a large collection of objects of varying sizes and
values, pack pieces in the N knapsacks to achieve the highest total value possible,

14



subject to the capacity constraints of the knapsacks. Suppose we proceed exactly
as we have for graph coloring: given algorithm A for multiple knapsack packing,
we form Ã off-line, as before. Next we apply A, and then collect and empty
out the poorly packed knapsacks, forming an “unpacked” set from the objects
in these knapsacks and any other as yet unused objects. We wish to repack the
emptied knapsacks, again using A. Proceeding as we did with graph coloring,
we attempt to make exchanges between objects still in knapsacks, and elements
of the unpacked set. But now we encounter a difficulty that did not arise in the
graph coloring example. Suppose we come to a proposed exchange between an
unpacked set element p and an element q that is still in a knapsack, say K, with
the following consequences: 1) suppose exchanging p for q leaves K legal; 2)
the value of K’s contents falls because of the exchange (this is bad, since total
value across all knapsacks is our primary objective); but 3) Ã’s estimate of the
value of the unpacked set improves due to the exchange, because q has replaced
p in the unpacked set (this is good). Do we accept the exchange? The crux of
the matter is the need to understand the trade-off between falling real values
(changes in K), and estimated improvement (Ã’s assessment of the unpacked
set).

This last issue may well be affected by the level of precision of the function
approximator we employ. In the two examples we have considered so far, we
have used only simple linear function approximators. This is an asset, in that
we seem capable of achieving good results with comparatively weak estimator
functions, which only need to supply qualitative information about estimated
algorithmic performance. But as the knapsack example shows, some quantita-
tive information about estimator accuracy may be necessary in order for the
method to operate more broadly. Thus a more sophisticated, statistically qual-
ified, function representation may be needed in order for hill-climbing of the
kind we have described to be broadly effective.

This research was supported by a grant from the Air Force Office of Scientific
Research, Bolling AFB (AFOSR F49620-96-1-0254).

References

[1] C. H. Papadimitriou, and K. Steiglitz, K.(1982). Combinatorial Optimiza-
tion: Algorithms and Complexity. Prentice Hall, Englewood Cliffs, NJ.

[2] J.A. Boyan, and A.W. Moore (1997). Using Prediction to Improve Combi-
natorial Optimization Search, Proceedings of AI-STATS-97.

[3] P. Healy and R. Moll (1995). A New Extension to Local Search Applied to
the Dial-A-Ride Problem. EJOR, 8: 83-104.

[4] P.Healy (1991). Sacrificing: An Augmentation of Local Search. Ph.D. the-
sis, University of Massachusetts, Amherst.

15



[5] W. Zhang, and T.G. Dietterich (1995). A Reinforcement Learning Ap-
proach to Job-Shop Scheduling, Proceedings of the 14th IJCAI, pp. 1114-
1120. Morgan Kaufmann, San Francisco.

[6] R. Moll, A.G. Barto, T.J. Perkins, R. S. Sutton (1999). Learning Instance-
Independent Value Functions to Enhance Local Search, Advances in Neural
Information Processing Systems 11, M. Kearns, S. Solla, D. Cohn, eds., pp.
1017-1023, MIT Press, Cambridge, MA.

[7] B.W. Kernigham and S.Lin (1970). An Efficient Heuristic Procedure for
Partitioning Graphs. The Bell System Technical Journal, 49: 291-307.

[8] D. Brelaz, New Methods to Color Vertices of a Graph, Comm. ACM 22:
251-256.

[9] D. Johnson, C. Aragon, L. McGeoch, C. Schevon, Optimization by Sim-
ulated Annealing: An Experimental Evaluation; Part II, Graph Coloring
and Number Partitioning (1991). OR, 39: 378-406

16


